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The development of photovoltaic (PV) power forecast technology that is accurate
is of utmost importance for ensuring the reliability and cost-effective functioning
of the power system. However, meteorological factors make solar energy have
strong intermittent and random fluctuation characteristics, which brings
challenges to photovoltaic power prediction. This work proposes, a new ultra-
short-term PV power prediction technology using an improved sparrow search
algorithm (ISSA) to optimize the key parameters of variational mode
decomposition (VMD) and extreme learning machine (ELM). ISSA’s global
search capability is enhanced by levy flight and logical chaotic mapping to
search the optimal number of decomposition and penalty factor of VMD, and
VMD adaptively decomposes PV power into sub-sequences with different center
frequencies. Then ISSA is used to optimize the initial weight and threshold of ELM
to improve the prediction performance of ELM, the optimized ELM predicts each
subsequence and reconstructs the prediction results of each component to
obtain the final result. Furthermore, isolated forest (IF) and Spearman
correlation coefficient (SCC) are respectively used in the data preprocessing
stage to eliminate outliers in the original data and determine appropriate input
features. The prediction results using the actual data of solar power plants show
that the proposed model can effectively mine the key information in the historical
data to make more accurate predictions, and has good robustness to various
weather conditions.
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1 Introduction

Due to the significant increase in global energy demand,
traditional energy is facing great challenges such as a lack of
resources and environmental pollution (Kumari and Toshniwal,
2021), finding new energy substitutes and improving energy
conversion efficiency are the important work of researchers at
present (Liu et al., 2021a). Making full use of solar energy is of
great significance in reducing fossil energy consumption (Liu et al.,
2022). PV power, uses the photovoltaic effect to convert solar energy
into electric energy (Liu et al., 2021b), a distributed source of
renewable, clean, and flexible energy, is crucial in supplying the
world’s rising demand for clean energy (Li et al., 2020). It is
imperative to vigorously develop new energy power represented
by solar energy and promote the grid connection of a high
proportion of renewable energy to build a new power system
(Qu et al., 2021). The International Energy Agency estimates that
by the end of 2021, there will be 942 GW of cumulative installed PV
capacity worldwide, an increase of 22.8% from 2020 (Huang et al.,
2022). However, issues including intermittent penetration, voltage
spike, reverse power flow, and voltage harmonic distortion brought
on by the unpredictability of PV output have gotten worse as the
amount of PV in the electrical system has increased (Shivashankar
et al., 2016), which greatly affects the stability of power system
operation and dispatching capability, making the grid increasingly
demanding the PV system’s timely dependability and security
(Wang et al., 2022a).

PV power prediction may estimate future output power based
on historical data, which is useful for real-time power grid
dispatching, minimizing the quality improvement of PV grid
connection, and achieving greater economic and social benefits
(Ahmed et al., 2020). As a result, several academics started
concentrating on ways to increase the precision of PV output
prediction.

Four categories of PV power forecasting techniques can be
established based on various prediction time scales: short-,
medium-, long-, and ultra-short-term (UST) (Voyant et al.,
2017). The UST forecast usually considers PV output in the next
1 min to 1 h, which is used for the power smoothing process, PV
storage control, and real-time power dispatching monitoring
(Rodríguez et al., 2022). The short-term forecast’s time frame is
several hours, and prediction results can be used in short-term
economic load dispatching and power system operation (Das et al.,
2018). For medium- and long-term predictions, the days or weeks
are often the time scale employed; these forecasting technologies are
mostly used for dispatching and power production planning of PV
power plants (Akhter et al., 2019). Because solar power has a high
degree of randomness, it is difficult for existing methods to capture
the rapid fluctuations of PV power in a short time, especially in
unconventional weather conditions (Wang et al., 2015). Therefore,
the focus of current research is on short- and ultra-short-term
prediction (Li et al., 2021).

At present, there are two main types of solar power forecast
technology: physical models and data-driven models (Schinke-
Nendza et al., 2021). The former needs to use the detailed
geographic information and specific equipment parameters of the
PV power station, combine the numerical weather prediction
(NWP), and calculate the prediction results according to the

formula. The modeling process is relatively complex and is
greatly affected by the model parameters (Wang et al., 2019).
The data-driven methods use an intelligent algorithm to study
the function mapping between the input data and the solar
power, which is characterized by high prediction accuracy and
strong robustness (Sohani et al., 2022). Some researchers use
data-driven models to enhance the precision of solar energy
prediction in light of the recent rapid growth of data mining and
artificial intelligence technology (Yagli et al., 2019). Among them,
artificial neural networks (ANN) related technologies are popular
because of their strong non-linear fitting ability (Lu et al., 2021).

