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A short-term prediction method for distributed PV power based on an improved
selection of similar time periods (ISTP) is proposed, to address the problem of low
output power prediction accuracy due to a large number of influencing factors
and the large difference in the degree of influence of various factors. First, the
simple correlation coefficient (SCC) based on path analysis is used to screen the
main influencing factors with stronger correlation with PV output power, and
these factors are classified into three categories. Second, correlations of the three
dimensions are calculated, respectively: (i) TOPSIS (with weights optimized by the
SCC) determines meteorological correlation, (ii) linear weighting (based on the
fuzzy ranking) obtains time correlation, and (iii) load correlation is quantified with
existing current parameters. Third, the combined impact correlation (CIC) is
obtained by weighting the three correlations above to establish criteria for the
selection of similar periods, and a short-term PV power prediction model is
established. Finally, experimental results based on real data of Australian Yulara
Solar System PV plant demonstrate that errors of proposed ISTP method are
respectively improved by 47.06% and 46.09% compared with the traditional
ELMAN and similar day method.
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1 Introduction

With the goal of the promotion of China’s “double carbon” and the continuous
development of technology, photovoltaic power generation has rapidly become the third
largest renewable energy source after hydropower and wind power (Sheng et al., 2019).
However, output power of distributed PV power plants is highly intermittent and random.
Therefore, accurate forecasting of PV power generation is significantly important to stabilize
and secure grid operation and promote large-scale PV power integration (Utpal et al., 2018).

In recent years, a great deal of research on improving the prediction accuracy of
photovoltaic power has been carried out to reduce the uncertainty in forecasting
(Antonanzas et al., 2016). In the current studies, there are two main approaches that are
widely used in the forecasting of PV system production: Indirect and direct (Kıvanç et al.,
2020). Compared with indirect prediction, direct prediction can effectively improve the
model accuracy due to the introduction of actual historical data of PV power plant output to
calibrate the mechanistic model accordingly; but it requires analysis of a large amount of
historical power generation data. For this reason, existing studies introduce the concept of a

OPEN ACCESS

EDITED BY

Kada Bouchouicha,
CDER, Algeria

REVIEWED BY

Nadjem Bailek,
Université Ahmed Draia Adrar, Algeria
Bellaoui Mebrouk,
Centre de Développement des Energies
Renouvelables, Algeria

*CORRESPONDENCE

Yi Zhang,
zhangyi@fzu.edu.cn

SPECIALTY SECTION

This article was submitted
to Solar Energy,
a section of the journal
Frontiers in Energy Research

RECEIVED 22 January 2023
ACCEPTED 13 February 2023
PUBLISHED 23 February 2023

CITATION

Wu Z, Zhang Y, Liu B and Zhang M (2023),
Short-term prediction for distributed
photovoltaic power based on improved
similar time period.
Front. Energy Res. 11:1149505.
doi: 10.3389/fenrg.2023.1149505

COPYRIGHT

© 2023 Wu, Zhang, Liu and Zhang. This is
an open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Energy Research frontiersin.org01

TYPE Original Research
PUBLISHED 23 February 2023
DOI 10.3389/fenrg.2023.1149505

https://www.frontiersin.org/articles/10.3389/fenrg.2023.1149505/full
https://www.frontiersin.org/articles/10.3389/fenrg.2023.1149505/full
https://www.frontiersin.org/articles/10.3389/fenrg.2023.1149505/full
https://www.frontiersin.org/articles/10.3389/fenrg.2023.1149505/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fenrg.2023.1149505&domain=pdf&date_stamp=2023-02-23
mailto:zhangyi@fzu.edu.cn
mailto:zhangyi@fzu.edu.cn
https://doi.org/10.3389/fenrg.2023.1149505
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#editorial-board
https://www.frontiersin.org/journals/energy-research#editorial-board
https://doi.org/10.3389/fenrg.2023.1149505


