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The discrete state transition algorithm (DSTA) has been wildly applied to deal with
combinatorial optimization problems. However, its low convergence accuracy
limits its application in large-scale optimization problems. Aiming at the
convergence performance and search intensity of the algorithm, a hybrid
discrete state transition algorithm (HDSTA) is proposed in this work by
introducing tabu search and elite solution set. Firstly, a searching mechanism
with the integration of DSTA and tabu search (TS) is established, which allows
moving to adjacent solutions at an increased cost to escape from the local
optimum. Specifically, a tabu list as adaptive memory is adopted to avoid the
loop when deviating from local optima. Secondly, an elite solution set is
introduced to integrate the information of the previous optimal solution and
the global optimal solution, and the search strategy is modified to expand the
range and diversity of candidate solutions. Finally, the proposed HDSTA is verified
according to the real data on two well-known optimization problems (staff
assignment problem and traveling salesman problem) and the real data of an
industrial case. The experimental results show the effectiveness of the proposed
algorithm in large-scale optimization problems.
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1 Introduction

Combinatorial optimization problems are encountered in almost all branches of engineering,
including system control, process management, parameter setting, etc. Generally speaking, the
combinatorial optimization problems are NP-hard. When the problem scale is small, accurate
algorithms are adopted to obtain exact solutions step by step, for example, branch-and-cut
approach (Lin and Tian, 2021) and Hooke-Jeeves pattern search (Tabassum et al., 2021).
However, these methods mainly take exponential time to run. As the scale of the problem
increases, more and more attention has been paid to stochastic algorithms which can obtain
approximate solutions within the acceptable computation time. The existing stochastic methods
mainly include evolutionary algorithms andmetaheuristic algorithms. The evolutionarymethods
consist of evolution strategies (Hassanzadeh et al., 2021), genetic programming (Zhang et al.,
2019a) and genetic algorithm (Wang and Sobey, 2020), while metaheuristic methods contain
particle swarm optimization, simulated annealing, differential evolution algorithm (Abdel-Basset
et al., 2021; Houssein et al., 2021; Wang et al., 2021), etc.

The state transition algorithm (STA) is originally proposed by Zhou et al., based on
structuralist learning (Zhou et al., 2012). The concept of the STA is to treat the solution as a
state and the process of updating as a state transition, through which a new state will be created. It
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generates candidate solutions by the cyclic utilization of four special
operators. The greedy criterion is used to update the current optimal
solution until the termination condition of the iteration is met. For PID
control problem, (Zhang et al., 2018; Zhang et al., 2019b) fuzzy fractional
order PID controller is adjusted by the state transition algorithm to
achieve the optimal control of zinc powder addition. The traditional state
transition algorithm is an unconstrained optimization method and
applicable to continuous optimization problems. Therefore, a discrete
state transfer algorithm (DSTA) is proposed to solve the discrete
optimization problems (Zhou et al., 2016). The existing results show
that DSTA is an effective and promising algorithm for combinatorial
optimization problems. However, when the problem scale is large, the
DSTA is excellent in convergence rate but poor in convergence accuracy,
and it is easy to get trapped into local optima. Dong et al. (2016)
proposed the concept of quadratic state transition to solve the
assignment problems, which expanded the scope of candidate
solutions and increased the diversity of candidate solutions. In (Wang
et al., 2016), a quantum state transition algorithm is used to solve the job
shop scheduling problems. It combines the shift decoding and position
exchange coding to map the solution space, and the non-local optimal
solution tolerance mechanism is proposed to improve the convergence
accuracy. Unfortunately, in the above studies, the generation of the next
population is only related to the optimal solution of the previous
generation, which shows slow convergence rate and low convergence
accuracy in the later search stage.

In this paper, a hybridization search framework which combines
DSTA and tabu search (TS) is proposed to solve the combinatorial
optimization problems. The DSTA is used to be the global search
scheme, and the TS is introduced to act as a local search scheme. The
primary contributions of this article can be summarized as follows:

(1) A hybrid discrete state transition algorithm is proposed by
combining the tabu search process with discrete state transition
algorithm. A search framework combining DSTA and tabu search
is proposed. The tabu list is introduced as a short-term memory
and can be updated based on the recently accessed solutions.

(2) A new approach for the population in DSTA is developed to
produce feasible solutions, called elite solution set, which
integrates the information of previous optimal solution and
global optimal solution to speed up the search process.

