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With the increase of devices in power grids, a critical challenge emerges on how
to collect information from massive devices, as well as how to manage these
devices. Mobile crowdsensing is a large-scale sensing paradigm empowered by
ubiquitous devices and can achieve more comprehensive observation of the
area of interest. However, collecting sensing data from massive devices is not
easy due to the scarcity of wireless channel resources and a large amount of
sensing data, as well as the different capabilities among devices. To address these
challenges, device scheduling is introduced which chooses a part of mobile
devices in each time slot, to collect more valuable sensing data. However,
the lack of prior knowledge makes the device scheduling task hard, especially
when the number of devices is huge. Thus the device scheduling problem is
reformulated as a multi-armed bandit (MAB) program, one should guarantee the
participation fairness of sensing devices with different coverage regions. To deal
with themulti-armed bandit program, a device scheduling algorithm is proposed
on the basis of the upper confidence bound policy as well as virtual queue theory.
Besides, we conduct the regret analysis and prove the performance regret of the
proposed algorithm with a sub-linear growth under certain conditions. Finally,
simulation results verify the effectiveness of our proposed algorithm, in terms of
performance regret and convergence rate.

KEYWORDS
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Introduction

Nowadays, the development of smart power grids brings much convenience to human
life and production. Meanwhile, more and more devices, such as sensors and actuators, are
deployed in power grids, e.g., substations, transformers, and generators. Consequently, A
critical challenge arises on how to collect information from massive devices and how to
manage these devices. Mobile crowdsensing is a large-scale sensing paradigm empowered
by ubiquitous devices. These devices interact with each other by sharing local knowledge
according to the data they have perceived, and then the information can be further
aggregated and fused in a central node for crowd intelligence extraction, decision-making,
and service delivery (Guo et al., 2014).

However, collecting sensing data from massive devices is not easy due to the following
reasons. Firstly, the scarce channel resource limits the number of devices that simultaneously
access to an edge server. That is to say, the available wireless channels are fewer than the

Frontiers in Energy Research 01 frontiersin.org

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#editorial-board
https://doi.org/10.3389/fenrg.2023.1141954
https://crossmark.crossref.org/dialog/?doi=10.3389/fenrg.2023.1141954&domain=pdf&date_stamp=2023-02-09
mailto:niyy@jssnu.edu.cn
https://doi.org/10.3389/fenrg.2023.1141954
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fenrg.2023.1141954/full
https://www.frontiersin.org/articles/10.3389/fenrg.2023.1141954/full
https://www.frontiersin.org/articles/10.3389/fenrg.2023.1141954/full
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Zhao et al. 10.3389/fenrg.2023.1141954

sensing devices. Secondly, the overlap of perception areas of different
devices introduces sensing data redundancy. Besides, the system
heterogeneity of sensing devices, such as processing capability,
network connectivity, and battery capacity, leads to different
processing capabilities (Xia et al., 2021). The system heterogeneity
causes a drift of global statistical characteristics since the fast devices
can collect more data according to their local observations. To
achieve a more comprehensive observation of the area of interest,
one should guarantee the participation fairness of sensing devices
with different coverage regions. Therefore, the edge server has to
perform device scheduling, i.e., choosing a part of sensing devices
in each time slot, to collect more valuable sensing data. However,
the lack of prior knowledge makes the device scheduling task hard,
especially when the number of sensing devices is huge.

Actually, there have been some works on device scheduling
in crowdsensing tasks. For example, The authors in (Chu et al.,
2013) proposed a selection scheme of individual sensors to collect
data in different regions in order to optimize some specified
objective while satisfying constraints in the number and costs
of sensors. The authors in (Han et al., 2016) chose from a set
of available participants to maximize sensing revenue under a
limited budget. The authors in (Sun and Tang, 2019) proposed a
greedy scheduling algorithm to find data-giver vehicles for every
subtask with minimized cost in vehicular crowdsensing. The work
in (Han et al., 2015) considered an online scheduling problem that
determined sensing decisions for smartphones that were distributed
over different regions of interest. (Nguyen and Zeadally, 2021).
studied a participant selection problem that aimed to maximize the
number of event records reported by fewer users. Different from
(Han et al., 2015; Han et al., 2016; Sun and Tang, 2019; Nguyen and
Zeadally, 2021), the work in (Gendy et al., 2020) aimed to maximize
the percentage of the accomplished sensing tasks in a given period,
by modeling the interaction between the participating devices and
sensing task publishers as auctions. However, these works did not
take into account the effects of dynamic wireless channels on sensing
performance. Besides, most of them performed sensing device
scheduling under the assumption that some statistical information
is available in advance, which is usually resource-consuming and
even impractical especially when the number of sensing devices is
huge.Motivated by this fact, we aim to propose an online scheduling
algorithm to find device scheduling decisions in crowdsensing
tasks.