similar historical day (whose PV output power is similar to the
power of the day to be predicted) to significantly reduce the amount
of data required. The literature (Wu et al., 2022; Chen et al., 2017;
Niu et al., 2020) mention the use of meteorological features to screen
similar days as input samples to the model for direct prediction.
Direct prediction based on similar days is a relatively simple and
feasible method in short-term prediction. Also in the field above, the
solar radiation intensity is often selected as a screening criterion for
similar days after correlation analysis (Zhu et al., 2018; Ge et al.,
2021; Zhang et al., 2021). Existing similar day methods (Fu et al.,
2012; Sun et al., 2013; Wang and Ge, 2013; Luo et al., 2018) mostly
study the overall similarity between a historical day (day before the
forecast date) and the day to be predicted. They usually classify the
historical data, and choose the highest, the lowest and the mean
value of various influencing factors in one day. The values above
(representing only one point in time) are often weighted to represent
the overall data of entire day (without an in-depth analysis of
differences in the degree of influence of each factor at different
time periods).

For this reason, researchers have proposed a number of
forecasting methods that analyze similar time period. (a) The
literature (Lu et al., 2017; Li et al., 2018) propose integrated
forecasting methods where the meteorological types were
classified and then they adopted different methods to predict
smooth and fluctuating PV output, respectively. However, due to
the limitation of the small data sample size, such methods do not
eliminate heterogeneous data and lead to a large amount of
redundant information input to the model. Furthermore, this will
result in long training time, poor accuracy, and adaptability of the
model. (b) The literature (Cheng et al., 2017) uses K-means to screen
and cluster the historical samples and then estimates PV output
probability distribution by kernel density. The correlation analysis of
the data reduces the dimensionality while eliminating heterogeneous
data, which improves the prediction results. Howerver, the weights
of each meteorological factor are not further determined in the
similarity analysis. (c) To study the method of determining the
weights of each factor, the literature (Peng et al., 2019) corrects the
meteorological data by clustering. They design a comprehensive
measure to find the optimal set of similar time periods and uses
ELMAN model for forecasting. The literature (Tan et al., 2021)
adopted path analysis to determine the weights and calculated
comprehensive factor correlation of each time period. They
quantified the meteorological, load, and time factors respectively
to realize the dynamic optimization of the number of similar time
periods.

In summary, existing PV forecasting methods that improve
accuracy through in-depth analysis of time have following two
problems: (a) A large number of meteorological factors and PV
output values are not screened before inputting them into the model,
or the lack of condensed screening criteria makes the screening less
targeted. Both can result in an insufficient number of similar time
periods or weak correlation. (b) Due to the inherent defects of neural
networks, problems such as overfitting and local optimization are
likely to occur, resulting in a decrease in model prediction accuracy.

To address the problems above, we propose a short-term prediction
method for distributed PV power based on improved similar time
period (ISTP). Firstly, the simple correlation coefficient (SCC) based on
path analysis is used as thresholds to screen main influencing factors

with a stronger correlation with PV output power. They are classified
into three categories: Meteorology, time, and load, to reduce the
dimensionality of data. Path analysis can measure both direct and
indirect coupling of each factor with PV output. Secondly, TOPSIS
(with weights optimized by the SCC) determines meteorological
correlation, linear weighting (based on the fuzzy ranking) obtains
time correlation, and load correlation is quantified directly based on
existing current parameters. Then correlation of the three dimensions
above and the SCC are jointly weighted to obtain the combined impact
correlation (CIC) as the similar time periods screening criteria. Finally,
we carry out method validation based on Yulara Solar System PV plant
inAustralia. The validation results show that ourmethod ensures strong
correlation between similar time data and predicted output value by
comprehensively considering influence of three dimensional factors.
Also we achieve dynamic optimization of the screened similar time
period quantity, which effectively improves the prediction accuracy.
Table 1 explains the acronyms that appear in the paper.

2 Fundamentals of path analysis

Interactions between different factors can affect PV power
predction to different degrees. Such effect is not only reflected in
direct influence of the factor itself on the prediction, but also in its
indirect influence on the prediction through other factors.
Therefore, we choose path analysis to calculate the SCC to
comprehensively measure both direct and indirect effects in the
interaction of factors.