(3) The effectiveness of HDSTA is verified on various combinatorial
optimization problems, including the staff assignment
problems, traveling salesman problems, and multi-AGV task
assignment problems based on real-world industrial data.

The rest of the paper is organized as follows. Section 2 presents
the principle of the discrete state transition algorithm. The hybrid
discrete state transition algorithm is explained in Section 3. In
Section 4, the results of various experiments are presented to
evaluate the performance of the proposed method. Finally, the
paper is summarized in Section 5.

2 The discrete state transition algorithm

In order to introduce the main principle of the discrete state
transition algorithm, the following discrete optimization problems
are considered:

min
xi∈K

f x( ) (1)

where x � [x1, x2,/, xi,/, xn]T, K � κ1, κ2,/, km{ } is the set of
values for xi.

To facilitate solving the discrete optimization problems and
accelerate the search rate, the subscript representation is usually
used to encode the candidate solutions. The values of the
n-dimensional decision variable K � κ1, κ2,/, km{ } correspond to
the numbers 1, 2,/,m{ }. A three-dimensional example of the
subscript representation is shown in Figure 1, and the different
values of x correspond with six encoding methods. The subscript
representation is expandable, which can make corresponding
changes according to the specific form of the discrete optimization
problems. Moreover, the subscript representation can also reduce the
difficulty of solving the partial discrete optimization problems.

The DSTA designs four special geometric operators shown in
Figure 2.

FIGURE 1
Illustration of subscript representation.

FIGURE 2
Operators of discrete state transformation. (A) illustration of
swap transformation operator. (B) illustration of shift transformation
operator. (C) illustration of symmetry transformation operator. (D)
illustration of substitute transformation operator.
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(1) Swap transformation operator

xk+1 � Aswap
k ma( )xk (2)

where,Aswap
k ∈ Rn×n is a random Boolean matrix. It has the ability to

exchange ma positions in xk, and ma is the swap factor with the
function of controlling the maximum number of exchangeable
positions.

(2) Shift transformation operator

xk+1 � Ashift
k mb( )xk (3)

where, Ashif t
k ∈ Rn×n is called a shift transformation matrix.mb is the

shift factor to control the number of positions to be shifted. The shift
transformation operator can move mb positions behind another
specified positions.

(3) Symmetry transformation operator

xk+1 � Asym
k mc( )xk (4)

where, Asym
k ∈ Rn×n is called a symmetric transformation matrix.mc

is a constant to determine the maximum length of subsequent
positions. The symmetric transformation operator has ability to
symmetrically exchange consecutive mc positions.

(4) Substitute transformation operator

xk+1 � Asub
k md( )xk (5)

where, Asub
k ∈ Rn×n is called a substitute transformation matrix, and

md is a constant to determine the maximum number of positions to
be substituted. The substitute transformation operator can be
regarded as global exploration, and the positions of substituted
elements are created randomly.

3 Hybrid discrete state transition
algorithm

The state transition algorithm is wildly used in optimization
problems because of its excellent performance in exploring complex
solution space (global search). However, it is easily stuck in the
optimum local area in large-scale problems. Contrarily, TS has
superiority in local search (Ding et al., 2015) to help DSTA escape
from the local optimum. TS allows transmitting from a better solution
in the present iteration to a worse solution (Berlin´ska and Przybylski,
2021). Therefore, a hybrid state transition algorithm (HDSTA) is
proposed by combining state transition algorithm with tabu search
method. The HDSTA balances searches by combining DSTA and TS
with the initialization scheme, resulting in higher quality solutions.

3.1 The main scheme of HDSTA

The algorithm starts with an initialization of the elite solution set φi,
and tentative multiple local optimal solutions are sorted in ascending
order of the value of the objective function, where the solution in elite
solution set is denoted by pn. Candidate solutions are generated by four
special geometric operators defined in Eqs 2–5, and then the update

strategies based on TS are introduced to select optimal solutions.
Hybridization is carried out by inserting the TS into the DSTA
framework to explore a local search space.

The purpose of introducing TS here is to balance global
decentralized search with local area capabilities. TS considers a
worse solution, which increases the risk of falling into a cyclic
search. The main challenge in avoiding cyclic search lies in how to
establish a mechanism for relevant historical information. Therefore, a
tabu list with short-termmemory is used to prevent duplicate responses,
and the current solution can be displaced to the next one only if the new
solution is not on the tabu list and all conditions are satisfied. One
solution from the elite solutions is selected and sets as the current
solution, and a certain number of candidates are selected from the
neighbors of the current solution. Only if the candidate solution ismuch
more adaptive than the solution in current elite solution set will it be

FIGURE 3
Flow chart of the hybrid discrete state transition algorithm.
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accepted by new elite solution set. Conversely, if there is no candidate
solution that satisfies this type, the next solution is selected from the elite
solution set and its corresponding move is added to the tabu list. By
iterating the above steps until the termination condition is met, the
algorithm will stop.