The research on improving the prediction accuracy of solar
power mainly focuses on two aspects, one is to establish a more
reliable and accurate prediction model. For example, in Zhang et al.
(2019), spatial similarity and temporal correlation were used to
analyze similar time-varying patterns that may occur in PV systems
at different locations, and a Bayesian neural network is used for solar
power prediction, which has better application performance than
many baseline methods. In Ko et al. (2022), by adding hidden layers,
the convolutional neural network (CNN) model’s capacity for
feature extraction was enhanced, but it also brought huge
computational challenges while improving the prediction
accuracy. In Agga et al. (2021), to extract PV features, CNN and
long short-term memory (LSTM) network are combined with
higher accuracy when compared to a solo CNN or LSTM.

Additionally, by applying the meta-heuristic algorithm to
optimize the neural network’s parameters, the model’s ability to
predict outcomes can be enhanced. Common meta-heuristic
algorithms include particle swarm optimization (PSO), gray wolf
optimization (GWO), whale optimization algorithm (WOA), etc. In
Tu et al. (2022), regression neural network (GRNN) accuracy is
increased via GWO optimization. In Xu et al. (2022), WOA was
used to improve the super parameters of bidirectional LSTM
(BILSTM). Finally, the prediction effect of BILSTM was
significantly improved after WOA optimization.

Compared with traditional neural networks, rapid learning and
a simple model structure are advantages of ELM, but the initial
parameters have a significant impact on the prediction outcomes
(Du et al., 2022). In An et al. (2021), Zhang et al. (2022), the
performance of the ELM prediction is optimized using sparrow
search algorithm (SSA) to lower the uncertainty caused by the input
weights and thresholds. The findings demonstrate that SSA
outperforms the traditional PSO meta-heuristic technique in
terms of optimization impact, but SSA is still prone to settle for
the local optimal solution during the search phase. In Jia et al.
(2021), the search step of SSA is optimized by using Levy flight, but
the initial position distribution of SSA population still limits its
global search ability.

Another aspect of improving prediction performance is to use
better methods to preprocess the original data. Because solar power
is highly non-linear and non-stationary, when the original data is
employed as the model input features, it is difficult for the
forecasting model to extract important information from the
historical data, especially in periods with large meteorological
fluctuations. For this reason, Some researchers develop numerous
models to determine the specific changing features of each
subsequence after breaking down the original PV sequence using
frequency domain decomposition technology (Sulandari et al.,
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2020). Many well-liked signal decomposition techniques were
reported, such as wavelet decomposition (WD), empirical mode
decomposition (EMD), ensemble empirical mode decomposition
(EEMD) (Wang et al., 2022b), etc.

InWang D. et al. (2022), EMDwas employed to lessen the series’
non-stationarity. However, there was mode aliasing in the
decomposition process of EMD, which would interfere with the
final prediction results. In Zhu A. et al. (2022), wind power is
predicted by complementary ensemble empirical mode
decomposition (CEEMD), WOA, and Elman neural networks,
which reduces the phenomenon of mode aliasing in the
decomposition process of EMD and EEMD, and further
improves the prediction performance. In Lu et al. (2022), VMD
and weighted replacement entropy (WPE) were used to extract key
factors of historical data as model inputs, and good prediction
results were achieved on multiple wind farm datasets.

VMD can effectively avoid mode aliasing and has good anti-
interference performance for time series with large noise, the effect
of processing non-linear signals has been proven to be superior to
EMD and its improvedmethods (Xie et al., 2018). But VMD requires
manually preset penalty factor α and the number of decomposition
K, which may affect the prediction accuracy (Zhang et al., 2020).

Based on the above analysis, this study improved the traditional
SSA, optimized the parameters of VMD and ELM using ISSA, and
built a new hybrid PV output forecasting model. The following
summarizes this paper’s primary contributions.

1. Levy flight optimizes the step size of each SSA search to enhance
the ability of SSA to jump out of local optimum. In addition,
Logistic chaotic mapping makes the initial position distribution
of sparrow more uniform, it avoids that some areas cannot be
searched due to the random setting of the initial position. The
combination of these two methods can simultaneously improve
the individual search distance and the overall search range, thus
improving the global search ability of SSA.

2. ISSA decreases the signal loss in the decomposition process,
making subsequence prediction easier by optimizing the VMD’s
decomposition number and penalty factor while avoiding the
randomness of the experience setting.

3. In order to further enhance the ELM’s predictive performance,
ISSA is also employed to tune the initial weight and threshold.

4. SCC is employed to identify the meteorological characteristics that
have a strong correlation with solar power, and in order to prevent
irrelevant characteristics and aberrant data from interfering with the
prediction results, the IF algorithm is used to identify outliers.

