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The current residential electricity demand is increasing. The demand side
response of smart grid power users aims to enable users to reasonably plan
their own power consumption through price incentives, so as to solve the
problems of unreasonable power energy structure and low utilization rate.
It is prominent to mine the rules of user response behaviors and design a
reasonable incentive mechanism to maximize the enthusiasm of all participants.
The traditional demand response is to ensure the stability of the power system
from the macro-control load of the grid, which cannot meet the personalized
requirements of power users. The existing incentive mechanism also does not
comprehensively consider the profits of grid companies, low-voltage users,
aggregators and other parties. In this paper, we propose a user demand response
framework based on load awareness. Firstly, we devise a user demand response
behaviour model based on short-term memory network. Secondly, we propose
a demand response incentive scheme based on electric power scores. We also
construct a deviation optimization integration adjustment model based on game
theory to achieve the balance of profits among grid, aggregators and low-voltage
users. The extensive experimental results show the effectiveness of our proposed
framework.

KEYWORDS

smart grid, behaviour characteristics, incentive mechanism, game theory, score
adjusting

1 Introduction

Power energy is an important guarantee for achieving sustainable economic
development and improving the quality of persons’ lives. At present, the increasing demand
for residential electricity, coupled with the irrational structure and low utilization rate of
existing power energy, have deepened the contradiction between the power load system
and the distributed low-voltage grid users. In demand side response, during the peak or
valley period of residential power consumption, users can reasonably plan their own power
consumption range by means of price incentives and active response to the imbalance of
regional power demand, thereby achieving peak shaving and valley filling to ensure the
smooth operation of the grid. The implementation of demand response mechanism can
realize power utilization optimization from the demand side of power resource allocation,
effectively solve the problem of tight supply and demand of local power, and provide new
regulation means for economic, safe and stable operation of the power system. The main

Frontiers in Energy Research 01 frontiersin.org

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#editorial-board
https://doi.org/10.3389/fenrg.2023.1141374
https://crossmark.crossref.org/dialog/?doi=10.3389/fenrg.2023.1141374&domain=pdf&date_stamp=2023-05-16
mailto:411833214@qq.com
mailto:411833214@qq.com
https://doi.org/10.3389/fenrg.2023.1141374
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fenrg.2023.1141374/full
https://www.frontiersin.org/articles/10.3389/fenrg.2023.1141374/full
https://www.frontiersin.org/articles/10.3389/fenrg.2023.1141374/full
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Jiang et al. 10.3389/fenrg.2023.1141374

current economic incentive is to determine the amount of subsidies
according to the load data of demand response.

With the increasing types of power transactions and the
increasing transaction frequency, the traditional power market
transactions face more difficulties and challenges. With the
development of new power integrated energy, especially the
popularization of home photovoltaic new energy technology,
the potential of low-voltage user demand response is enhanced.
However, residential low-voltage users have their own particularity
when participating in demand response. Specifically, the consumer’s
electricity consumption behaviour will be affected by many factors
such as season, weather temperature, power consumption period,
and real-time price. It is necessary to build a user demand response
model to reveal the degree of response of user power consumption to
relevant change factors, and simulate the demand response behavior
of users. On the other hand, it is necessary to design a reasonable
incentive mechanism, so that the overall benefits and the individual
benefits of all participants can be balanced, so as to maximize the
enthusiasm of all participants.

The traditional demand response is to ensure the stability of
the power system from the macro-control load of the grid. The
grid system sends inductive signals to users to reduce load use,
such as compensation and power price changes, so that users can
change their original electricity use habits. However, the method
of macro-control cannot meet the individual requirements of
power users. With the increase of users participating in demand
response, user responses are different and have various complex
features such as high-dimensional, nonlinear, and non-convex. This
makes the interactive modelling based on model driven and the
pricing strategy based on optimization no longer applicable. Existing
incentivemechanisms for power users aremainly launched from the
electricity price, such as peak price, real-time price and electricity
price rebates in response to peak hours, with reasonable subsidies
and incentives. The common incentive method is point incentive,
which can be used to exchange subsidies through the distribution
of scores for users’ daily behaviours. This traditional method does
not comprehensively consider the interests of power grid companies,
low-voltage users, aggregators and other parties.

In this paper, we propose a user demand response framework
based on load sensing to analyze the demand response behaviour
of low-voltage users, and achieve effective incentives for grid
companies, low-voltage users, aggregators and other agents.
Specifically, we build a user participation demand response
behaviour model to find out the correlation characteristics between
the user’s electricity consumption and user’s behavior participating
in demand response. We construct a theoretical model with a
presentation layer, a user consumption prediction layer, a demand
response prediction layer and a multi task learning layer.

Next, we design the integration rules of differential scoring
mechanism under three objectives: maximizing the scores
obtained by users, maximizing the benefits of grid companies,
and maximizing the benefits of aggregators. We devise a market
trading rules for low-voltage demand response including five stages
of the trading process: demand response invitation, the bidding
stage, the orderly power consumption stage, the photovoltaic new
energy power sale stage, and the release and distribution of subsidy
information stage. The integration rules of differential integral
mechanism under three objectives are designed: maximizing the

points obtained by users,maximizing the benefits of grid companies,
and maximizing the benefits of aggregators.

Finally, we construct a deviation optimization score adjusting
model, which comprehensively considers the real-time price of grid
companies, the unit price of load dispatching of aggregators, and the
demand response of low-voltage users. The score adjusting model
simulates the implementation effect when the grid, aggregators, and
low-voltage users participate in demand response. According to
the deviation of implementation effect, the incentive mechanism of
power integration is optimized and adjusted. We adopt the non-
cooperative static game to describe the three parties’ game. The
maximum of the objective function can be achieved according to
the benefit function of each party, that is, tomaximize the benefits of
grid companies, aggregators and low-voltage users. Then, according
to the obtained Nash equilibrium solution, the deviation of the goal
in the score incentive mechanism is optimized and adjusted.

Our main contributions are as follows.

• We propose a user demand response framework based on
load awareness. This framework realizes the demand response
behaviour analysis of low-voltage users, and constructs an
incentive mechanism based on grid companies, low-voltage
users, aggregators and other parties.
• We propose a low-voltage user participation demand response
behaviour model, which learns user behaviour via LSTM (long
short-term memory) network.
• We devise the demand response incentive scheme based
on electricity scoring. A deviation optimization integration
adjustment model based on game theory is presented to
simulate the implementation effect of grid, aggregator and low-
voltage users.
• We conduct extensive experiments. The experimental results
show the effectiveness of the proposed method.