Recently, the rapid development of reinforcement learning
(RL) techniques sheds light on the considered problem. Among
these RL techniques, the multi-armed bandit (MAB) program is
thought of as an important tool and has been widely adopted for
scheduling and resource allocation problems. For example, MAB
has been applied to advertisement placement, multi-antenna beam
selection (Cheng et al., 2019), packet routing, offloading (Sun et al.,
2018; Chen and Xu, 2019), caching (Blasco and Gündüz, 2014;
Sengupta et al., 2014), and so on. In this work, we reformulate the
sensing device scheduling problem as an MAB program, based
on which a device scheduling algorithm is also proposed. The
contributions of this work are summarized as follows.

• Considering the scarcity of wireless channel resources, we
formulate a device scheduling problem in crowdsensing
scenarios. We take into account not only the availability of

devices caused by dynamic wireless channels but also fairness
among the devices for better comprehensive observation of the
area of interest. Besides, no prior information about devices is
available.
• Then, the device scheduling problem is reformulated as anMAB
problem, based on which an online scheduling algorithm is
also proposed. The proposed algorithm propose incorporates
the upper confidence bound (UCB) policy and virtual queue
theory, whose regret performance is also analyzed in this work.
• Finally, simulation results are conducted to verify the
effectiveness of the proposed algorithm. The balance between
the time used to reach a point thatmeets the fairness constraints
of devices and the performance regret is revealed.

System model

Consider a system consisting of an edge server and a set
K = {1,2,…,K} of crowdsensing devices (e.g., sensors, cameras,
and so on), as shown in Figure 1. These devices are responsible
for collecting raw data from the observed events or objects and
then pre-processing the raw data into samples, finally transmitting
these samples to the edge server for processing tasks, such as
statistical analysis and training a neural network for classification.
For simplicity, we assume that the samples generated by different
devices have the same size δ. Since the observed events can be
periodic or aperiodic, or the observed objects have different activity
characteristics, the amount of raw data collected by different devices
is different. Other factors such as device location and perception
ability also have influences on the amount of raw data collected
by different devices. In addition, the processing capabilities of
different devices are heterogeneous. Taking into account these facts
mentioned above and for simplicity, we assume that time is slotted
and the number of the newly generated samples of device k ∈K in
time slot τ,Nk(τ), is independently and identically distributed (i.i.d.)
according to some unknown distribution whose expectation νk is
also unknown a priori.Thus, the total number of the samples waiting
for uplink transmission of device k at the beginning of time slot τ is

Mk (τ) =min{Mmax, [Mk (τ− 1) +Nk (τ− 1) − Lk (τ− 1)]
+} , (1)

where [x]+ =max{0,x}, Mmax is the largest number of the samples
that each device can store due to the limited storage space, and Lk(τ)
is the number of the samples of device k has been transmitted the
edge server in time slot τ, which will be specified in the following.

Transmission model

The orthogonal frequency-division multiple access technique
is adopted and there are Fmax orthogonal channels, each with
the same bandwidth w, that can be used for uplink transmission
simultaneously.The channel hk between the edge server and device k
is i.i.d., which is assumed to be constant within a time slot but varies
independently across different time slots.The achievable uplink rate
of device k in time slot τ is computed as

Rk (τ) = wlog2(1+
pk|hk (τ) |

2

σ2
), (2)
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where σ2 denotes the noise power and pk denotes the transmit power
of device k. Then, the number of samples that can be transmitted to
the edge server is

lk (τ) =min{
ΔtR (τ)

δ
,Mk (τ) +Nk (τ)} , (3)

where Δt is the duration length of a time slot.