2.1 Calculation method of the direct path
coefficient (DPC)

The dependent variable y and n distinct independent variables x
(x1, x2, . . ., xa, . . ., xn) all contain m sets of data. The DPC r1,a is
calculated by using

r1,a � ba

��������������������∑m
t�1 xa,t − 1

m
∑m

t�1xa,t( )2

∑m
t�1 yt −

1
m
∑m

t�1yt( )2

√√√√
(1)

In Eq. 1, a denotes the type of factor, xa,t is the sample t of
influencing factor a, yt is the sample t of PV power y, m is the
total number of selected days and ba denotes the bias regression
coefficient.

2.2 Calculation method of the indirect path
coefficient

First, we calculate correlation coefficient ra,a+1 between any two
independent variables xa and xa+1 as

ra,a+1 �
∑m

t�1 xa,t − 1
m
∑m

t�1xa,t( ) xa+1,t − 1
m
∑m

t�1xa+1,t( )��������������������∑m
t�1 xa,t − 1

m
∑m

t�1xa,t( )2
√ �����������������������∑m

t�1 xa+1,t − 1
m
∑m

t�1xa+1,t( )2
√

(2)
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When combining the DPC and correlation coefficient calculated
above, the indirect path coefficient r2a,a+1 represents indirect effect
of factor a on output y through factor a+1, which is given by

r2a,a+1 � ra,a+1ra+1 (3)

2.3 Calculation method of SCC

Combining the two types of coefficients above, the SCC ra
between xa and y is calculated by the following formula:

ra � r1,a +∑
o≠a

r2a,o (4)

In Eq. 4, r2a,o denotes the indirect path coefficient of influencing
factor a about another influencing factor o. This SCC indicates
indirect influence of factor a on dependent variable (PV output y)
through factor o.

By combining characteristics of two types of path coefficients,
the SCC not only measures influence of the factor itself on
prediction, but also captures influence of that factor on
prediction through other types of factors.

3 Fundamentals of the CIC

Since there are many influencing factors of distributed PV
power, we categorize eight influencing factors focused on
research into three dimensions: (i) meteorological factor
(ambient air pressure, ambient air temperature, wind level,
total irradiance, scattered irradiance, and sensor operating
temperature), (ii) load factor (average current), and (iii) time
factor.

Firstly, the quantitative data of each influencing factor are
obtained and the eight simple correlation coefficients are
calculated in Section 3.1. Then the eight factors are screened to
obtain strong correlation influencing factors and these strongly
correlated factors are grouped into three categories. Next, time
correlation, load correlation, and comprehensive meteorological
correlation are respectively calculated in Section 3.2. Finally,
three types of correlation above are linearly weighted with the
simple correlation coefficients of path analysis to calculate the
CIC, which measures the degree of influence of each factor on
PV output in Section 3.3.

3.1 Data preprocessing of the three-
dimensional factors

3.1.1 Quantification of the time factor
Since data are directly available for the two impact factors in (i)

and (ii) except for the time factor in (iii), the quantification method
of time factor data is first investigated to help subsequent
heterogeneous data elimination and screening of main impact
factors.

Because correlation between time factor and PV power may be
reduced if the correlation is only directly measured by distance in
time alone, we will improve the correlation between the time factor

and PV power in two ways. This is done by (i) calculating ratio of PV
average value of historical time periods to the total PV power value
of whole day as the weight to represent PV power at each time period
(ii) adopting the fuzzy ranking to calculate and using the results
directly as quantitative data of time factor. The specific steps are as
follows.

1) Use the average PV power at time period j of m sample days to
measure the proportion of that time periods among the
11 periods of whole day as follows:

Zj �
1
m
∑m

i�1mij∑11
j�0

1
m
∑m

i�1mij

(5)

In Eq. 5,mij denotes PV power output at time period j in the day
i, and Zj denotes the proportion of time j.

2) The m samples of time period j are sorted by power values from
largest to smallest. When PV power attains the maximum value,
a weight of m is assigned to Zj. When the second largest value is
obtained, a weight of m-1 is assigned to Zj. This continues and
when PV power attains the minimum value at a certain time, a
weight of 1 is assigned to Zj. The quantitative data Nij of time
factor is obtained by

Nij � hijzj (6)
In Eq. 6, hij denotes the weight value of each time period to be

measured according to what we described above.