The flow chart of the proposed HDSTA is shown in Figure 3.
The detailed steps are described below:

Detailed steps of HDSTA.
Step 1: encoding combinatorial optimization problem using task
sequence
Step 2: setting parameters and generating the initialized population
Step 3: evaluate the fitness value
Step 4: is themaximal iteration reached? If reached, go to Step 7, else,
go to Step 5
Step 5: reproduction using four special transformation operators
defined in Eqs 2–5
Step 6: run TS neighborhood (insert, swapping), the go to Step 3
Step 7: output best solution

3.2 The elite solution set

In the traditional DSTA, the population is only related to the
optimal solution of the previous generation. It is excellent in
convergence rate but its probability of falling into local optimum
increases. To address the limitations, the elite solution set with the
information of previous optimal solution is proposed.

In initial population of the traditional DSTA, all solutions are
positioned at the one side of search space. When this side of search
space is the property of local optima, the algorithm will converge faster.
Therefore, the initialization method of elite solution set is proposed to
generate solutions located in different search spaces. The solution setQ0

is initialized and the upper limit of the number of solutions in the set is
defined as m, which is stored in ascending order of the objective
function value. After creating the initial population, the fitness
evaluation is performed by an objective function. During the
iteration process, all the elite solutions searched in each generation
are compared with the solutions stored in Q0. If there is a better
solution, it will be replaced so as to ensure that the elite solution set Q0

contains all the elite individuals in the search process. The initialization
of the elite solution set is given in Algorithm 1. Here, Se is the number of
solutions in the population, Sbest is the optimal solution in the
population and Q0 is the elite solution set.

1: The initialized solutions are generated Sbest

2: fbest ←fitness (Sbest)

3: k ←0

4: repeat

5: [Q0, fbest, Sbest] ← swap (Q0, fbest, Sbest, Se)

6: [Q0, fbest, Sbest] ← shift (Q0, fbest, Sbest, Se)

7: [Q0, fbest, Sbest] ← symmetry (Q0, fbest, Sbest, Se)

8: [Q0, fbest, Sbest] ← substitute (Q0, fbest, Sbest, Se)

9: k ← k + 1

10: until the maximum number is reached

Output: Q0

Algorithm 1. Initialization of the elite solution set

3.3 Tabu search

TS is a widely used local search strategy based on the
neighborhood search. Inspired by (Umam et al., 2022), the
framework of this paper consists of the neighborhood structure,
tabu list and move attribution. Firstly, the length of tabu list and the
aspiration criteria are determined. Then, the maximum iteration of
DSTA is taken as the termination condition. Next, using a
neighborhood search with insertion and swapping methods
makes a move. Finally, solutions are evaluated and updated with
the best solution which is non-tabu of the search results till the
termination condition is met.

The neighborhood structure determines the quality of the
solution generated by the search, and also affects the search
efficiency and convergence speed of the algorithm. In this paper,
the state itself or the process of state transition is regarded as a tabu
object. For example, when a state changes from a to b, the state b or
the state transition a→ b can be regarded as a tabu object, which is
simple and easy to understand.

The tabu list affects the search process through the length of the
list. The increase of list size causes a wider search scope, and more
solutions are listed. The proposed HDSTA adopts the variable tabu
list mode with the length of the list between the minimum and
maximum values, and the length of tabu list increases from
minimum to maximum gradually in the process. Whenever a
better solution is obtained or the elite solution set is updated, the
length of tabu list is increased to support deeper exploration in
this area.

The candidate solution set consists of the better neighbor
solutions in the neighbor solution set. The better neighbor
solutions are selected by the fitness value function, then, the
candidate solutions satisfying the forbidden and amnesty criteria
are selected as the new current solutions in the candidate solution
set. The mobility attribute is the key pillar for TS to find the
optimum solution. The proposed algorithm defines two
conditions. The first condition is that if a move of a member
leads to a solution with higher cost than the best answer already
obtained, then the member is removed from the tabu list. The
second one is that if the structure of the method and tabu list in the
stage of the algorithm is such that there is no possibility of moving to
a member. In this case, the member closest to the exit is removed
from the list.