5. A hybrid forecasting technique is proposed. The data from the
DKASC PV experiment center in Australia is used for prediction,
and the suggested model’s excellent performance is demonstrated
by comparing its prediction outcomes to those of existing models
under various weather situations.

The rest components of the work were organized as follows:
Section 2 introduces the basic methods used in this study, including
VMD, ELM, SSA, and the proposed improvement strategy for SSA.
Section 3 shows ISSA’s optimization process for VMD and ELM, as
well as the basic framework for the model. Section 4 displays the
test’s outcomes and analysis.

2 Materials and methods

2.1 Variational modal decomposition

VMD was proposed in 2013 as a non-recursive signal
decomposition technology (Dragomiretskiy and Zosso, 2013),
which decomposes the non-stationary signal to intrinsic mode
functions (IMF) by iteratively finding the variational model’s
optimal solution. Although VMD suppresses the end effect and
modal aliasing of traditional frequency domain decomposition
technology, it needs to be set in advance (K, α) Parameters. The
decomposition procedure of VMD is presented below:

1. Set the decomposition K number, take the original signal then
break it down into IMF sequences. In the decomposition process,
the goal function is the minimum total of the frequency
bandwidths of each IMF, and the requirement is that the
original signal is equal to the total of all IMF sequences.

min
uk,wk( )

∑K
k�1

zt δ t( ) + j

πt
( )*uk t( )[ ]e−jωkt

2
2

⎧⎨⎩ ⎫⎬⎭
s.t.∑K

k�1
uk t( ) � f t( )

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(1)

Where δ(t) obeys Dirac distribution; uk(t) is the corresponding
IMF after decomposition; wk is the center frequency of uk(t); *
represents a convolution operation.

2. Set penalty factor α, using Lagrange multipliers λ transforming
the above constrained variational problem into an unconstrained
problem.

L uk,ωk, λ( ) � α∑k
k�1

‖zt δ t( ) + j

πt
[ ]*uk t( ){ } · e−jωkt ‖

2

2

+ ‖ f t( ) −∑k
k�1

uk t( ) ‖
2

2

+ 〈λ t( ), f t( ) −∑k
k�1

uk t( )〉

(2)

FIGURE 1
Diagram of the ELM network’s structure.
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3. Solve the unconstrained problem in Equation 2 using the
multiplier alternating direction method (ADMM), iteratively
update uk and ωk:

ûn+1
k ω( ) � f̂ ω( ) − ∑i≠kûi ω( ) + λ̂ ω( )

2

1 + 2α ω − ωk( )2 (3)

ωn+1
k � ∫∞

0
ω ûn+1

k ω( )∣∣∣∣ ∣∣∣∣2dω∫∞
0
ûn+1
k ω( )∣∣∣∣ ∣∣∣∣2dω (4)

Where ûi(ω), f̂(ω), λ̂(ω) are the Fourier transforms of the points
ui(t), f(t), λ(t), respectively; n denotes the number of iterations.

2.2 Extreme learning machine

Different from traditional SLFN (Huang et al., 2006), in ELM,
the connection weight w and threshold b are randomly generated
(Figure 1). Using the generalized inverse matrix and the least squares
approach, the β weight of the output layer is determined. As a result,
ELM offers the advantages of requiring little in the way of training
parameters and learning quickly (Hu et al., 2022).

In Figure 1, suppose that the input xi{ } is composed of m
samples and n features, and L is the ELM’s hidden layer node count.
The expression of ELM output F(xi) is:

F xi( ) � ∑L
i�1
βi·g wixi + bi( ) (5)

Where wi is the input weight; bi is hidden layer threshold; βi is
output weight; g is activation function.

When using matrixH to represent hidden layer output, then the
output matrix F of ELM can be expressed as:

F � βH (6)
ELM solves the output layer weight β by minimizing the error:

min ‖ F − Y ‖2 (7)
β � YH+ (8)

H+ represents the generalized inverse matrix of H.

2.3 Sparrow search algorithm

The technique was introduced to address the issue of global
optimization by imitating the feeding habits of a population of
sparrows (Xue and Shen, 2020). Compared with the traditional
meta-heuristic learning algorithm, SSA has certain advantages
in convergence speed and stability (Ma et al., 2022). SSA
assumes that there are three kinds of sparrows: discoverers,
followers, and guards, each sparrow’s position correspond to a
solution. The fitness function is used by SSA during the
optimization phase to determine how far away the food is
from the present location of the sparrow. The optimal
posture is considered to be the one with the greatest food or
the position with the best fitness.