3.1.2 Calculation of the SCC
3.1.2.1 Definition of feature symbols

The characteristics studied in this paper include ambient air
pressure, ambient air temperature, wind level, total irradiance,
scattered irradiance, sensor operating temperature, average
current, and time factor, for a total of eight factors that affect PV
output. For the subsequent description, we write Sij, Tij, Dij, Hij, Wij,
Gij, Pij, Nij, respectively, to donote each of eight factors at time period
j on the day i (i = 0 indicates the day to be measured) before the day
to be measured. Furthermore, m is the total number of historical
days. Influencing factor symbols and corresponding names are
shown in Table 2.

TABLE 1 List of acronyms.

Acronyms Full name

PV Photovoltaic

ISTP Improved similar time period

SCC Simple correlation coefficient

TOSIS Technique for order preference by similarity to an ideal solution

CIC Combined impact correlation

RMSE Root mean square error

MAPE Mean absolute percentage error

DPC Direct path coefficient
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3.1.2.2 Data normalization
The influencing factors discussed above are normalized according

to Eq. 7 below and themetric scales of differentmagnitudes of data are
limited to a certain range to obtain eight feature matrices:

f uij( ) � uij − min uij( ) − C max uij( ) −min uij( )( )[ ]
1 + 2C( ) max uij( ) −min uij( )( ) (7)

In Eq. 7, u = S, T, D, H, W, G, P, N, C is a constant, and uij is a
type of influencing factor.

3.1.2.3 Calculation of the simple correlation coefficients of
eight influencing factors

The daily average of the eight influencing factors from m historical
days are calculated separately as independent variables. The daily average
of PV power for the corresponding historical days is calculated as
dependent variables. Then the simple correlation coefficients of each
influencing factor above are calculated according to Section 2.1.

3.2 The correlation of the three-dimensional
factors

The SCC of each influencing factor and the correlation
parameters in three dimensions of time, load and meteorology are
jointly linearly weighted to derive the CIC of historical effective output
time periods Gij. Thus, we can obtain condensed similar time period
screening criteria, which can ensure a strong correlation between
similar time periods and corresponding time periods of the day to be
measured so as to further improve the prediction accuracy.

3.2.1 Time correlation
The time factor data (quantified above with the help of the fuzzy

ranking) has improved the correlation between time and the value to
be predicted to some extent. In the next section, we will focus on the
specific calculation method of this correlation.

The strength of the correlation is measured according to the
principle of “big near and small far” in time, that is, the correlation is
small if the time is far away from the date to be predicted and large if
it is not. The temporal correlation bi is linearly portrayed using the
temporal distance as follows:

bi � −1
1 + 2C( ) m − 1( ) i +

m c + 1( ) − c
1 + 2c( ) m − 1( ) (8)

In Eq. 8, i denotes the day i before the day to be predicted and bi
denotes time correlation of day i.

Unlike the traditional method (which selects only according to
the single criterion of temporal distance), we first quantify the
temporal factors by the fuzzy ranking and then perform the
further correlation analysis. This procedure can improve the
correlation of both quantitative data and temporal factors with
PV-predicted output values at the same time.

3.2.2 Load correlation
The trend of power plant output can be more accurately,

completely and reliably reflected by the current curve. In Qiao
et al., 2021, it is proposed that the current data of each power
plant can be input into the model as a reference and the difference

in power plant output can be continuously adjusted during the
iteration process to achieve the optimization of deviation values.
Given this, we use the magnitude of difference between average
currents at any two time periods to measure the degree of
correlation between the output of two time periods, the larger
the difference the smaller the correlation, and vice versa. The
correlation dij between the average currents of historical day i and
the day to be predicted at the same time period j is calculated
according to the following Eq. 9:

dij � 1 − P| ij − Poj

∣∣∣∣
maxmi�1 Pij − Poj

∣∣∣∣ ∣∣∣∣ (9)

In Eq. 9, Pij denotes the average current of time period j on day i
and Poj denote the average current of time period j of the day to be
measured.