4 Experimental results and discussion

The effectiveness of the proposed HDSTA is verified through
three experiments, including the staff assignment problems,
traveling salesman problems and a large-scale industry case using
real-world data. All experiments are implemented on a computer
with Intel Core i7-9700 CPU 4.8 GHz and 16 GB RAM. The
population size is set to 50 for all experiments of different
problems. The parameters, including elite solution set size, tabu
list size and maximum iterations, are set to 30, 120 and
200 respectively. The best indicates the minimum value of
results, the worst means the maximum value of results, and then
it follows the mean (average value), st.dev (standard deviation) and
time/s (computation time). These common statistics can indicate the
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convergence accuracy, search efficiency and stability of the
algorithm.

4.1 Results analysis for staff assignment
problem

Staff assignment problem is a well-known combinatorial
optimization problem in human resources department (Mo et al.,
2020), which can be described formally as follows: n employees are
assigned tom locations, where the cost of the i th employee traveling
to the k th location is defined by cik. The communication time
between employee i and employee j is denoted by tij, and fkg

represents the communication cost. It is required that each location
must be assigned one employee, and each employee only travel to
one location. The mathematical model can be expressed as follows:

minQ x( ) � ∑
n

i�1∑
n

k�1ciktij (6)

The matrix coefficients of different dimensions are
introduced. Both cik and tij are random integers ranging from
1 to 100, and fkg is a random decimal ranging from 0 to 1. To
verify the performance of the proposed HDSTA, it is compared
with the discrete state transfer algorithm (DSTA) and the
simulated annealing algorithm (SA). The cases of 20, 30,

40 and 50 dimensions are generated, and each algorithm runs
20 times for each case independently.

The performance of the different methods is illustrated in
Table 1. It can be seen that the best and average values of the
results when solving the above assignment problems with four
different dimensions using HDSTA are better than those of SA
and DSTA. In addition, the HDSTA algorithm takes less time to
solve each problem than the simulated annealing algorithm and is
close to that of DSTA. The above results reflect the effectiveness of
the algorithm proposed by HDSTA algorithm.

4.2 Results analysis for traveling salesman
problem

Traveling salesman problem (TSP) is another well-known
combinatorial optimization problem. To test the performance of
the HDSTA, the simulated annealing algorithm (SA) is compared
with DSTA based on standard TSP data (Tagne Fute et al., 2022).

From the results shown in Table 2, it can be concluded that
HDSTA outperforms SA and DSTA in almost all performances.
HDSTA obtains better results in all four standard cases. Taking the
att48.tsp standard case as an example, the best result is shown in
Figure 4.

TABLE 1 Comparison results of staff assignment problems.

Dimensions Statistics SA DSTA HDSTA

20

best 2,666.104 2,646.546 2,631.423

worst 2,683.415 2,663.467 2,647.728

mean 2,671.723 2,653.858 2,638.051

st.dev. 61.652 48.325 26.167

time/s 21.565 13.685 14.146

30

best 3,369.064 3,354.831 3,348.252

worst 3,396.103 3,378.157 3,372.199

mean 3,376.825 3,365.762 3,359.684

st.dev. 174.533 81.263 68.275

time/s 26.760 15.046 16.365

40

best 4,076.401 4,071.495 4,057.951

worst 4,120.185 4,095.152 4,079.851

mean 4,091.854 4,081.817 4,067.884

st.dev. 220.457 96.469 67.846

time/s 34.574 17.217 19.185

50

best 6,655.882 6,609.231 6,582.754

worst 6,710.262 6,661.541 6,629.856

mean 6,671.756 6,631.776 6,612.851

st.dev. 410.100 373.450 318.484

time/s 41.839 19.343 21.467

TABLE 2 Comparison results of traveling salesman standard cases.

Standard case Statistic SA DSTA HDSTA

ulysses22

best 75.653 75.336 75.307

worst 78.154 77.364 76.881

mean 76.384 76.116 75.816

st.dev. 0.512 0.856 0.434

time/s 7.011 1.588 1.624

att48

best 35,266.481 33,741.412 33,724.412

worst 41,051.491 36,530.054 35,854.129

mean 39,667.811 34872.251 34,292.882

st.dev. 2,745.684 662.755 782.453

times/s 14.761 3.046 3.366

eil51

best 455.095 440.033 429.349

worst 526.151 490.542 479.845

mean 481.202 466.182 451.165

st.dev. 15.533 18.692 10.842

times/s 134.575 3.217 3.816

berlin52

best 8,186.164 7,624.412 7,544.585

worst 9,499.641 9,010.797 8,861.154

mean 8,983.151 8,647.481 8,150.281

st.dev. 380.100 273.451 134.451

times/s 139.841 3.344 3.849
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Table 2 shows the results of different standard cases. The
standard deviation of HDSTA is lower than that of SA and
DSTA, which proves that the proposed algorithm has a relatively
strong stability. In addition, both HDSTA and DSTA have better
advantages in terms of computation time than SA.