The discoverer is in charge of locating food and giving followers
instructions on what to do, and it is updated below:

St+1i,j � Sti,j · exp
−i
λ · n( ), E< ST

Sti,j + Q · L, E> ST

⎧⎪⎪⎨⎪⎪⎩ (9)

Where Sti,j is the i th discoverer’s location at the j dimension in the t
iteration; λ ∈ [0, 1] is a random number;Q is a random variable with
a normal distribution; L is the 1 × d identity matrix; E ∈ [0,1] is a
warning value; ST ∈ [0.5, 1] is a safety value.

The expression of followers’ location is as follows:

St+1i,j �
St+1b + Sti,j − St+1b

∣∣∣∣∣ ∣∣∣∣∣ · A+ · L, i≤
n

2

Q · exp Stw − Sti,j
i2

( ), i> n

2

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (10)

A+ � AT AAT( )−1 (11)
Where St+1i,j is the global optimal position among discoverers in
t + 1 iterations; Stw represents the global worst position at iteration
t; A is 1 × dmatrix with elements of 1 or - 1; when i> n

2, the fitness
of the population is low, and the search scope needs to be
expanded; when i≤ n

2, the sparrow population can feed
randomly at position St+1b .

The guards make up 10%–20% of the total, and their location is
updated as follows:

St+1i,j �
Stb + ω Sti,j − Stb

∣∣∣∣∣ ∣∣∣∣∣, Fi >Fb

Sti,j + P · Sti,j − Stw
Fi − Fw + ε

( ), Fi � Fb

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (12)

Where Stb represents the global best position in iteration t; ω is the
step control parameter, ω ~ N(0, 1); P ∈ [−1, 1] controls the
direction and step size of sparrow updates using a random
value; ε is a necessary constant to prevent the denominator
from becoming zero; Fi, Fb, and Fw, respectively, signify the
fitness values of the current sparrow, the best bird, and the
poorest sparrow.

2.4 Improved sparrow search algorithm

Traditional SSA first randomly gives each sparrow initial
position information, which is taken as a solution of the
parameters. Then, according to the SSA location update method
and fitness function, search and iterate continuously until the global
optimal solution is determined. Since the initial population position
is a randomly assigned variable in the search interval, if the initial
position is unevenly distributed, it will lead to low population
diversity and affect the final convergence accuracy. In addition,
because SSA is affected by the position update step size in each
iteration, it is difficult to leave the locally optimum option.
Therefore, to improve SSA’s ability to conduct global searches,
this study uses the Levy flight and Logistic chaotic mapping to
improve SSA.

2.4.1 Levy flight strategy
Levy flight strategy can generate random step size, so as to

strengthen the interaction of population information, expand the
search scope, and increase the capacity to break out of the local
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optimal state (Iacca et al., 2021). The formula of Levy flight is as
follows:

s � μ

v| |1/β (13)

v ~ N 0, σ2v( )
μ ~ N 0, σ2μ( ){ (14)

σv � 1

σμ � Γ 1 + β( ) · sin πβ/2( )
β · Γ 1+β

2[ ] · 2 β−1( )/2
⎧⎨⎩ ⎫⎬⎭1/β

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (15)

Where s is the random step size; β Is the control coefficient
between [0,2].

The Levy flight method is applied in this study to update the
sparrow’s position. The random step s obtained by Levy flight is used
to replace the original random number Q in the formula (9), (10) of
SSA. After improvement, the location update formula (9) of the
discoverer is changed into formula (16):

St+1i,j � Sti,j · exp
−i
λ · n( ), E< ST

Sti,j + s · L, E> ST

⎧⎪⎪⎨⎪⎪⎩ (16)

The position of the follower is updated by Formula (10), which is
transformed into Formula (17) after improvement:

St+1i,j �
St+1b + Sti,j − St+1b

∣∣∣∣∣ ∣∣∣∣∣ · A+ · L, i≤
n

2

s · exp Stw − Sti,j
i2

( ), i> n

2

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (17)

2.4.2 Logistic chaotic mapping
Logistic chaotic mapping uses a simple random sequence of the

deterministic system to generate the chaotic sequence, which has
boundedness, randomness, and ergodicity. This method can traverse
all states within a certain range, thus increasing the diversity of the
population (Hu et al., 2020), avoid that some areas cannot be
searched. The expression equation is:

Zn � μ · Zn−1 · 1 − Zn−1( ), n ∈ N* (18)

Where Zn obeys uniform distribution in [0,1]; μ Is the control
parameter in [0,4].

The control parameter μ in this study is set to 4 so that the
distribution is completely chaotic. The initial position is set according to
the Logistic chaotic mapping, and the expression formula is as follows:

xn � bl + bu − bl( ) · Zn (19)

Where bu, bl are the boundaries of the search range.