Available channel constraint

When the edge server collects the generated samples from the
devices, some devices can be unavailable for uplink transmission.
For example, the devices experience poor channel conditions due to
external interference, or the devices cannot work in the transmission
mode when collecting raw data due to power constraints. We
introduce the binary variable ak(τ) to indicate the availability state of
device k in time slot τ. Specifically, ak(τ) = 1 represents that device k
can work in the transmission mode in time slot τ, otherwise not. Let
Z(τ) = {k ∈K|ak(τ) = 1} ∈ B(K) denote the set of available devices
that can work in the transmission mode in time slot τwhereB(K) is
the power set ofK. We assume the distribution of available devices,
P̂Z(e) = P̂(Z(τ) = e),e ∈ B(K), is i.i.d. over time and unknown a
priori, but Z(τ) is unmasked to the edge server at the beginning of
each time slot τ. Then, Lk is specified by

Lk (τ) = {
lk (τ) if k ∈Z (τ) ,
0, else.

(4)

In the considered system, there can be a huge number of devices,
but the number of available channels at the same time is constrained.
Due to the limited number of available channels, the edge server has
to select a subsetW(τ) from the available devices, which shouldmeet
the available channel constraint, i.e.,

W (τ) ≜ {W (τ) ⊆Z (τ) :|W (τ) | ≤ Fmax} ∈ B (Z (τ)) , (5)

where |W(τ)| denotes the cardinality ofW(τ).

Fairness constraint

In order to achieve more comprehensive observation of the area
of interest or better performance of computational tasks such as
training a neural network, besides collecting as many samples as
possible, the edge server is required to collect samples from different
devices to ensure the diversity of samples. Thus, fairness among the
devices is also an important issue that should be addressed in many
practical applications. Here, a binary variable bk(τ) is introduced
with bk(τ) = 1 if device k is chosen to transmit its samples to the
edge server in time slot τ, otherwise, bk(τ) = 0. With the definition
of bk(τ), we formulate the fairness constraint as follows

lim
T→∞

inf
T

∑
τ=1
𝔼[bk (τ)] ≥ ck, ∀k ∈K, (6)

where T represents the total number of time slots, ck ∈ (0,1)
represents the minimum of the portion of time slots required
to transmit the samples of device k, and 𝔼[•] is the expectation

operator. We incorporate ck,k ∈K into a vector c = [c1,c2,…,cK]T

and c is thought of as a feasible fairness constraint if there is a
policy which generates a decision sequence {W(τ),τ ≥ 1} such that
the fairness constraint 6) is satisfied.

Problem formulation

In this work, we aim to optimize a time sequence {W(τ),τ ≥ 1}
which maximizes the number of samples received at the edge server
with a given time horizon of T time slots. The underlying problem
with the fairness constraint and the available channel constraint can
be formulated as

max
{W(τ),τ≥0}

T

∑
τ=1
∑

k∈W(τ)
Lk (τ)

s.t. (5) and (6),

(7)

which is hard to solve because we have no idea about the
distribution of the number of newly generated samples, as well
as the distribution of wireless channels. Besides, the fairness
constraint and the available channel constraint make problem
Eq. 7 more challenging. Thanks to the development of the
MAB framework, which sheds light on solutions to problem
Eq. 7.

Proposed algorithm

In this section, we first introduce a stationary policy
optimization program to deal with the uncertainty of
device availability. Then, the device scheduling problem
is reformulated as an MAB program, based on which an
arm-pull algorithm is proposed to determine the decision
sequence.

Problem reformulation

In this work, to simplify the scheduling complexity, a stationary
policy named Z-only policies is introduced, in which a super arm
W(τ) ∈ Y(Z(τ)) is selected according to the observed Z(τ) only in
each time slot τ (Neely, 2010), where Y(Z(τ)) denotes the set of all
possible subsets when Z(τ) is observed. According to Theorem 4.5
in (Neely, 2010), if c belongs to the maximum feasibility region C
strictly, a Z-policy which can meet the fairness constraint in Eq. 6
always exists.

We further use a vector of probability distributions q =
[qW(e),∀W ∈ Y(e),∀e ∈ B(K)] to describe anZ-only policy πwith
∑W∈Y(e)qW(e) = 1,∀e ∈ B(K). Then, we compute the mean of bk(τ)
as

𝔼[bπk (τ)] = ∑
e∈B(K)

P̂Z (e) ∑
W∈Y(e):k∈W

qW (e) , (8)

and have an equivalent expression of constraint 6), i.e.,𝔼[bπk(τ)] ≥ ck.
Besides, we assumeMmax is large enough and define ̄lk=

1
Mmax
𝔼[lk] ∈

[0,1] as the normalized expectation of Lk. Then, problem Eq. 7 can
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be reformulated as

max
q
∑

e∈B(K)
P̂Z (e) ∑

W∈Y(e)
qW (e) ∑

k∈W

̄lk

s.t. ∑
e∈B(K)

P̂Z (e) ∑
W∈Y(e):k∈W

qW (e) ≥ ck, ∀k ∈K,

∑
W∈Y(e)

qW (e) = 1, ∀e ∈ B (K) ,

qW (e) ∈ [0,1] ,∀W ∈ Y (e) , ∀e ∈ B (K) .