3.2.3 Meteorological correlation
3.2.3.1 Definition of baseline meteorological factors

From the discussion above, several major meteorological factors
(which are used to characterize the meteorological properties)
include ambient air pressure, ambient air temperature, total solar
irradiance, scattered irradiance, and sensor operating temperature.
What we do here is primarily inspired by the theory of TOPSIS and
we use distance relationship existing between meteorological factors
and optimal meteorological factors at any effective time period of
historical day to obtain the main basis for the calculation of
meteorological correlation.

TOPSIS is a common integrated assessment method that makes
full use of the information from raw data. Consequently, the results
of this method accurately reflect the differences of strengths and
weaknesses between the different assessment options. The baseline
meteorological factors are defined as indicated below:

TY � TY1,TY2,TY3,TY4,TY5( )
� 1 + C

1 + 2C
,

C
1 + 2C

,
1 + C
1 + 2C

,
C

1 + 2C
,
1 + C
1 + 2C

( ) (10)
Tc � Tc1,Tc2,Tc3,Tc4,Tc5( )

� C
1 + 2C

,
1 + C
1 + 2C

,
C

1 + 2C
,
1 + C
1 + 2C

,
C

1 + 2C
( ) (11)

In Eq. 10 and Eq. 11, TY is the optimal meteorological factor and
Tc is the worst meteorological factor. Here, TY1, TY2,. . ., TY5 and TC1,
TC2,. . ., TC5 represent, respectively, the optimal and worst distances
between PV power and the five primary influencing factors (ambient
air pressure, ambient air temperature, total irradiance, scattered
irradiance, and sensor operating temperature).

3.2.3.2 TOPSIS optimized by the SCC
The traditional TOPSIS does not take into account the

horizontal influence between factors when setting the weights.
Here, we fully consider the intrinsic correlation level reflected by
the distance between the selected meteorological factors and the
defined optimal meteorological factors. We propose the optimized
TOPSIS by using the SCC as the weight. That is, the larger the
absolute value of the SCC of the influencing factor is, the closer the
factor is to the optimal factor, which results in the stronger
correlation with the actual results and a more significant
influence on the prediction.
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The positive distanceMZij (obtained by optimizing the principle
of TOPSIS) is calculated as follows:

MZij �

sij − TC1( )r1[ ]2 + Tij − TC2( )r2[ ]2 + Hij − TC3( )r3[ ]2
+ Wij − TC4( )r4[ ]2 + Gij − TC5( )r5[ ]2⎧⎨⎩ ⎫⎬⎭1

2

∑5
i�1 ri| |

(12)
In Eq. 12, r1, r2,. . ., r5 are, respectively, the simple correlation coefficients
of ambient air pressure, ambient air temperature, total irradiance,
scattered irradiance, and sensor operating temperature.

Similarly, the negative distance MFij is calculated as follows:

MFij �

sij − TY1( )r1[ ]2 + Tij − TY2( )r2[ ]2 + Hij − TY3( )r3[ ]2
+ Wij − TY4( )r4[ ]2 + Gij − TY5( )r5[ ]2⎧⎨⎩ ⎫⎬⎭1

2

∑5
i�1 ri| |

(13)
The proximity of the meteorological factors to the optimal

meteorological factors at each effective time period is then
calculated as follows.

Mcij � MFij

MFij +MZij
(14)

In Eq. 14, 0 ≤ Mcij ≤ 1. Obviously, the smaller the positive distance
MZij is, the larger Mcij is, that is, the closer to the optimal
meteorological factor.

The integrated meteorological correlation between the similar
days and the day to be predicted at each effective time period is
calculated as below

gij � 1 − Mcij −Mcoj

MCoj

∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣∣ (15)

In Eq. 15, Mcoj is the calculation results of the time periods to be
predicted.

We use the difference between evaluation results of
meteorological characteristics of the historical time period and
the time period to be measured (Mcij and Mcoj) to measure the
closeness of the two time periods. The closer the two time periods
are, the greater the integrated meteorological correlation is, which
indicates that the correlation between the meteorological data of the
historical time period and the time period to be measured is
stronger.