3 Construction of ISSA-VMD-ELM
model

3.1 VMD optimized by ISSA (ISSA-VMD)

The initial parameter (K, α) of VMD will affect the
decomposition effect of PV power, thus affecting the prediction

performance. Therefore, ISSA is used to optimize it to reduce the
learning cost of the forecasting model for each IMF after
decomposition.

Envelope entropy canmeasure the fluctuation and complexity of
time series data. Entropy decreases when the time series’ apparent
periodicity increases; on the other hand, entropy increases as data
complexity and volatility increase (Gao et al., 2022). In the
decomposition process, Envelope entropy is used as an indicator
to measure the decomposition effect of VMD. The smaller the
envelope entropy after decomposition, the better the
decomposition effect. Envelope entropy is calculated as follows:

Ep � −∑N
j�1
pi,j · lg pi,j( )

pi,j � ai j( )/∑N
j�1
ai j( )

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩ (20)

Where pi,j represents the normalized form of ai(j); ai(j) represents
the envelope signal of IMFi after the Hilbert transform.

In the process of ISSA optimizing VMD, the position of
each sparrow represents a set of parameters (K, α), VMD
decomposition of PV power is performed with this parameter,
and Ep is calculated as fitness. The population position is
optimized in the direction of Ep minimum. When the iteration
termination condition is reached, the parameter (K, α)
corresponding to the least Ep is regarded as the result. Figure 2
illustrates the optimization procedure of ISSA-VMD. The following
is the precise implementation strategy:

1. Initialize the sparrow population parameters.
2. Initialize the position of each sparrow according to Equation 19.
3. Based on the position parameters (K, α) of each sparrow, the

VMD is utilized to decompose the solar power, then the Ep value
is calculated according to Equation 20 as the fitness of the
sparrow at this location.

4. Update the discoverer’s location in accordance with Equation 16,
the location of the follower according to Equation 17, and the
location of the guard according to Equation 12 to make the
sparrow population close to the minimum fitness value.

5. Once the max iterations have been achieved, the sparrow location
with the lowest fitness should be noted and utilized as the ideal
VMD parameter, otherwise repeat steps 3 and 4.

3.2 ELM optimized by ISSA (ISSA-ELM)

The ELM’s threshold b and input weight w are created at
random. These randomly generated initial values will directly
affect the final prediction effect, so this study uses ISSA to
optimize the parameter of ELM, in the optimization process, the
position of each sparrow represents a set of (w, b) parameters of
ELM, the fitness metric utilized is mean square error (MSE):

eMSE � 1
N

∑N
t�1

Pt − P′
t( )2 (21)

Pt represents the real value; P′
t represents predicted value.

The exact processes for ISSA-ELM are as follows. Figure 3
illustrates the optimization procedure of ISSA-ELM.
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1. Set the settings for the sparrow population.
2. Give each sparrow a random initial position according to

Formula (19).
3. Based on the position parameters (w, b) of each sparrow, ELM is

used for PV power prediction. Calculate the MSE of prediction
results according to Equation 21 and take it as the fitness value at
this location.

4. Update the discoverer’s location in accordance with equation
(16), the location of the follower according to equation (17),
and the location of the guard according to equation (12) to
make the sparrow population close to the minimum fitness
value.

5. Steps 3 and 4 should be repeated until the max iterations are reached,
and retain the sparrow position corresponding to theminimumMSE
value as the input weight and threshold (w, b) of ELM.

3.3 Error evaluation metrics

MAPE, RMSE, and determination coefficient (R2) are selected as
the model evaluation indicators. MAPE, RMSE, and R2 are
calculated as follows:

eMAPE � 1
N
∑N

t�1
P′
t − Pt

Pt
× 100%

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣( ) (22)

eRMSE �
��������������
1
N
∑N

t�1 Pt − P′
t( )2√

(23)

R2 � 1 − ∑N
t�1 P′

t − Pt( )2∑N
t�1 Pt − Pt( )2 (24)

Pt represents real value; P′
t represents predicted value; Pt represents

sample mean value.

3.4 Framework of the proposed hybrid
model

The IF algorithm is used in this study in addition to the
aforementioned optimization techniques to remove outliers from the
original data. Considering that PV output is affected by different
meteorological features to a different extent, SCC is employed to
identify important climatic traits that are strongly connected with PV
power. At the same time, autocorrelation analysis (ACF) is used to
choose the appropriate length of the input of the predictionmodel. These
techniques can lessen the prediction model’s training requirements as
well as the impact of data impurities and redundancy on prediction
accuracy. Figure 4 displays the suggested model’s prediction procedure,
and these are the precise steps:.

1. The original data’s outliers are removed using the IF method,
then the missing values are interpolated and filled, and the
training set and test set are divided.

2. Analysis of meteorological characteristics using SCC. Identify a few
meteorological variables that have a strong relationship to PV power.