(9)

which is a linear problem if the expectation L̄k of Lk is known a
priori. However, this assumption does not usually hold in practice
and the edge server needs to estimate the average number of samples
received from device k per time slot to make scheduling decisions.
To address this issue, we introduce the MAB program.

Multi-armed bandit program

An MAB program is a machine learning framework where a
player chooses a sequential of actions (arms) in order to maximize
its cumulative reward in the long term (Lattimore and Szepesvári,
2020).Thankfully, we canmodel problem Eq. 7 as anMAB problem,
in which the edge server and the devices play the roles of the player
and the arms, respectively. Each subset W(τ) of available arms is
also treated as a super arm. Correspondingly, we can interpret the
objective of problem Eq. 7 as determining a time sequence of the
super arm to maximize the cumulative reward (i.e., the number of
samples received at the edge server).

In the MAB program, there is an expected reward for each arm,
but such statistical information is unknown by the player, which
brings challenges to the arm selection of the player. The main basis
that can be used to determine actions is some observation about the
state in the current round and the experience gathered in previous
rounds. More specifically, the arms which performed well in the
past should be associated with higher priority. In the meantime,
the player continues to explore the expected payoffs of the other
arms. In other words, the player has to balance between the need to
acquire more knowledge about the reward distributions of each arm
(exploration) and the need to optimize rewards based on its current
knowledge (exploitation) (Bubeck and Cesa-Bianchi, 2012). The
exploration-exploitation dilemma inevitably causes performance
loss and regret is themost popularmetric for evaluating the learning
performance in the MAB works, which is defined as the difference
between the reward r* and the average reward in a given period of
time (Lai and Robbins, 1985). Here, r* is the achievable maximum
reward of problem Eq. 9 with the known L̄k,∀k ∈K. Therefore, the
original problem Eq. 7 can be reformulated as a cumulative regret
minimization under policy π by determining a super arm W(τ) in
each time slot τ, i.e.,

min
{W(τ),τ≥1}

Rπ = Tr* −𝔼{
T

∑
τ=1
∑

k∈W(τ)

̂lk (τ)}

s.t. (5) and (6),

(10)

where ̂lk(τ) = lk(τ)/Mmax.

Algorithm design

When designing an algorithm for problem Eq. 10, three
challenges need to be addressed: 1) how tomaximize the cumulative
reward when the reward expectation of each arm is unknown, 2)
how to choose a super arm under the available channel constraint,
and 3) how to meet the fairness constraint. The first two challenges
can be dealt with with the extension of the classic UCB algorithm
(Auer et al., 2002), but how to meet the fairness constraint requires
the introduction of novel methods. Encouraged by (Neely, 2010;
Li et al., 2019), the virtual queue technique has the potential to
handle the fairness constraint. Specifically, a virtual queue is built
for each arm k, i.e.,

Qk (τ) = [Qk (τ− 1) + ck − bk (τ− 1)]
+, (11)

where [x]+ =max{0,x} and Dk(τ) represents the length of virtual
queue of arm k at the beginning of time slot τ.

Define ϱk(τ) = ∑
τ
τ′=1bk(τ

′) as the number of times arm k has
been chosen and υk(τ) as the empirical mean of the reward of arm
k by the end of time slot τ. The update rules of vk(τ) and ϱk(τ) are
given as

υk (τ) =
{{
{{
{

υk (τ− 1)ϱk (τ− 1) + ̂lk (τ− 1)
ϱk (τ− 1) + 1

, if k ∈W (τ) ,

υk (τ− 1) , else,
(12)

and

ϱk (τ) = {
ϱk (τ− 1) + 1, if k ∈W (τ) ,
ϱk (τ− 1) , else,

(13)

respectively. If ϱk(τ) = 0, we set υk(τ) = 0. Note that both ϱk (0) and
υk (0) are initialized to be 0.

