
TYPE Technology and Code
PUBLISHED 16 March 2023
DOI 10.3389/fenrg.2023.1138446

OPEN ACCESS

EDITED BY

Xin Ning,
Institute of Semiconductors (CAS), China

REVIEWED BY

Zhang Hengmin,
University of Macau, China
Tomasz Górski,
University of Gdansk, Poland

*CORRESPONDENCE

Eric M. S. P. Veith,
eric.msp.veith@uol.de

SPECIALTY SECTION

This article was submitted to Smart
Grids, a section of the journal Frontiers
in Energy Research

RECEIVED 05 January 2023
ACCEPTED 16 February 2023
PUBLISHED 16 March 2023

CITATION

Veith EMSP, Wellßow A and Uslar M

(2023), Learning new attack vectors from

misuse cases with deep reinforcement

learning.

Front. Energy Res. 11:1138446.

doi: 10.3389/fenrg.2023.1138446

COPYRIGHT

© 2023 Veith, Wellßow and Uslar. This is
an open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permitted which does
not comply with these terms.

Learning new attack vectors from
misuse cases with deep
reinforcement learning

Eric M. S. P. Veith1*, Arlena Wellßow2 and Mathias Uslar2

1Adversarial Resilience Learning Resarch Group, Carl von Ossietzky University Oldenburg, Oldenburg,
Germany, 2R&D Division Energy, OFFIS—Institute for Information Technology, Oldenburg, Germany

Modern smart grids already consist of various components that interleave
classical Operational Technology (OT) with Information and Communication
Technology (ICT), which, in turn, have opened the power grid to advanced
approaches using distributed software systems and even Artificial Intelligence
(AI) applications. This IT/OT integration increases complexity, however, without
argument, this advance is necessary to accommodate the rising numbers
of prosumers, Distributed Energy Resources (DERs), to enable new market
concepts, and to tackle world-wide CO2 emission goals. But the increasing
complexity of the Critical National Infrastructure (CNI) power grid gives way to
numerous new attack vectors such that a priori robustness cannot be guaranteed
anymore and run-time resilience, especially against the “unknown unknowns”, is
the focus of current research. In this article, we present a novel combination of so
called misuse-case modelling and an approach based on Deep Reinforcement
Learning (DRL) to analyze a power grid for new attack vectors. Our approach
enables learning from domain knowledge (offline learning), while expanding on
that knowledge through learning agents that eventually uncover new attack
vectors.

KEYWORDS

misuse case, smart grids, smart grid cyber security, deep reinforcement learning (deep
RL), offline learning, adversarial resilience learning

1 Introduction

Undoubtedly, the climate catastrophe is an unparalleled challenge for society. The urge
to reduce CO2 emissions directly leads to the imperative of reducing energy consumption, a
more efficient usage of energy, and to increase the emount of renewable energy resources.
This change is nowhere as apparent as in the power grid, which has undergone a rapid
transformation in recent years (Bush, 2014; IEA, 2019).

Future power grids will have a much higher degree of digitalization as present
ones. New approaches to balancing services management that include major prosumers
(Holly et al., 2020) or multi-purpose battery storage (Tiemann et al., 2022). Multi-Agent
System (MAS) are employed to facilitate real power management of DERs or solve unit-
commitment problems (Roche et al., 2013; Veith, 2017; Nair et al., 2018; Frost et al., 2020;
Mahela et al., 2022), while ever smaller generators are included into the grid management
duties of the operator (Woltmann and Kittel, 2022). In addition, the convergence between
Information Technology (IT) and OT is further emphasized by the amount of Internet
of Things (IoT) technologies deployed, which have—for the better or worse—a huge
impact on the power grid (Soltan et al., 2018; Huang et al., 2019; Mathas et al., 2021).

Frontiers in Energy Research 01 frontiersin.org

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#editorial-board
https://doi.org/10.3389/fenrg.2023.1138446
https://crossmark.crossref.org/dialog/?doi=10.3389/fenrg.2023.1138446&domain=pdf&date_stamp=2023-03-13
mailto:eric.msp.veith@uol.de
https://doi.org/10.3389/fenrg.2023.1138446
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fenrg.2023.1138446/full
https://www.frontiersin.org/articles/10.3389/fenrg.2023.1138446/full
https://www.frontiersin.org/articles/10.3389/fenrg.2023.1138446/full
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles

Veith et al. 10.3389/fenrg.2023.1138446

Indeed, power grids have become valuable targets for cyber
attacks. The attacks on the Ukrainian power grid in 2015 and
2016 are well known (Styczynski and Beach-Westmoreland, 2016),
but researchers know a multitude of attack vectors, such as
message spoofing in IEC 61805 (Hong et al., 2014), false data
injection (Liu et al., 2011; Hu et al., 2018), direct damage caused by
nodes compromised by an attacker (Ju and Lin, 2018), or market
exploitation (Wolgast et al., 2021). There are already comprehensive
reviews available that consider the cyber-security of power grids; we
refer the interested reader to the review article by Sun et al. (2018)
for a comprehensive survey.