The rest of this paper is structured as follows.We summarize the
related work in Section 2.We present the user participation demand
response behaviour theory model in Section 3. We present the
demand response incentive scheme in Section 4. We discuss about
the incentive adjustment model in Section 5. The experimental
design and results are presented in Section 6. Finally, Section 7
presents the conclusion.

2 Related work

It is well known that demand response plays an important role
in balancing supply and demand in the power sector. Wijaya et al.
(2014) and Shi et al. (2020) demonstrated how user engagement
changes based on actual incentives received. Aalami et al. (2008)
considered time-of-use and emergency demand response program.
Zheng et al. (2020) proposed an incentive-based integrated demand
response model. Wang et al. (2020) proposed a forecasting model
to help aggregators predict the aggregate demand response capacity
available in the future market. Baboli et al. (2012) developed an
improved demand response model which considers the customer’s
behaviour. Muratori and Rizzoni (2016) provided an accurate
estimate of the actual quantity of controllable resources. From
the perspective of a grid operator, Yu et al. (2019) established a
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resource trading framework. Khajavi et al. (2011) and Palensky and
Dietrich (2011) analyzed the incentive-based programs in smart
grid and the various types of demand side management. Yang et al.
(2018) provided different consumers with a list of price plans to
motivate them to participate in demand response.Wang et al. (2020)
constructed the automatic demand response architecture, which
provides the possibility of demand response’s real-time application.

The relationships between entities in a dataset usually have
multiple properties, and many methods using subspace weighted
clustering and long short-term memory network have been
proposed to analyze these attributes. Jia and Cheung (2018)
proposed an attribute-weighted clustering model based on the
concept of object-cluster similarity. Jing et al. (2007) proposed a
new k-means algorithm that can cluster high-dimensional objects
in sub-spaces. Boongoen et al. (2011) studied subspace clustering,
and proposed a filter approach applicable to different types
of clustering. Chen et al. (2019) proposed a two-level subspace
weighting clustering algorithm for customer transaction data.
Yin et al. (2018) proposed a clustering method, which learns an
adaptive graph affinity matrix and then obviates the pre-computed
graph regularize effectively. Tang et al. (2019) learned a joint
affinity graph for multi-view subspace clustering. Dong et al. (2014)
proposed a method to cluster the vertices by efficiently merging
the information. Some studies used the LSTM (long short-term
memory) network and RNN network for prediction (Xiaoyun et al.,
2016; Liu et al., 2017;Narayan andHipel, 2017; Agrawal et al., 2018).

In addition, there are some methods to apply game theory to
smart grid. Nguyen et al. (2013) proposed a strategy to solve the
conflict of interest to achieve the overall optimal performance of
the power supply system. Sanjab and Saad (2016) and Kamyab et al.
(2016) proposed a distributed learning algorithm to find the
equilibrium and proved its convergence to the game solution.
Belhaiza and Baroudi (2015) proposed a new non-cooperative game
theory model. The Nash Balance condition is used for demand
management in the smart grid. Farraj et al. (2016) uses an iterative
game theory formula to describe the interaction of all parties in
the power system and its impact on system stability. Ni and Paul
(2019) proposed a new solution for the dynamic game between
parties. Demand response algorithms based on real-time price
are proposed in (Tushar et al., 2014; Mondal et al., 2015; Yu and
Hong, 2016). Nguyen et al. (2015) proposed a distributed demand-
side management algorithm, which provides optimality for energy
suppliers and users. La et al. (2016) established a dynamic pricing
model based on differential game theory. Fadlullah et al. (2014)
proposed a game-theoretic energy schedulemethod bymodeling the
interaction between power companies and consumers.

Recently, Fu and Zhou (2022) proposed a preprocessing
approach for the simulation of the power systems. A tranfer function
model is proposed to evaluate the characteristics of droop control
inverter. Some researches focus on new energy generation such as
photovoltaic power generation. Specifically, Fu and Zhou (2022)
addressed the problem of the collaboration between photovoltaic
load and energy systems, in order to coordinate the energy, such
as electrical energy and thermal energy. A energy meteorological
model is constructed. Machine learning techniques, such as Markov
chains, nearest neighbor theory and probabilistic inequality theory,
are used for optimal planning for capacitors in (Fu et al., 2020).
The statical machine learning is utilized for power flow planning in

(Fu, 2022). The statical machine learning techniques contains linear
regression, probability distribution, and center point method, which
simulate the uncertain weather, power generation, and others.

3 User participation demand response
behavior theory model in load
regulation

By analyzing users’ historical electricity consumption behaviour,
we can get their overall electricity consumption habits and
characteristics, thus we can formulate electricity planning schemes
that are more consistent with users’ behaviour habits and formulate
relevant incentive policies. In daily life, there are many external
factors that will affect the power consumption of users, such as
season, weather temperature, power consumption period, and real-
time price. Motivated by the multi-task learning model in Xu et al.
(2021), we use the division of different time periods on the timeline
to describe the impact of users’ historical electricity consumption
behaviour on the future, and enhance the representation. For
external features, we combine the context information of electricity
consumption, and use LSTM to learn. Finally, combining the
two data, more accurate results can be obtained through loss
function calculation. Therefore, the whole user participation
demand response behavior theoretical model is divided into four
layers: expression layer, user consumption prediction layer, load
prediction layer, and multi-task learning layer.

1) Expression Layer.
This layer is composed of external characteristics and user

electricity consumption information. External features are the top
n features extracted above. The selected features are coded into
the vector of ℝ1×A to reduce dimensions, and then connected
with these external feature vectors to form a low dimensional
matrixEτ .Theuser’s electricity consumption directly affectswhether
the user participates in the demand response behaviour. If the
display features are directly used to predict, they cannot reflect
the real world situation, so we use a hidden layer to enhance the
context information that represents the electricity consumption at
a certain time τ.The electricity consumption of station i is expressed
as Consi,τ . In order to estimate the response quantity of user
participation in demand response, the external characteristics and
the context information related to user consumption are connected,
that is Ui,τ = [Consi,τ,Eτ].