3.3 Calculation of the CIC

We use the calculated correlation of the three dimensions and
the simple correlation coefficients of each factor linearly weighted to
derive the CIC of each historical effective output time period. The
condensed similar time period screening criteria is obtained and the
CIC is calculated below:

Gij �
gij∑5

k�1 rk| | + bi rb| | + dij rd| |∑7
n�1 rn| | (16)

In Eq. 16, rb and rd denote the simple correlation coefficients of the
time factor and the load factor (average current), respectively.

The calculation flow of the CIC is shown in Figure 1.

4 Prediction model based on ISTP

4.1 Establishment of the prediction model
framework

We establish the prediction modal framework in the following
five steps.

(1) Initialize to define GM as the limit value of the CIC and define NM

as the minimum number of similar time periods. The historical
time periods whose values of integrated impact correlation are
greater than GM are defined as similar time periods. If the number
of similar time periods selected based on their integrated impact
correlation Gij is less than NM, then NM is taken to indicate the
number of similar time periods at that time period and the lack of
data is complemented by the average value of PV power at the
selected similar time periods.

(2) Calculate the CIC Gij of each time period on the similar day to
the forecast day.

(3) Calculate the number of time periods that satisfies Gij ≥ GM at
time period j as below:

N � NC ,NC ≥NM

NM ,NC <NM
{ (17)

In Eq. 17, N is the final number of similar time periods according to
the steps above and Nc is the number of similar time periods that
satisfy the condition above.

(4) After the similar time periods are selected, PV power at time
period j is first predicted using a weighting method based on the
CIC as follows:

T1j � ∑N
i�1GkjTkj∑N
i�1Gkj

(18)

In Eq. 18, Tkj is PV power at time period j of day k before the day to
be predicted (k ≠ i) and Gkj is the calculated CIC between time period j
of day k before the day to be predicted and time period j of the day to be
predicted.

(5) PV power at time period j is further predicted based on the
extrapolation method. The final predicted value is the average of
the results calculated by the twomethods above. The parameters
of T2j and Moj are calculated as follows.

T2j � 1
N
∑N
i�1

Tkj − Tk j−1( )
Tk j−1( )

+ 1⎛⎝ ⎞⎠ ∑N
i�1Tk j−1( )

N
(19)

Moj � 0.5 T1j + T2j( ) (20)

4.2 Parameter initialization and
determination of optimal parameters

Based on the previous analysis, the similar time period selection
and PV power prediction process is given in Figure 2. The procedure
is described as follows.
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1) Using historical data, the ratio of data in the training set and the
test set is set at 8:2 by referring to the ratio distribution of
traditional machine learning small-scale data sets.

2) The true value is compared with the predicted value at each time
period of the historical day and the relative error sum of squares is
calculated as below:

E GM ,NM( ) � ∑12

j�1
M0j −MTj

MTj
( )2

(21)

In Eq. 21,MTj is the true PV power at time period j of historical
day i (used as the parameter training sample).

3) When E(GM, NM) is smallest, the particle swarm
optimization algorithm (Zhao et al., 2005) is used to find
the corresponding optimal model parameters GM and
NM.

4) Input the test set data into the model for PV power prediction
and verify the effectiveness of the algorithm.

FIGURE 1
Technical route to obtain the CIC.

FIGURE 2
Photovoltaic power prediction flow chart.
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5) Input the calculated optimal parameters into the constructed
prediction model framework to achieve PV power prediction.

5 Example analysis

5.1 Case study

We have selected the Yulara Solar System PV plant in Australia as
the actual measurement object to verify the proposed method’s
effectiveness. A total of 90 historical days of data from June to
August in one-quarter are selected as samples. The daily power
measurement time interval is from 08:00 to 19:00 and the data are
collected at a 5-min interval. Thus, each historical day has 132 effective
power output time periods. Figure 3 illustrates the PV output power
database. Note that while training on more data is almost certainly
going to yield better results, the anticipated performance increase
would probably be quite minor at the expense of significant additional
training time (Zhang et al., 2018). We thus consider these days as a
representative sample of the entire dataset.

As can be seen from Figure 3, it is difficult to obtain overall
similar curves using the similar day method because the curves only
partially overlap or intersect. It means that the PV output power is
exactly the same in the periods where the curves intersect. Therefore,
it is more likely to obtain high similarity by analyzing the periods.