FIGURE 3
ISSA-ELM flow chart.

FIGURE 2
Flow chart of ISSA-VMD.
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FIGURE 4
The forecasting model’s flowchart.

FIGURE 5
Schematic diagram of (A) DKASC Alice Springs PV power station, (B) 16A_BP_Solar PV array (DKASC, 2008).
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3. The VMD parameter (K, α) are optimized by ISSA to decompose
the PV power.

4. For each IMF after decomposition, train the corresponding ISSA-
ELM model to predict PV power. During training, IMF and
meteorological data before the prediction are utilized as the model
input and the length is determined using ACF, and the actual PV
power at the prediction point is used as the prediction target.

5. To get the final prediction results, all subsequences’ predicted
values are reassembled.

6. Analyze forecast results using error evaluation indicators.

4 Case study

4.1 Source of data

The information comes from the Desert Knowledge Australian
Solar Center’s Alice (DKASC) Springs PV power facility (DKASC,
2008), which provides multiple PV array data, as shown in
Figure 5A. In addition, DKASC also provided meteorological
data of the region, including global horizontal radiation (GHR),
diffuse horizontal radiation (DHR), etc. The historical data of the
16A_BP_Solar PV array was used for test analysis, the resolution of
data is 5 min 80% of them are training sets and 20% are test sets. The
actual structure of this PV array is shown in Figure 5B, and Table 1
displays the fundamental parameter information.

4.2 Data preprocessing

4.2.1 Data cleaning
The period of data is selected from 7:30 a.m. to 18:00 p.m.

(126 nodes). Due to the failure of recording equipment, damage to
PV modules, interference in information transmission, and other
reasons, there are some abnormal values and missing values in the
original data. To prevent this data’s negative influence on the
prediction, the IF algorithm is utilized to identify outliers. IF
algorithm is an unsupervised learning algorithm that identifies

exceptions by isolating them from data (Hanifi et al., 2022). Based
on the characteristic that PV power increases linearly with GHR, GHR
and PV power are used as the IF algorithm’s input features (Figure 6).

Figure 6 shows that the IF algorithm effectively identifies abnormal
values in PV data, mainly including: (1) The point without irradiance
but with PV power output. (2) The point with irradiance but no PV
power output. (3) Outliers that differ from most data distributions.
This research uses the mean insertion technique to fill in missing data
values. Figure 7A depicts a portion of the raw data prior to processing,
and Figure 7B depicts a portion of data after processing.

4.2.2 Selection and processing of input features
PV power is influenced by a variety of weather characteristics.

However, different meteorological features have different effects on
PV power, and excessive input features will reduce the sensitivity of
the model to important features (Zhu Y. et al., 2022).

In this study, SCC is used to identify the input meteorological
characteristics and assure the ability to extract important
meteorological features. Below is the calculation formula of SCC
(Figure 8).

SCC �
∑
i

xi − �x( ) yi − �y( )�������������������∑
i

xi − �x( )2 ∑
i

yi − �y( )2√ (25)

Where xi and yi represent meteorological characteristics and PV
power respectively; �x and �y represents the average value of xi and yi

respectively.
Figure 8 shows that GHR and DHR have the highest correlation

with PV power, 0.9 and 0.83 respectively. The SCC of temperature and
PV power is 0.41, which is of medium correlation. Therefore, the
meteorological characteristics input into the prediction model is
selected as GHR, DHR, and temperature. The correlation between
other meteorological characteristics and PV power is too low, which is
regarded as redundant characteristics and is not used as model input.
To sumup, themodel input characteristics can be determined (Table 2).

The length of the input features is determined by ACF, which is
utilized to measure the impact of historical data (Figure 9).

TABLE 1 Basic parameters of 16A_BP_Solar PV array.

Parameter Value

Array Rating 1.98 kW

Panel Rating 165W

Number of Panels 12

Panel Type BP 3165J

Array Area 15.1 m2

Type of Tracker N/A

Inverter Size/Type 2.5 kW, SMA SB 2500

PV Technology poly-Si

Array Structure Fixed: Ground Mount

Installation Completed Tue, 11 November 2008

Array Tilt/Azimuth Tilt = 20, Azi = 0 (Solar North)

FIGURE 6
Abnormal value detection results of IF algorithm.
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FIGURE 7
PV power data (A) before processing, (B) after processing.

FIGURE 8
Results of SCC correlation analysis.
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In order to avoid the increase of model complexity caused by too
long an input sequence and the interference of data at early time
points to the prediction results, this paper selects 15 nodes with strong
PV power correlation (≥0.6) at the current time point as the input.