2) User Consumption Forecast Layer.
This layer uses the user consumption amount to represent

the consumption situation, and extracts the user consumption
amount on the timeline. The time is divided into timeslots
with a growth of t (for example, t = 5 (minutes)). We use Au,t
to represent the average amount consumed by the user u in
the timeslot t. We hope to use this value to predict the user
consumption amount of Au,tτ in the future τ timeslot. Considering
the periodicity of users’ electricity consumption, we divide
the historical data into three categories: within 1 hour, within
6 days, and within 4 weeks. The time interval can be expressed
as: [tτ −

60
t
, tτ − 1], [tτ −

60⋆24
t
× 6, tτ −

60⋆24
t
], [tτ −

60⋆24⋆6
t
× 4,

tτ −
60⋆24⋆6

t
], the characteristics are expressed as follows:

Iu,tτ = [Au,tτ−1,Au,tτ−2,…,Au,tτ−
60
t
] (1)
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Ju,tτ = [Au,tτ−
60⋆24

t
,Au,tτ−

60⋆24
t
×2,…,Au,tτ−

60⋆24
t
×6] (2)

Ku,tτ = [Au,tτ−
60⋆24⋆6

t
,Au,tτ−

60⋆24⋆6
t
×2,…,Au,tτ−

60⋆24⋆6
t
×4] (3)

Convolution operations are performed on the three types of
features as follows.

Ttτ
u,I = f (W

(I)
Conv ⋆ Iu,tτ + bI) (4)

Ttτ
u,J = f (W

(J)
Conv ⋆ Ju,tτ + bJ) (5)

Ttτ
u,K = f (W

(K)
Conv ⋆Ku,tτ + bK) (6)

where ⋆ represents the convolution operation, and
W(I)Conv,W

(J)
Conv,andW

(K)
Conv represent weight coefficients. bI ,bJ ,bK are

deviations, and f () is the activation function. Finally, the vector
Fu,tτ = [T

tτ
u,I,T

tτ
u,J,T

tτ
u,K] is connected and can be seen as an enhanced

representation of user consumption Consi,τ , which better reflects
the real situation in the real scene.

3) User Demand Response Prediction Layer.
The purpose of designing the user demand response prediction

layer is to predict the user participation demand response based on
the sequence model of space-time information. LSTM network is
used to retain useful information. In the LSTMnetwork, each feature
vector has a memory unit cx, an input gate ix and a forgetting gate
fx that controls the network to remember useful new content and
forget useless old content, and an output gate ox where x represents
the xth feature vector. For each eigenvector, there is an output hx
of LSTM unit: hx = ox◦tanh (cx). The output gate uses a Sigmod
function to determine the output: ox = σ(WoUx,τ +Vohx−1 +Docx).
Do is a diagonal matrix. The memory unit cx is obtained from the
weighted sum of new content c̃x and old content cx−1: cx = fx◦cx−1 +
ix◦c̃x. The new content c̃x is obtained from the weighted sum of the
series information Ux,τ and the output hx−1 of the last LSTM unit:

c̃x = tanh(WcUx,τ +Vchx−1) (7)

Both Wc and Vc are weight matrices. The input gate and
forgetting gate are calculated from the information Ux,τ , the output
hx−1 of the last LSTM unit, and the last memory unit cx−1 connected
by external features and user consumption related context:

ix = σ(WyUx,τ +Vyhx−1 +Dycx−1) (8)

fx = σ(W fUx,τ +V fhx−1 +D fcx−1) (9)

where Wy,Wf ,Vy,Vf are weight matrices, and Dy,Df are diagonal
matrices. Using the sequence of Uj,τ to train the LSTM network,
we can get the hidden unit sequence H = h1,h2,… ,hn with time
dependence. After this unit sequence is input into the MLP, the
corresponding expected user participation demand response r̂i can
be obtained.

In order to further capture the global information, we
employ the self-attention mechanism and multi-task parallel
computing, which can take into account the correlation between
any two stations. The corresponding trainable parameter matrix

WT
Q,W

T
K,W

T
V and respective offsets are used to generate the

corresponding Q, K, V:

Q =WT
Q [h1,h2,…,hn] + bQ (10)

K =WT
K [h1,h2,…,hn] + bK (11)

V =WT
V [h1,h2,…,hn] + bV (12)

Each element in the Q sequence is used to match each element
in K. Specifically, point multiplication is carried out between them
in order to obtain the weight through softmax function. V can be
regarded as the information learned from the sequence. Therefore,
this process can be expressed as follows.

Attention(Q,K,V) = so ftmax(QKT

√dk
) (13)

h* = Attention (Q,K,V)V (14)

where dk represents the dimension of k, and h* represents the
comprehensive representation of sequence H. h* will be input into
MLP to obtain the final predicted user demand response R̂.

4) Multi-Task Learning Layer.
The purpose of this layer is to calculate more accurate

parameters by combining the outputs of the user consumption
prediction layer and the user demand response prediction layer.
Using the predicted user consumption amount âi, the expected
user participation demand response r̂i, and the final predicted
user demand response R̂ calculated previously, we use the average
absolute percentage error MAPE to measure the error normalized.
The three loss functions are: La =

1
n
∑ni=1 |

ai−âi
ai
|, Lr =

1
n
∑ni=1 |

ri−r̂i
ri
|,

and LR = |
R−R̂
R
| ai is the actual consumption amount of users in

station i, ri is the actual demand response of users in station i,
and R is the actual demand response of the entire end user group.
The final loss function is computed from the above three loss
functions:

L = 1
2λ21

La +
1
2λ22

Lr +
1
2λ23

LR + log(λ1λ2λ3) . (15)

4 Demand response incentive scheme
based on electric score

For low-voltage users participating in demand response
transactions, if they perform faithfully, they can accumulate credit
value and reward scores. If users default, they will be punished. In
this section, we develop a differential scoring model. The goal is
to maximize the credit obtained by users and the income of grid
companies and aggregators.

4.1 Score rules

1) Rewarding scores for user registration and real name
authentication: After users download the low-voltage interactive
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response APP, register and authenticate with their real names, the
system will reward users with scores, such as 20 scores.

2) The user submits the demand response information and gets
bonus scores. After receiving the demand response invitation issued
by the grid company, the user will submit relevant information
according to the situation, and the system will issue reward scores
to the user, such as 5 scores.