PV power prediction effect is described by calculating PV power
prediction error (that is, the error relative to the actual power) of ISTP.
PV prediction results are evaluated using the root mean square error
(RMSE) and the mean absolute percentage error (MAPE%) metrics.

5.2 Determination of similar time period
screening criteria

Since there are many factors affecting the distributed PV power,
where each factor has different degrees of influence, if all kinds of
influencing factors are considered, it is easy to lead to complicated
model calculation, that is, not easy to complete. At the same time, the
introduction of various factors with a small degree of influence into

the calculation will not only affect the model prediction efficiency to
a certain extent but also do not comply with the basic laws of
mathematical modeling. Therefore, it is necessary to analyze and
screen the main factors with stronger correlation to distributed PV
power. Here, the SCC of eight factors are determined by adopting
path analysis, which is used to select and analyze the main
influencing factors. The calculation results of the DPC and the
SCC are shown in Table 3. Figure 4 shows the relevant
characteristics of the influencing factors and the screening results.

As can be seen from Figure 4, PV power is positively correlated
(Bar facing up) with S, H, G, P, and N, and negatively correlated (Bar
facing down) with T, D, and W. Meanwhile, the SCC definition
indicates (Hu et al., 2018) that when its absolute value is at least 0.2,
the correlation is moderate or strong (The bars are red). When the
absolute value of the SCC is less than 0.2, the correlation is weak or
there is no correlation (The bars are black). Therefore, we take the
absolute value of the SCC 0.2 as the threshold value and select S, T,
H, W, G, P, and N (ambient air pressure, ambient air temperature,
total irradiance, scattered irradiance, sensor operating temperature,
average current, and time factor) together as the seven primary
influencing factors for distributed PV power prediction.

The SCC is used not only to screen the main influencing factors,
but also to participate in the screening of similar time periods. The
network parameters of the prediction model are first initialized and
the optimal parameters of the corresponding method are obtained
after the end of the cycle. The limit values (GM) of the CIC and the
SCC are respectively set to 0.87 and 0.8. The minimum number
(NM) of similar time periods are respectively taken to be 4 and 7.
This is shown in Table 4.

The number of similar time periods can be varied from 4 to
90 based on the DPC and from 7 to 30 based on the SCC. This is
because the proposed method can adjust the number of similar time
periods according to the difference in the correlation values of each
historical time period, so as to achieve the dynamic optimization of
similar time periods.

To further demonstrate the effectiveness of the SCC to
determine the similar time period screening criteria, the SCC and
the DPC are respectively used as the weights of TOPSIS for PV
power prediction, and the prediction results are compared with the
traditional TOPSIS. Figure 5 shows the comparison of the prediction
results based on the three weight coefficients and the prediction
errors are shown in Table 5.

FIGURE 3
90-day PV output power database.

TABLE 2 Influencing factor symbols and corresponding names.

Influencing factor names Symbols

Ambient air pressure Sij

Ambient air temperature Tij

Wind level Dij

Total irradiance Hij

Scattered irradiance Wij

Sensor operating temperature Gij

Average current Pij

Time factor Nij
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As shown in Figure 5, the prediction model curves of the
direct path coefficient method and the traditional TOPSIS have
obvious deviations at fluctuating time periods, such as the
predicted values at 10:00–11:00, 12:00–13:00 and other time
periods are lower than the true values. The introduction of the
SCC for measuring the weight of each influencing factor solves
the shortcomings of the traditional TOPSIS which generally
selects 0.5 as the weight value, and makes the determination
of the screening criteria more relevant. Therefore, the predicted
curves fit better with the real curves after optimizing the
traditional TOPSIS by the SCC.

As shown in Table 5, the average absolute percentage deviations
of the predictions based on the SCC and the DPC are 1.12% and
1.87%, respectively, both of which are less than 2%, while the value of
this error for the traditional TOPSIS is 2.23%, indicating that the
weight parameters of TOPSIS are effectively optimized by using both
coefficients obtained from path analysis.

Meanwhile, the predicted PV power curves of the three methods
are roughly similar to the trend of the actual curve to be predicted,
which verifies the validity of the ISTP selection results.