We estimate the mean reward of each arm k according to a
truncated UCB method (Li et al., 2019), i.e.,

υ̂k (τ) =min{υk (τ− 1) +√
2 lnτ

ϱk (τ− 1)
,1}, (14)

where υ̂k(τ) is set to be 1, if ϱk (τ− 1) = 0. Then, a super arm is
selected in each time slot τ according to

W* (τ) ∈ argmax
W∈Y(Z(τ)),
|W |=min{N,|Z(τ)|}

∑
k∈W
(1− α) υ̂k (τ) + αQk (τ) (15)

where α ∈ (0,1] is a weighting value.
Finally, the whole algorithm is summarised in Algorithm 1.

Regret analysis

Wefirst introduce a lemma that specifies the upper bound on the
expected regret of the proposed algorithm.

Lemma 1.The regret of the proposed algorithm is upper bounded
by

Rπ ≤ αKT
2
+ (1− α)[(π

2

3
+ 1)K+ 4√2KFTlnT]. (16)
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1: Initialization: Set ϱk(1) = υk(1) = Qk(1) = 0,∀k ∈K
2:for τ ∈ do

3: for k ∈K do

4: if vk(τ) > 0 then update v̂k(τ) using (14)

5: else set v̂k(τ) = 1 end if

6: Update Qk using (11)

7: end for

8: Select W(τ) using (15) and update bk(τ),∀k ∈K
9: Update vk(τ) and ϱk(τ) using (12) and 13,

respectively

10: end for

Algorithm 1. Proposed algorithm for problem Eq. 10.

FIGURE 1
The considered system with an edge server and K devices. Different
colored areas represent the perception areas of different devices.

Proof: Since similar proof has been presented in (Hsu et al., 2018;
Li et al., 2019; Xia et al., 2021), here we only provide the sketch of
the proof. Denote byW*(τ) the super arm selected according to the
optimal Z-policy π* and by b*k(τ)’s the corresponding the indicator
variables. Then, we have

Rπ =
T

∑
τ=1
𝔼[ ∑

k∈W*(τ)

̂lk (τ) − ∑
k∈W(τ)

̂lk (τ)]

=
T

∑
τ=1
𝔼[∑

k∈K
(b*k (τ) − bk (τ)) ̄lk]

≤ αKT
2
+

T

∑
τ=1
𝔼[Λ1 (τ)] .

(17)

in which Λ1(τ) = ∑k∈K[αQk(τ) + (1− α) ̄lk](b*k(τ) − bk(τ)) (Li et al.,
2019, Appednix C). Then, according to (Xia et al., 2021, Lemma 2),

FIGURE 2
Performance comparison of different algorithms. (A) Cumulative
performance gap over the time slots. (B) Average performance gap
over the time slots.

we have

Λ1 (τ) ≤ (1− α) [Λ2 (τ) +Λ3 (τ)] , (18)

where Λ2(τ) = ∑i∈W(τ) (υ̂k(τ) − ̄lk), Λ3(τ) = ∑i∈W‡(τ) ( ̄lk − υ̂k(τ)), and
W‡(τ) is chosen according to the following rule:

W‡ (τ) ∈ argmax
W∈Y(Z(τ))

∑
k∈W

αQk (τ) + (1− α) ̄lk. (19)

Here, the upper bounds of Λ2(τ) and Λ3(τ) are directly given as
follows:

T

∑
τ=1
𝔼[Λ2 (τ)] ≤ (

π2

6
+ 1)K+ 4√2KFT lnT,

T

∑
τ=1
𝔼[Λ3 (τ)] ≤

π2

6
K.

(20)
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FIGURE 3
Client selection over the time slots. (A) Section fraction of client 1. (B)
Section fraction of client 2. (C) Section fraction of client 3.

The corresponding analysis is similar to that in (Li et al., 2019;
Appendices D and E). Finally, we finish the proof by substituting
Eq. 20 into Eq. 18 and further into Eq. 17.

FIGURE 4
Performance comparison of the proposed algorithm with the
round-robin algorithm.

Remark 1. Given 0 < α ≤ 1
√T

and a large value T, then we can
simplify the upper bound in Eq. 16 as

Rπ ≤ K
√T
2
+(π

2

3
+ 1)K+ 4√2KFTlnT, (21)

which suggests that the time-average performance regret increases
at a sub-linear rate (i.e.,O(√T lnT)) over time.