3) Rewarding scores for faithful performance of users. The
aggregator compares the data read from the intelligent interactive
terminal with the data submitted by the user. If the user performs
faithfully, the systemwill give the user a performance award, such as
10 scores.

4) Deducting scores for user’s failure to perform. If the user
breaches the contract, the user’s partial scores will be deducted, such
as 15 scores.

5) Differentiated bonus scores are calculated according to the
user’s credit value. The system sets a basic reward score, such as 12
scores, and then rewards according to the credit value. For users with
high credit value (for example, above 900), each time they participate
in a transaction and perform, they can be rewarded with the original
bonus scores plus p times the original scores (for example, p = 0.2).
For users with moderate credit value (500–900), each time they
participate in a transaction and perform a contract, they can reward
the original score plus q times the original score (for example, q
= 0.05). Users with low credit value (below 500) will be rewarded
normally.

6) User task credits: for a user’s time-limited task, for example,
if he/she participates in 6 demand response transactions within
half a month and performs faithfully, he/she can obtain 3
scores.

7) Rewards for blockchain block out: the block reward of the
corresponding alliance chain of each station area is planned and
managed by the grid company in a unified way and distributed to
users according to their enthusiasm for participation.

8) Rewards for users to participate in orderly power
consumption: after receiving the invitation, the user submits the
transaction information, chooses to discharge the electric vehicle at
the peak load and charge it at the low load, and the system will give
the user a point reward, such as 18 scores.

9) Rewards for photovoltaic new energy sales: photovoltaic
power generation users will voluntarily use the electricity and sell
the surplus electricity to the grid.The grid company will give a point
reward, such as 1 point for 1 kWh.

10) Bonus scores for users binding new smart home devices:
users who bind a new smart home device through the APP will get
bonus scores, such as 5 scores.

Users can use credits before the credits expire. Specifically, the
purposes of scores include:

1) Exchange electricity subsidy price: users can convert it into
electricity subsidy in proportion, for example, 500 scores can be
converted into an electricity subsidy of 1 kW h, but it cannot be
withdrawn for use.

2) Exchange souvenirs and prizes: for example, 2,000 cents can
be exchanged for souvenirs, and 1,000 cents can be exchanged for
vouchers of cooperative merchants, etc.

3) Restore credit value: for users with low credit value (for
example, the credit value is lower than 200), credit value can be
restored with scores.

4.2 Maximizing the user’s scores

We divide the sources of user scores into six parts. Let A be the
sum of the scores obtained by each user’s daily behaviour, including
reward scores registi,u obtained by user registration and real name
authentication, reward scores submiti,u obtained by users submitting
demand response information, user task scores taski,u, reward scores
bindi,u for users binding new smart home devices, subscript i for
station area number, andu for user code.Therefore, the sumof scores
obtained by all users’ daily behaviours can be expressed as A, which
can be expressed as follows.

A =∑
i,u
registi,u +∑

i,u
submiti,u +∑

i,u
taski,u +∑

i,u
bindi,u (16)

Let B be the sum of the scores of each user’s participation
in demand response performance, including the score caset of
the predicted demand response reward. The performance score is
differential. Users get different credits at different implementation
times, which are differentiated by time factor τt .We useHx to denote
time, Dx to denote date, Mx to denote month, and q, w, r to denote
weight coefficients respectively, which can be adjusted according
to season, temperature and other factors. Therefore, the calculation
method of time coefficient τt is:

τt = qHx +wDx + rMx. (17)

We use X to denote the predicted user demand response, and
θ to denote the reward basis for each kW hour of electricity, so the
reward scores obtained by users are calculated as follows:

caset = τtXθ. (18)

Therefore, the total score B of all users’ participation in demand
response performance can be expressed as:

B =∑
t
caset. (19)

Then, according to the sum of the differentiated credits of the
user credit value award, we use C to denote the credit value of the
user. The user’s credit value is divided into three grades, expressed
as grade factor δe, subscript e as user credit value, and credit value
award base score as ρ. δe is calculated as follows.

D =
{{{{
{{{{
{

δ1
δ2
1

e ≥ 900

500 ≤ e < 900

e < 500

(20)

The differentiation scores obtained by users are:

crediti,u = δeρ. (21)

Therefore, the sum of differential scores C awarded according to
the user’s credit value can be expressed as:

C =∑
i,u
crediti,u. (22)

The block reward scores for blockchain are uniformly
distributed andmanaged by the grid company.The scores are sorted
from high to low according to the response of each station area and
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the response of users in the station area. The ranking coefficient of
the substation area is expressed as αi, and i is the number of the
station area. We use βu to denote the ranking coefficient of users
in the station area, and u to represent the number of users in the
station area. If the basic division is set as η, the user will get mineri
bonus scores for block out as follows.

blocki,u = αiβuη (23)

We use D to denote the total reward scores of all users’
blockchain blocks, and D can be obtained as follows.

D =∑
i,u
blocki,u (24)

We use E to denote the sum of the rewards for users to
participate in the orderly use of electricity. orderi,u represents the
scores obtained by each user to participate in the orderly use of
electricity.

E =∑
i,u
orderi,u (25)

We use F to denote the total scores of energy sales incentives,
and photovoltaici,u to denote the bonus scores obtained by each PV
new energy user by selling excess electricity:

F =∑
i,u
photovoltaici,u (26)

Therefore, the model for maximizing user scores is:

Maximize Susers = A+B+C+D+E+ F

=∑
i,u
registi,u +∑

i,u
submiti,u

+∑
i,u
taski,u +∑

i,u
bindi,u +∑

t
caset

+∑
i,u
crediti,u +∑

i,u
blocki,u

+∑
i,u
orderi,u +∑

i,u
photovoltaici,u (27)

4.3 Maximizing profit of grid companies

We use SCSG to denote the revenue of the grid company. It refers
to the total revenue after the end of the demand response load.
Let a, b and c be the weight of demand response, orderly power
consumption and photovoltaic new energy power generation in the
whole low-voltage interaction response. There are three sources of
demand response transaction load. We use Xi to denote a total load
of demand response of the ith station area. We use Yi,u to denote
the load of the uth user in the ith substation area who sells the load
stored by the electric vehicle to other users to participate in demand
response in the orderly power consumption stage. We use Zi,u to
denote the excess load sold to the grid company by the user u of the
ith station area in the photovoltaic power generation stage. Let pt be
the real-time electricity selling price of the grid company in period
p. Let pw be the dispatching load unit price of the aggregator, and let
pc be the generation cost of the grid company.Therefore, the benefit
maximization model of grid companies can be expressed as:

MaximizeSCSG = (∑
i,u,t

aXi + bYi,u + cZi,u)(pt − p
w − pc) . (28)

4.4 Maximizing aggregator’s profit

The aggregator participates in the process of dispatching
demand response load, and the grid company pays the dispatching
fee, which is represented by SAgent . The three expressions of the
demand response load dispatched by the aggregator are denoted
as Xi,Yi,u,Zi,u, Here, a, b and c are also used to represent the
weight of demand response, orderly electricity use and photovoltaic
new energy power generation in the whole low-voltage interaction
response. Let pw be the unit price of the dispatching load charged by
the aggregator for participating in the dispatching load. Therefore,
the profit maximization model of aggregators can be expressed as:

MaximizeSAgent =∑
i,u
pw (aXi + bYi,u + cZi,u) . (29)

The demand response incentive model based on electric score
is feasible in reality. The power grid company will install a specific
electricitymeter in each user’s home.When users use the application
program (such as mobile APP) that matches the electricity meter,
they can become the client of the demand response system, that is,
the light node in the blockchain system. The settlement of score is
calculated by the whole node with large computing power in the
blockchain system, and then synchronized to the user light node.
When the application program that conforms to the business logic
in the paper is completed, the power regulation and score settlement
based on the blockchain system is very simple and fast for power grid
companies, aggregators and low-voltage users.

5 Incentive adjustment model of
scores based on game theory

We simulate the implementation effect of multi-agents’
participation in demand response based on game theory. We
optimize and adjust the scoring incentive mechanism according
to the target deviation of demand response. The game involving
grid companies, aggregators and low-voltage users is a non-
cooperative static game, and the three parties independently
choose their strategies according to their own optimization goals.
The optimization objectives of grid companies, aggregators, and
low-voltage users are as follows: maximum benefits, maximum
benefits from dispatching demand response, and maximum scores.
According to the goal of the three party game, solve the Nash
equilibrium point and adjust the score incentive mechanism.

5.1 Game model

The game model of the grid company, aggregator and low-
voltage user is as follows:

Participants: grid company CSG, aggregator Agent, and all user
Users participating in low voltage response.

Strategy: the game decision variables of grid company,
aggregator and low voltage user include real-time unit price of
load in demand response period, dispatch unit price of aggregator
participating in dispatching demand response load, and demand
response quantity submitted by low voltage users.
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Profit:

SCSG = (∑
i,u,t

aXi + bYi,u + cZi,u)(pt − p
w − pc) (30)

SAgent =∑
i,u
pw (aXi + bYi,u + cZi,u) (31)

Susers = A+∑
t
τt.X.θ+C+D+E+ F (32)

SCSG denotes the total income of the grid company after the end
of the demand response load. a, b and c are the weights of demand
response, orderly power consumption and photovoltaic new energy
power generation in the whole low-voltage interaction response. Xi
refers to the total load of demand response of the ith substation area.
Yi,u refers to the phase of orderly power utilization, in which the user
u of the ith substation sells the load stored by the electric vehicle
itself to other users to participate in demand response. Zi,u refers to
the excess load sold to the grid company by the user u of the ith
substation in the photovoltaic power generation stage. pt refers to the
real-time electricity selling price of the grid company in the p period.
pw refers to the unit price of dispatching load of the aggregator.
pc refers to the generation cost of the grid company. Eq. 38 scores
out that the optimization objective of the aggregator is to obtain
the maximum benefit in the process of participating in dispatching
demand response load. pw refers to the unit price of dispatching
load charged by the aggregator for participating in dispatching load.
Eq. 39 scores out that the optimization goal of low-voltage users is
tomaximize the integration.A,C,D,E, and F refer to the fixed scores
obtained by users under different circumstances. ∑

t
τt.X.θ indicates

the total scores obtained by all users during the period t, where the
time coefficient is τt , X refers to the total amount of all user demand
response loads, and θ is the reward basis for responding to unit loads.

5.2 Tripartite game

5.2.1 Grid companies increase unit price of
real-time load

1) The aggregator chooses to increase the unit price of the
dispatching load, and the user chooses to increase the demand
response load.

The total electric power scores obtained by the user, the income
obtained by the grid company, and the income obtained by the
aggregators are as follows.

Susers1 =∑
t
τt. ▵ X.θ+ Susers (33)

SCSG1 = (∑
i,n,t

a. ▵ Xi + b. ▵ Yi,u + c. ▵ Zi,u)

× (▵ pt− ▵ p
w − pc) + SCSG (34)

SAgent1 =∑
i,u
▵ pw (a. ▵ Xi + b. ▵ Xi,u + c. ▵ Zi,u) + SAgent (35)

2) The aggregator chooses to increase the unit price of the
dispatching load, and the user chooses to reduce the demand
response load.

The total electric power scores obtained by the user, the income
obtained by the grid company, and the income obtained by the
aggregators are as follows.

Susers2 =∑
t
τt.− ▵ X.θ+ Susers (36)

SCSG2 = [∑
i,u,t

a(− ▵ Xi) + b(− ▵ Yi,u) + c(− ▵ Zi,u)]

× (▵ pt− ▵ p
w − pc) + SCSG (37)

SAgent2 =∑
i,u
▵ pw [a(− ▵ Xi) + b(− ▵ Xi,u) + c(− ▵ Zi,u)]

+ SAgent (38)

3) The aggregator chooses to reduce the unit price of the
dispatching load, and the user chooses to increase the demand
response load.

The total electric power scores obtained by the user, the income
obtained by the grid company, and the income obtained by the
aggregator are as follows.

Susers3 =∑
t
τt. ▵ X.θ+ Susers (39)

SCSG3 = (∑
i,u,t

a. ▵ Xi + b. ▵ Yi,u + c. ▵ Zi,u)

× [▵ pt − (− ▵ p
w) − pc] + SCSG (40)

SAgent3 =∑
i,u
− ▵ pw (a. ▵ Xi + b. ▵ Xi,u + c. ▵ Zi,u) + SAgent (41)

4) The aggregator chooses to reduce the unit price of the
dispatching load, and the user chooses to reduce the response load.