Finally, to avoid having differing feature dimensions affect the
model, the input features are standardized with the Min-Max
approach. Below is the equation:

xnorm � x − x min

x max − x min
(26)

Where xnorm is the normalized value of x; xmax and xmin are the
maximum and minimum values in the sequence respectively.

4.3 Analysis of Experimental results

The test was conducted in the Anaconda environment of the
Windows 10 operating system, the Python version is 3.9, and basic
hardware includes AMD-5800X CPU and NVIDIA-3070TI GPU
(Table 3).

4.3.1 Performance analysis of ISSA
To reflect the optimization performance of ISSA, this section

analyzes the decomposition effects of ISSA-VMD, SSA-VMD, and
VMD (Figure 10).

Figure 10 illustrates that ISSA has a better optimization effect on
VMD than traditional SSA algorithm, and can quickly obtain smaller
fitness values. The optimization effect of traditional SSA on K value is
not obvious, and entering the local optimum solution is simple. The
VMD decomposition effect using ISSA, SSA optimization algorithm,

and empirical parameter settings is shown in Table 4. After ISSA
optimization, the K and α of VMD are finally determined as (5, 165).

The decomposition results of ISSA-VMD on PV power data are
illustrated in Figure 11. It shows how ISSA-VMD breaks down the
original PV power into five IMFs. The center frequencies of these 5 IMFs
are different, which can be clearly distinguished, indicating that there is
no mode aliasing among the IMF after ISSA-VMD decomposition.

In order to evaluate effects of various decomposition techniques on
prediction outcomes, three different decomposition methods: ISSA-
VMD, SSA-VMD, and VMD, are used in combination with the
proposed ISSA-ELM model for prediction comparison. Due to the
different fluctuations of PV power under different weather conditions,
in order to reduce the impact of weather on the prediction results, the
paper forecasts the three different weather conditions (Ma et al., 2022).
Figure 12, Figure 13, and Figure 14 demonstrate, respectively, the forecast
results and error distribution based on various decomposition techniques
for sunny, cloudy, and rainy days. In each weather, three evaluation
indicators: RMSE, MAPE, and R2 are used to analyze the prediction
results, which are shown in Figure 15.

Figures 12–14 demonstrates that the decomposition effect of VMD
will impact prediction accuracy. In different weather conditions, the
results that may be readily predicted using VMD decomposition differ
significantly from the real PV power, and the error fluctuates greatly.

FIGURE 9
Autocorrelation analysis results of PV power based on ACF.

TABLE 3 Settings for the suggested model’s parameters.

Model Parameters Values

ISSA

Population size 30

Maximum iterations 100

Safety value 0.6

Proportion of discoverers 0.7

Proportion of guards 0.2

ELM

Input dimension 4

Number of hidden neurons 10

Activation function Sigmoid

Data Set Training Set/Test Set 8:2

TABLE 2 Proposed model’s input features.

Number Input features

1 Historical PV power

2 GHR

3 DHR

4 Temperature
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Compared with SSA-VMD and VMD, the prediction result using the
ISSA-VMD decomposition method has the highest fitting degree with
the actual solar power curve, the prediction error has the smallest range
of change with time, the most stable fluctuation, and the overall error
distribution is the most uniform.

The comparison in Figure 15 shows that ISSA-VMD had the
highest performance, and the largest R2 in three weather conditions.
Even on rainy days with large weather fluctuations, the RMSE,
MAPE, and R2 of the model after ISSA-VMD decomposition are
0.02945 kW, 6.9088%, and 0.9857 respectively, which still maintain

good prediction accuracy. The above analysis shows that the
improvement of SSA is effective. ISSA strengthens the
decomposition effect of VMD, makes the information in the
decomposed data easier to be learned by the prediction model,
and improves the prediction performance.

4.3.2 Performance analysis of different models
In this section, 5 prediction models: SSA-ELM, ELM, BP,

SVM, and proposed ISSA-ELM, are used for PV prediction, and
then different models’ prediction effects are evaluated. To make
sure the comparison is fair, the decomposition method used are
all ISSA-VMD. The prediction results in three typical weather
conditions of different models are shown in Figure 16. In
addition, to further compare the model’s prediction
performance, the prediction results are analyzed with RMSE,
MAPE, and R2 in Table 5.

By observing the prediction curves of different models in
Figure 16 we found that the forecast accuracy of the ISSA-ELM
model proposed is the best, and the prediction results in the three

FIGURE 10
Comparison of VMD parameter optimization effects: (A) is the result of fitness optimization, (B) is the optimization result of decomposition number
K, and (C) is the optimization result of penalty factor α.

TABLE 4 Comparison of effects of different decomposition methods.