Simulation results

In this section, we provide simulation results to verify the
effectiveness of the proposed algorithm. We consider a disc area
with a radius of 200 m and a single-antenna access point (AP)
equipped with an edge server located in the center of the considered
area. The transmit power of each sensing device k is set as 23 dBm
and the noise power σ2 is set as −107 dBm. The channel response
hk is computed as hk = √βkh̃k where h̃k and βk stand for small-
scale fading and large-scale fading, respectively. The small-scale
fading is represented by i.i.d. zero-meaned complex Gaussian
variables with unit variance. The large-scale fading is determined
according to the path-loss model: PL [dB] = 128.1+ 37.6 log10(d)
where d stands for the distance in km (Dahrouj and Yu, 2010). The
number of the newly generated samples Nk(τ) is assumed to be
uniformly distributed in [NLB

k ,N
UB
k ], where N

LB
k and NUB

k are set as
NLB
k = (0.5k+ 0.5) × 20 and NUB

k = (0.5k+ 1.5) × 80,∀k ∈K. We also
assume the availability of each sensing device to be i.i.d. using a
binary random variable with a mean of 0.9. Besides, we assume
Mmax = 500 samples, δ = 100 bits/sample, and the length of a time
slot Δt = 0.1 s.

We consider a system with K = 3 sensing devices randomly
distributed within the coverage of the AP. However, only F = 2
channel links are available and the bandwidth of each orthogonal
channel is set as 15 KHz. The fairness constraint factors are
c1 = 0.7, c2 = 0.5, and c3 = 0.6. Here, we define Ω1 and Ω2 as
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the cumulative performance gap and average performance gap,
respectively, with Ω1 = ΣπMmax and Ω2 =Ω1/T, which are used
to describe the difference between the optimal solution found by
solving problem Eq. 9 and the solution found using the proposed
algorithm (or baseline algorithms). Note that the optimal solution
found by solving problem Eq. 9 satisfies the fairness constraint.
For comparison, we introduce a modified version of the proposed
algorithm, which does not take into account the fairness constraint.
More specifically, the UCB algorithm for the modified version
does not introduce the virtual queue technique. In Figure 2, we
compare the proposed algorithms under different α values with
the modified version. We find that the performance gap of the
modified algorithm is the smallest, whose value is even negative
because the modified algorithm does not need to meet the fairness
constraint and may lead to biased observations of the area of
interest. We also observe that the time-average performance gap
of the proposed algorithm grows at a sub-linear trend. Besides,
at first glance, the proposed algorithm with a smaller α value
meets the fairness constraint but also enjoys better performance,
which is more attractive. This is because a smaller α value
makes the reward of each device dominant and the fairness
constraint insignificant. However, what is missing in Figure 2 is
the convergence time used to meet the fairness constraint, which
is also an important metric that should be taken into account in
practice.

Figure 3 shows the change in the selection fractions of different
devices over the time slots. Here, the selection fraction is defined as
the ratio of the chosen time of a certain device to the total number
of time slots. We find that the curves of all the arms obtained by
the proposed algorithm meet the fairness constraints eventually,
no matter which α value is taken. The modified algorithm has no
idea of the fairness constraints and thus does not need to meet
the fairness constraints. In addition, it is observed that a smaller
α value leads to more time consumption before the convergence is
achieved and the convergence rate of the curve with α = 0.001 is the
slowest.

To further validate the effectiveness of the proposed algorithm,
we consider a scenario with K = 20 devices and introduce the
round-robin algorithm as a baseline, as shown in Figure 4.
According to the results in Figure 4, we find that more samples
are collected with the increase of the number of available
channels. In addition, the proposed algorithm always achieves better
performance than the round-robin algorithm.

Conclusion

In this work, we considered sensing device scheduling problem
in mobile crowdsensing tasks, which suffers from the scarcity

of wireless channel resource and the lack of prior knowledge,
as well as different capabilities among devices. To address these
challenges, we reformulated the device scheduling problem as an
MAB program, one should guarantee the participation fairness of
sensing devices with different coverage regions. Then, we proposed
a device scheduling algorithm on the basis of the UCB policy and
virtual queue theory, whose performance regret was also analyzed.
Finally, numerical results were conducted to verify the effectiveness
of the proposed algorithm.
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