4.3 Results analysis for real-world industrial
cases

Automated guided vehicles (AGV) are widely used to improve
warehouse transport efficiency (Cheikhrouhou and Khoufi, 2021).
Multi-AGV task assignment problem is to assign and sequence tasks
for each AGV, with the main objective of minimizing the sum of
costs through efficient AGV fleet management. When all
warehouses in the layout are fixed and the cost of using AGV is
only related to themoving distance, the task assignment problem is a

special traveling salesman problem, whose polynomial can be
expressed as below (Li et al., 2020).

min∑
k∈K

min∑
i,j( )∈A dijxijk (7)

where K is the set of all vehicles with |K| � m. i, j are nodes. dij
represents the distance from node i to j. xijk, i, j ∈ V, k ∈ K is a
binary variable used by vehicle k if the edge between node i and node
j is 1, otherwise it is 0.

The real AGV system of a warehouse in Changsha, China is used
as the experimental platform. The system consists of 15 AGV and
39 warehouses, and the layout of the warehouses is illustrated in
Figure 5. Practitioner feedback indicates that periods of 50 requests

FIGURE 4
The best route of att48.tsp obtained by HDSTA.

FIGURE 5
The layout of the warehouse.

TABLE 3 Comparison results of multi-AGV task assignment problems.

Tasks AGV PPA HALNS HDSTA

mean time/s mean time/s mean time/s

50 5 3,747.502 9.247 3,721.244 2.745 3,698.815 2.023

60 8 4,522.645 16.884 4,509.635 4.722 4,485.724 3.828

70 13 5,496.150 28.724 5,464.824 9.815 5,427.855 5.095

80 9 6,570.402 38.556 6,534.067 15.187 6,490.735 6.861

90 6 7,216.854 49.497 7,164.473 21.218 7,113.058 8.985

100 11 8,421.626 63.119 8,340.104 29.254 8,288.626 11.565

110 6 9,326.851 75.852 9,235.913 37.456 91,786.851 13.541

120 7 10,765.642 90.474 10,625.350 47.318 10,565.642 16.085

130 10 11,850.614 116.845 11,598.663 58.213 11,510.604 19.771

140 14 —— >120 12,784.424 61.746 12,671.910 24.653

150 8 —— >120 14,005.452 73.846 13,848.436 28.054

160 15 —— >120 15,589.935 90.053 15,407.635 34.216
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using over 5 AGV are regarded as busy periods (Li et al., 2022).
Taking the number of AGV and task distances into consideration,
the objective can be transformed into obtaining a near-optimal
solution in a reasonable amount of time and determining its degree
of approximation according to its NP-hard property.

To verify the effectiveness of HDSTA, 50–160 tasks were
randomly generated, and AGV numbers range from 5 to 15. In
the experiments, 10 groups of tasks were generated and ran 10 times
for each case, and the mean value and computation time were
assessed. In industrial applications, the average value and
computation time are the most important performance
indicators. In each case, HDSTA is compared with the adaptive
large neighborhood search algorithm (HALNS) (Singh et al., 2022),
and the pre-programmed algorithm (PPA) (Maza and Castagna,
2005). The performance and computation time of HALNS, PPA and
HDSTA for 120 sets of task assignments assigned by 20 case types
are shown in Tables 3. Compared with PPA and HALNS, HDSTA
has a lower mean value and less computation time.

5 Conclusion

HDSTA is proposed to solve the large-scale combinatorial
optimization problems. The TS method is introduced to guide
the local search of DSTA to achieve the balance between the
exploration capabilities and the exploitation capabilities.
Furthermore, a new approach for the population generation of
DSTA has been adapted. It avoids that all solutions are
positioned at one side of the search space, resulting in too fast
convergence. The experimental results of three large-scale
combinatorial optimization problems show that the proposed
method has better solving accuracy than the other two
algorithms. The HDSTA can be further applied to more
industrial cases. In addition, this research can be expanded by
combining the DSTA with another local search algorithm for
future works under multiple objectives.
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