The total electric power scores obtained by the user, the income
obtained by the grid company, and the income obtained by the
aggregator are as follows.

Susers4 =∑
t
τt (− ▵ X) .θ+ S

users (42)

SCSG4 = [∑
i,u,t

a(− ▵ Xi) + b(− ▵ Yi,u) + c(− ▵ Zi,u)]

× [▵ pt − (− ▵ p
w) − pc] + SCSG (43)

SAgent4 =∑
i,u
− ▵ pw (a. ▵ Xi + b. ▵ Xi,u + c. ▵ Zi,u) + SAgent (44)

5.2.2 Grid companies reduce unit price of
real-time power load

1) The aggregator chooses to increase the unit price of the
dispatching load, and the user chooses to increase the demand
response load.

The total electric power scores obtained by the user, the income
obtained by the grid company, and the income obtained by the
aggregator are as follows.

Susers5 =∑
t
τt. ▵ X.θ+ Susers (45)
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SCSG5 = (∑
i,u,t

a. ▵ Xi + b. ▵ Yi,u + c. ▵ Zi,u)

× (− ▵ pt− ▵ p
w − pc) + SCSG (46)

SAgent5 =∑
i,u
▵ pw (a. ▵ Xi + b. ▵ Xi,u + c. ▵ Zi,u) + SAgent (47)

2) The aggregator chooses to increase the unit price of the
dispatching load, and the user chooses to reduce the demand
response load.

The total electric power scores obtained by the user, the income
obtained by the grid company, and the income obtained by the
aggregator are as follows.

Susers6 =∑
t
τt (− ▵ X)θ+ Susers (48)

SCSG6 = [∑
i,u,t

a(− ▵ Xi) + b(− ▵ Yi,u) + c(− ▵ Zi,u)]

× (− ▵ pt− ▵ p
w − pc) + SCSG (49)

SAgent6 =∑
i,u
▵ pw [a(− ▵ Xi) + b(− ▵ Xi,u) + c(− ▵ Zi,u)]

+ SAgent (50)

3) The aggregator chooses to reduce the unit price of the
dispatching load, and the user chooses to increase the demand
response load.

The total electric power scores obtained by the user, the income
obtained by the grid company, and the income obtained by the
aggregator are as follows.

Susers7 =∑
t
τt. ▵ X.θ+ Susers (51)

SCSG7 = (∑
i,u,t

a. ▵ Xi + b. ▵ Yi,u + c. ▵ Zi,u)

× [− ▵ pt − (− ▵ p
w) − pc] + SCSG (52)

SAgent7 =∑
i,u
− ▵ pw (a. ▵ Xi + b. ▵ Xi,u + c. ▵ Zi,u) + SAgent (53)

4) The aggregator chooses to reduce the unit price of the
dispatching load, and the user chooses to reduce the response load.

The total electric power scores obtained by the user, the income
obtained by the grid company, and the income obtained by the
aggregator are as follows.

Susers8 =∑
t
τt. (− ▵ X) .θ+ Susers (54)

SCSG8 = (∑
i,u,t

a ▵ Xi + b ▵ Yi,u + c ▵ Zi,u)

× [(− ▵ pt) − (− ▵ p
w) − pc] + SCSG (55)

SAgent8 =∑
i,u
− ▵ pw (a. ▵ Xi + b. ▵ Xi,u + c. ▵ Zi,u) + SAgent (56)

According to the independent optimization objectives
of the three parties in the game, all strategy sets are
simultaneously traversed to solve the Nash equilibrium.The specific
implementation ideas are as follows: initializing all parameters
required for modeling, going through all game strategies and
calculate the income function, judging whether to find Nash
equilibrium according to the definition, and analyzing the output
Nash equilibrium solution.

Finally, the grid company optimizes the score incentive
mechanism according to the Nash equilibrium solution. Grid
companies set corresponding real-time electricity prices, while
aggregators adjust corresponding dispatch costs, low-voltage users
make the total submitted demand response the corresponding Nash
balance strategy. This adjustment process is different from the
previous grid companies’ mode of selling electricity and purchasing
electricity by users. Grid companies will increase real-time prices
during peak hours of power consumption, which will encourage
users to participate in more demand-response transactions to ease
the generation pressure during peak hours of power consumption.
At the same time, during the peak period of power consumption,
grid companies will reduce the real-time price, which will enable
users to participate in the normal use of power, thus narrowing the
gap between power peaks and valleys.

5.3 Discussion

We now discuss about the application of the proposed methods
in practical projects. The user participation demand response
behaviour theory model in load regulation predicts the future user
consumption behaviour through the analysis of existing low-voltage
user power consumption data. In practice, it is convenient for the
grid company to predict the total power consumption load of low-
voltage users at any time in the future, and combine the peaks and
troughs of the entire grid system load to carry out macro regulation,
Thus, the electricity price of various power users in different periods
can be arranged more reasonably.

The demand response incentive scheme based on electric score
aims to stimulate users’ initiative and carry out load exchange
independently. In practical applications, each user can be regarded as
a node participating in power storage and consumption in the power
grid. When each node participates in load regulation according to
the incentive mechanism, the load curve of the power grid will
become more stable, operate more safely and benefit more.

The incentive adjustment model of scores based on game
theory is simulated by game theory. When the above demand
response incentive mechanism is operated, the benefits of the
game between the grid company, aggregators and low-voltage users
can be obtained. In practical application, continuous deviation
optimization and adjustment of the integration mechanism based
on the tripartite benefits can make the incentive model more
reasonable, user participation higher, form a virtuous cycle, and
build a stable load regulation ecology.

Moreover, the proposed demand-side response framework
can absorb new energy generation such as photovoltaic power
generation, because the power can come from photovoltaic new
energy (as stated in Section 4).
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TABLE 1 Experimental settings (Demand response user behaviour analysis).