5.3 PV power short-term prediction results

To verify the effectiveness and superiority of the ISTPmodel, the
traditional similar day (Ding et al., 2012) method and the ELMAN
neural network (Ye et al., 2017) are applied to predict PV power for

FIGURE 4
The SCC of influencing factors bar chart.

TABLE 3 The results of the through-hole analysis.

Influencing factors The DPC The SCC

Ambient air pressure 0.688691 0.27874

Ambient air temperature 0.215874 −0.26542

Wind level −0.113121 −0.13472

Total irradiance 0.538509 0.52351

Scattered irradiance −0.058134 −0.21775

Sensor operating temperature 0.965257 0.89698

Average current 0.350309 0.38702

Time factor 0.626134 0.92214

FIGURE 5
Simulation comparison of PV power prediction results by three
coefficients.

TABLE 4 The optimal parameters.

Methods GM NM

The DPC method 0.87 4

The SCC method (the proposed method) 0.82 7
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the same days and compared with the proposed method. The
comparison results of prediction curves and errors of the three
models are shown in Figure 6 and Figure 7: (a) ISTP (b) similar day
(c) the ELMAN neural network. Table 6 indicates specific values of
errors for the three models, respectively.

As can be seen from Figure 6, because similar day method is
analyzed purely from the perspective of power values, the screening
criteria are single and it is difficult to avoid the overall bias. Except
for the 11:00–14:00 time period which has higher fluctuations, the
prediction curve shows an overall trend of larger predicted values
than the actual values. The ELAMN neural network is affected by the
model’s characteristics. Even in the period when the actual curve is
relatively smooth, there are still large fluctuations in the prediction
curve and the fluctuations are most obvious in the larger part of the
power value, such as poor data matching in the period from 10:00 to
16:00. The proposed ISTP method introduces the CIC as screening

FIGURE 6
Simulation comparison of PV power prediction results by three models.

FIGURE 7
Comparison of the errors by three models.

TABLE 5 Prediction errors of the three coefficient methods.

Methods MAPE/% RMSE

The SCC method (the proposed method) 1.12 2.7224

The DPC method 1.87 6.1186

The traditional TOPSIS 2.23 6.7406

TABLE 6 Prediction errors of the three models.

Methods MAPE/% RMSE

Similar time period (the proposed method) 1.12 2.7224

Similar day 2.43 8.6579

The Elman neural network 2.38 8.4442
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criteria and dynamically optimizes the number of similar time
periods.

At the same time, the errors of models based on similar day
method and the ELMAN neural network method are 2.43% and
2.38%, respectively, which are both greater than 2%. In contrast, the
error of the proposed method is less than 2%, which is only 1.12%.
The comparison of the prediction error evaluation criteria
intuitively reflects that after the introduction of TOPSIS
optimized by the SCC and the CIC, PV power prediction model
established by the proposed method is closer to the actual model and
has a greater improvement effect on the prediction accuracy.

6 Conclusion

We propose a method for short-term prediction of distributed
PV power by improving similar time period method. Our method
can effectively ensure a strong correlation between the similar
periods and the periods to be predicted. First, it is proposed to
determine the SCC based on path analysis and then set a threshold to
select main influencing factors, which can effectively eliminate
redundant information, reduce data dimensionality, and simplify
model building. Second, the screening criteria of the CIC are
proposed, which can dynamically optimize the number of similar
time periods for each time period to be measured and obtain the
optimal prediction results. Finally, the proposed modeling method
effectively reduces the amount of data and the algorithm training is
simple and more conducive to programming implementation,
which has engineering application value. Experimental results
demonstrate that MAPE% of proposed ISTP method are,
respectively, improved by 47.06% and 46.09% compared with the
traditional ELMAN and similar day method.

However, the sample capacity of similar periods during sudden
weather is small, and the mean value is used to supplement the
number of similar periods in the paper, which could possibly lead to
a decrease in prediction accuracy.

Future studies will cluster the weather and try to expand sample
capacity with intelligent algorithms when the number of similar
periods in sudden weather is small, so as to lay the foundation for
regional prediction.
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