Method K α Fitness

ISSA-VMD 5 165 1.3503

SSA-VMD 6 134 1.352

VMD 7 200 1.6846

FIGURE 11
Decomposition results of ISSA-VMD: (A) shows each subsequence after decomposition, (B) represents center frequency of each subsequence, and
(C) represents spectrum of each subsequence.
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weather conditions are most close to the actual PV power. Not only
on sunny days but also in other weather conditions, the output curve
of ISSA-ELM is quite close to the real power, which demonstrates
the great resilience of the novel model to weather disruptions.

Furthermore, all the indicators of ISSA-ELM in the three kinds of
weather are better than other models. Compared with evaluation

outcomes of ISSA-ELM, SSA-ELM, and ELM, the optimization
algorithm has brought significant performance improvement to the
traditional ELM prediction method. On different weather conditions,
the RMSE of ISSA-ELM relative to SSA-ELM decreased by 47.25%
(sunny), 20.59% (cloudy), and 24.41%(rainy) respectively, and MAPE
decreased by 29.3% (sunny), 8.91% (cloudy), and 10.88% (rainy)

FIGURE 12
Prediction outcomes and error distribution on bright days using various decomposition techniques.

FIGURE 13
Prediction outcomes and error distribution using different decomposition methods on cloudy days.

FIGURE 14
Prediction outcomes and error distribution using different decomposition methods on rainy days.
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FIGURE 15
The evaluation results in three weather conditions by (A) RMSE, (B) MAPE, (C) R2.

FIGURE 16
Predictions outcomes on (A) sunny days, (B) cloudy days, (C) rainy days.
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respectively, R2 is also improved significantly. The preceding analysis
demonstrates that the ISSA optimizes ELM more effectively.
Compared with the traditional SSA-ELM model, the proposed
ISSA-ELM model has better prediction performance under various
weather conditions, and has certain robustness to weather
fluctuations.

To illustrate the improvement of ISSA andVMDonELMprediction
performance, Figure 17 shows the prediction results of differentmethods
for five consecutive days, and gives the average value of each evaluation
index for the five consecutive days in Table 6. Combining Figure 17 and
Table 6, it can be found that the prediction result of directly using ELM is
not ideal, and ISSA can slightly improve the prediction accuracy of ELM.
After using VMD, the prediction results have been greatly improved.
Using ISSA to enhance both ELM and VMD at the same time has the
best prediction effect and the highest fitting degree with the original PV
power.

5 Results

For the power system to operate safely, an accurate PV power
forecast is a need. The accuracy of the PV power forecast might be
increased by using a hybrid model based on ISSA, VMD, and ELM,
according to this research. The outcomes of our study indicate.

1. Our IF algorithm can reasonably eliminate outliers in the PV data
set, and SCC can find the features that have the highest
correlation with PV power generation, laying a foundation for
the training of the prediction model.

2. Compared with traditional SSA, the proposed ISSA has better
global search capability.

3. The VMD optimized by ISSA has a better ability to decompose
non-linear series, thus improving the forecast accuracy.

4. The proposed model can capture non-linear properties in data to
the greatest extent possible and produce predictions that are
more accurate than other models.

5. The suggested model exhibits excellent robustness in many
weather scenarios and the best prediction performance.

TABLE 5 Evaluation indexes of different models in three kinds of weather.

Method Sunny Cloudy Rainy

RMSE (kW) MAPE (%) R2 RMSE (kW) MAPE (%) R2 RMSE (kW) MAPE (%) R2

ISSA-ELM 0.01361 1.5812 0.9983 0.02383 5.8643 0.9949 0.02945 6.9088 0.9857

SSA-ELM 0.0258 2.2366 0.9948 0.03001 6.4379 0.9936 0.03896 7.7526 0.9681

ELM 0.05045 5.0109 0.9764 0.07537 8.9127 0.9521 0.05553 10.7643 0.9552

BP 0.05932 5.6625 0.9692 0.07263 8.4206 0.9576 0.05844 10.301 0.9532

SVM 0.05139 5.9541 0.9673 0.07243 11.0493 0.9583 0.06869 11.7544 0.9373

FIGURE 17
Forecast results of different models for 5 consecutive days.

TABLE 6 Evaluation indexes of different models in three kinds of weather.

Method RMSE(kW) MAPE(%) R2

ISSA-VMD-ISSA-ELM 0.022 3.01 0.9962

VMD-ISSA-ELM 0.0237 3.94 0.9959

ISSA-ELM 0.0438 5.5362 0.984

ELM 0.0517 6.2739 0.9729
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However, the prediction ability of single-layer ELM is limited,
and only a few meteorological factors are considered in the
experiment. With the development of deep learning, many
studies have proved that the performance of multi-layer neural
network is better than that of single layer. The next research will use
the multi-layer structure of ELM, and consider the impact of
meteorological conditions such as cloud movement and haze on
PV power.
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