Parameter Value

Number of external features 5

User consumption history data division (days) [7,15,30]

Number of memory days 5

Number of forecast days [1,2,3,5,8.10]

6 Evaluation

6.1 Experiment of demand response user
behaviour analysis

The experimental settings are shown in Table 1. We use
synthetic datasets. The size of the data set of the user consumption
layer is 300 * 100, representing 300 users and the user consumption
data of 100-time gaps. User consumption data are randomly
generated in the range [0.5, 5.5]. The size of the data set of the
demand response prediction layer is 300 * 8, representing 300
station areas. There are five external features which are random
values in [0, 30]. There are also three convolved features with user
consumption-related time characteristics, that is, the hidden layer,
which respectively represents the user consumption characteristics
of three different cycles. The cycle is divided into 7 days, 15 days,
and 30 days. They are then convolved in order to efficiently process
the temporal information and get the temporal relationship. It can
also extract the temporal features like the convolutional layer to get
the hidden user consumption features of three types of cycles. In
the demand response prediction layer, all the information obtained
from the expression layer is concatenated as input, and the LSTM
model is used to obtain the hidden unit sequences containing
time dependence. Considering the spatial characteristics, that is,
the correlation between stations, the self-attention mechanism is
used for these sequences. In the multi-task learning layer, based
on the predicted values obtained in the first three layers (i.e., the
predicted amount of the user consumption layer, the predicted
response values, and space characteristics in the response prediction
layer), iterative training is conducted to minimize the loss function.

We compare our Ml-PDRM (multi-task user participation
demand response behaviour) approach with LSTM and LSTM +
CNN to predict the response. LSTM network can integrate the
characteristics of external features in time series. The LSTM + CNN
algorithmcan integrate the consumption amount characteristics and
external features of users in different periods.

We measure the predicted response of each algorithm with
the actual response. We also measure the average absolute error
MAE, which represents the average of the absolute error between
the predicted value and the observed value. In the experiment, the
observed value is the actual response, and the predicted value is the
user demand response predicted by the algorithm.

The experiment was run on theGoogle platform, with amemory
of 128GB, the operating system of Ubuntu 18.04.6 LTS, and the
programming language of python. The Python version is 3.7.14, the
Cuda version is 11.1, and the TensorFlow version is 2.8.2.

Figure 1 shows the comparison results on the predicted
response of the three algorithms, i.e., the actual response when the

prediction time is 1, 2, 3, 5, 8, and 10 respectively. Taking Figure 1A
as an example, when the prediction time is equal to 1 and the
period is 29, the actual response is 21.03, the response predicted
by Mul-PDRM is 20.93, the response predicted by LSTM + CNN
is 20.25, and the response volume predicted by LSTM is 20.13. From
the perspective of prediction time, with the increase of prediction
time, the deviation between the predicted response quantity of the
three algorithms and the actual value will become larger and larger.
Compared with the other two algorithms, the predicted response of
Mul-PDRMmodel is more consistent with the actual response, and
the trend is more consistent.

Figure 2 shows the influence of different prediction days and
algorithms on the average absolute error after response prediction.
TakingFigure 2A as an example, when the number of days to predict
is 1, the average absolute error of Mul-PDRM algorithm is 0.82, the
average absolute error of LSTM + CNN algorithm is 1.73, and the
average absolute error of LSTM algorithm is 1.83. It can be seen that
with the increase of forecast days, the average absolute error of Mul-
PDRM algorithm will increase correspondingly, and the average
absolute error of LSTM + CNN and LSTM algorithm will fluctuate
and increase. We can see that the average absolute error of LSTM-
PDRM algorithm in predicting the response is smaller than that of
LSTM + CNN and LSTM algorithms, which means that the results
are more accurate and the prediction is more reliable.

From the experimental results, compared with the other two
algorithms, the response predicted by Mul-PDRM algorithm is the
most consistent with the actual response. The average absolute
error of Mul-PDRM algorithm is also smaller than the other
two algorithms. Therefore, it can be concluded that Mul-PDRM
algorithmhas improved the accuracy of prediction results compared
with the comparison algorithm. At the same time, the error ofMUR-
PDRM algorithm in predicting the response will be larger with the
increase of the prediction time, so it is more suitable for predicting
the short-term user demand response.

6.2 Game theory experiments

Experimental settings. We use synthetic datasets where the
parameter settings of experiments are shown in Table 2. The unit
price of power load on the grid side is randomly generated in [0.2,
0.5]. The response quantity on the user side is randomly generated
in [800, 1000]. The dispatching unit price on the aggregator side
is randomly generated in [0.2, 0.5]. The initial income or score of
users, grid companies and aggregators is set to 0.Wedid not consider
the impact of orderly electricity use and photovoltaic new energy
power generation in user income on the game theory process of user
participation in demand response. So the weight of both is set to 0
and the weight of demand response is set to 1.

The possibility of selecting the corresponding strategy is
represented by a probability array [x,y], where x and y are decimals
less than 1. x represents the probability that the player selects strategy
1, and y represents the probability that the player selects strategy
2. When x > y, it means that the player will choose strategy 1;
when x < y, it means that the player will choose strategy 2. In each
game process, three groups of probability arrays will be generated
to represent the probability of the three players participating in the
game.
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FIGURE 1
Predicted response vs actual response.

FIGURE 2
Average absolute error MAE (A) Algorithms 8 forecast days (B) Algorithms 2 forecast days (C) Algorithms 3 forecast days (D) Algorithms 5 forecast days
(E) Algorithms 8 forecast days (F) Algorithms 10 forecast days.

We measure the effect of time coefficients, reward scores and
the power generation cost, respectively. In the time coefficient
experiment, we set the reward score of user response to unit load
to 2, and set the unit power generation cost of grid company to
0.63 kW⋅ h. According to the two decisions of users, grid companies,
and aggregators in the game model, we calculate the payoff matrix,

and compare the convergence of income in the process of simulating
tripartite transactions under different time coefficient settings. In
the reward score experiment, the time coefficient is set to 2. The
unit power generation cost of the grid company is set to 0.63 kW⋅
h, in order to simulate the tripartite transaction process when
different users respond to the reward score of unit load. In the power
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TABLE 2 Setting of experimental data.

Parameter Value

Demand response weight a 1

Orderly power consumption weight b 0

Weight of new photovoltaic energy generation c 0

Reward score for user response unit load θ [2, 4, 8, 16]

Unit generation cost of grid company p(kWh) [0.5, 0.6, 0.7]

Time factor τt [2, 4, 6]

generation cost experiment, we set the reward score to 2. We set
the time coefficient of the user’s response to the unit load to 2.
We simulate the tripartite transaction process when the unit power
generation cost of the grid company is different.

Effect of time coefficient. Players 1, 2, and 3 represent users,
grids and aggregators respectively. Through the model of adjusting
the score incentive mechanism based on the tripartite game, we
can get that the two strategies of the power grid are to increase
the unit price of real-time power load and reduce the unit price
of real-time power load. The two strategies of users are to increase
the response volume and reduce the response volume. The two
strategies of aggregators are to increase the scheduling unit price
and reduce the scheduling unit price. According to the income
algorithm in the gamemodel, the three-party pay-offmatrices under
different time coefficients are calculated respectively. We simulate
the game process.Then, the three groups of probability matrices can
be obtained, as shown in Table 3.

The experimental results are shown in Table 3. Taking the time
coefficient of 2 as an example, for low-voltage load users, the
probability of selecting strategy 1 is 0.9992, and the probability of
selecting strategy 2 is 0.0008. For grid companies, the probability
of selecting strategy 1 is 0.0047, and the probability of selecting
strategy 2 is 0.9953. For aggregators, the probability of selecting
strategy 1 is 0.1652, and the probability of selecting strategy 2 is
0.8348. It can be seen from the experimental results that when the
time coefficient is set to 2, users will choose to improve the response,
the grid will choose to reduce the unit price of real-time power
load, and the aggregator will choose to reduce the unit price of
dispatching. When the time factor is set to 4, the user will choose to

increase the response, the grid will choose to reduce the unit price
of real-time power load, and the aggregator will choose to reduce
the dispatching unit price. When the time factor is set to 6, users
will choose to improve the demand response, the grid will choose to
reduce the real-time power consumption to meet the unit price, and
the aggregator will choose to increase the dispatching unit price.

Effect of power generation cost. The experimental results are
shown in Table 4. Taking the unit power generation cost of the
power grid as an example, for low-voltage load users, the probability
of selecting strategy 1 is 0.9992, and the probability of selecting
strategy 2 is 0.0008. For grid companies, the probability of selecting
strategy 1 is 0.0024, and the probability of selecting strategy 2
is 0.9976. For aggregators, the probability of selecting strategy 1
is 0.2821, and the probability of selecting strategy 2 is 0.7179.
According to the score incentive mechanism model of the tripartite
game, the experimental results show that when the unit power
generation cost of the grid is 0.5 kW⋅ h, users are more inclined
to choose to improve the demand response, the grid will choose to
reduce the unit price of real-time power load, and the aggregator will
choose to reduce the dispatching unit price. When the unit power
generation cost of the grid company is 0.6 kW⋅h, the userwill choose
to improve the demand response, the grid company will choose to
reduce the unit price of real-time power load, and the aggregator will
choose to increase the dispatching unit price. When the unit power
generation cost of the grid company is 0.7 kW⋅h, the userwill choose
to improve the demand response, the grid company will choose to
reduce the unit price of power load, and the aggregator will choose
to reduce the dispatching unit price.

Effect of reward scores. The experimental results are shown in
Table 5. Taking the unit load reward score of 2 as an example, for
mortgage users, the probability of selecting strategy 1 is 0.9992, and
the probability of selecting strategy 2 is 0.0008. For grid companies,
the probability of selecting strategy 1 is 0.0032, and the probability
of selecting strategy 2 is 0.9968. For aggregators, the probability of
selecting strategy 1 is 0.5667, and the probability of selecting strategy
2 is 0.4333. By comparing the probability of participants choosing
strategy 1 or 2, we can draw the following conclusions: when the unit
load reward scores are 2, 4, 8, and 16, low-voltage users will choose
to improve the response, the grid company will choose to reduce the
unit price of real-time power load, and the aggregator will choose to
increase the dispatching unit price.

TABLE 3 Effect of time coefficients.

Time factor τt Participant Probability of selecting strategy 1 Probability of selecting strategy 2

2 player1 0.9992 0.0008

player2 0.0047 0.9953

player3 0.1652 0.8348

4 player1 0.9992 0.0008

player2 0.0043 0.9957

player3 0.417 0.529

6 player1 0.9992 0.0008

player2 0.0036 0.9964

player3 0.7404 0.2596
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TABLE 4 Effect of power generation cost.

Unit generation cost p(kW⋅ h) Participant Probability of selecting strategy 1 Probability of selecting strategy 2

0.5 player1 0.9992 0.0008

player2 0.0024 0.9976

player3 0.2821 0.7179

0.6 player1 0.9992 0.0008

player2 0.0037 0.9963

player3 0.7541 0.2459

0.7 player1 0.9992 0.0008

player2 0.0027 0.9973

player3 0.3759 0.6241

TABLE 5 Game results when the reward score for unit load is 2, 4, 8, and 16.

Reward score for unit load θ Participant Probability of selecting strategy 1 Probability of selecting strategy 2

2 player1 0.9992 0.0008

player2 0.0032 0.9968

player3 0.5667 0.4333

4 player1 0.9992 0.0008

player2 0.0028 0.9972

player3 0.7345 0.2655

8 player1 0.9992 0.0008

player2 0.0029 0.9971

player3 0.8118 0.1882

16 player1 0.9992 0.0008

player2 0.0029 0.9971

player3 0.8065 0.1935

By simulating the game process of each group, we find the
Nash equilibrium point and obtain the probability matrix of each
group, so as to obtain the strategy choices of the parties involved
in the game. The Nash equilibrium solution is combined with the
actual situation, such as the user response, the unit price of the
real-time power load of the grid company, and the dispatching unit
price of the aggregator. It is proved that the power grid company
can optimize and adjust the deviation of the score formula in the
incentive integrationmechanism, thereby achieving the goal of peak
shaving and valley filling.

7 Conclusion

By analyzing the behavior characteristics of users’ electricity
consumption and participation in demand response, we have
built a theoretical model of user participation demand response
behavior to predict the response of users. We have constructed
the demand response incentive model based on power scores, and
the differential scoring model for low-voltage demand response.
Considering the implementation time, target, subsidy price and
other factors, the profits of users, grid companies and load

aggregators are maximized. Finally, we have used game theory to
simulate the implementation effect of multi agents’ participation
in demand response. A three-party game model is built based
on the Nash equilibrium so as to optimize the score incentive
mechanism.
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