Researchers have not only considered each incident in isolation,
but used and extended existing methodologies to document,
classify, and analyze these incidents on a more general level.
Structured Threat Information Expression (STIX) and Trusted
Automated Exchange of Indicator Information (TAXII) are well-
known documentation formats and methodologies for Cyber
Threat Intelligence (CTI) (Barnum, 2012; Connolly et al., 2014;
Apoorva et al., 2017; Briliyant et al., 2021). They are, of course, far
from being the silver bullet; another, high-level approach is that of
the Misuse-Case (MUC), introduced by Sindre and Opdahl (2005).

However, any approach in modelling cyber threats works based
on already known attack vectors. They require humans to map
them to actual actions—e. g, commands to be executed—on a given
system, and it is also humans who devise and execute new attack
vectors, which are then documented and analyzed post hoc.

There exists a stark contrast to more recent approaches coming
from the domain of AI, specifically DRL: Learning agents that
use trial-and-error approaches to probe simulated Cyber-Physical
Systems (CPSs) for weaknesses (Fischer et al., 2019; Veith et al.,
2019, 2020).

DRL—initially without the “Deep” prefix—introduced the
notion of an agent that learns by interacting with its environment.
The agent possesses sensors with which it perceives its environment,
actuators to interact with it, and it receives a reward signal that
indicates to the agent how well it fars with regards to its goal or
utility function. Learning in the context of DRL means creating a
policy such that, in any given state, the agent’s actions maximize its
cumulative reward.The modern breakthrough in DRL was the end-
to-end learning of Atari games by Mnih et al. (2013). Since their
publications of Deep Q Network (DQN), many other algorithms
have followed, including the well-known modern DRL algorithms
Deep Deterministic Policy Gradient (DDPG) (Lillicrap et al., 2016),
Twin-DelayedDDPG (TD3) (Fujimoto et al., 2018), Proximal Policy
Gradient (PPO) (Schulman et al., 2017), and SoftActor Critic (SAC)
(Haarnoja et al., 2018).

However, “vanilla” DRL is called model-free, meaning that the
agents do not carry an explicit knowledge about their environment.
The policy they learn includes this implicitly, because in mapping
sensor readings to actions in order to maximize the (cumulative)
reward, they obviously need to build a concept of their environment’s
inherent dynamics. But the agents learn from scratch; the interaction
with their environment is the only way the have to explore it.
In order to build a policy, the agents have to amass trajectories
(triplets of state, action, and reward) that contain “fresh” data to
learn upon.The trade-off between acting based on the current policy
and exploring the environment withmore-or-less random actions in

order to potentially find more rewarding trajectories is expressed by
the exploration-exploitation dilemma.Howwell an algorithm learns
is often discussed in terms of its sample efficiency.

Obviously, it seems beneficial to give agents access to a
repository of trajectories to learn from without the need of
interacting from scratch. There are a lot of situations where data
is also scarce or expensive to come by; real-world applications in
the domain of robotics or medicine are such cases. Learning from
preexisting data, called Offline Learning (Prudencio et al., 2022),
poses a problem of its own, which stems from the fact that agents
cannot interact with the environment during offline learning and,
thus, might be biased to sub-optimal policies.

Still, if one can ascertain the quality of the dataset, offline
learning provides a huge benefit: It introduces the agent to proven
domain knowledge and reduces the training time significantly. Also,
an agent initially trained from an offline learning data set can still
be trained online with the usual algorithms, but it still does not start
from scratch.

There exists a clear motivation in combining modelling
approaches like MUCs with learning agents: A MUC is
understandable by domain experts, who play an important role
in drafting a MUC in the first place. MUC—along other CTI
description formats—are an accessible and comprehensive way to
describe post hoc incident knowledge. The shortcoming is, that
MUCs, being a data format, contain few points (if any) to uncover
variants of a known attack, or even uncover new ones that make
use of existing knowledge. On the other hand, learning agents
that employ, e. g, DRL, are known to develop completely new
strategies—AlphaZero is a prime example for this—, but when
starting with no knowledge, they require extensive training: I. e, a
comprehensive simulation environment and the ability to gather
enough data from a distribution resembling the real world so that
the training is successful, which is computationally extensive.

The technical as well as research gap lies in the combination
of the two: Learning from domain knowledge, which is offline
data, would provide the learning agent with a headstart and cut
the expensive initial exploration phase. But in addition, the agent
would still benefit from a later online learning phase and be able to
uncover new strategies. That way, agents would learn from known
incidents, and then develop variants based thereof or entirely new
attack vectors connected to the known ones. However, for this, the
task of MUC modelling must be connected to the offline learning
domain, and later than to extensive online learning, which entails
careful design of experiments.

In this paper, wewill combine domain knowledge fromCTIwith
successful approaches at CPS system analysis. Namely, we present
a methodology to define experiments from MUCs, paving the way
towards offline learning for DRL agents for cyber-security in CNIs.
Our main contribution is threefold.

• We describe a pipeline from MUC modelling to DRL-based
experiments that allow to extend existing, known MUCs by
having learning agents discovers new attack vectors based on
a given MUC.
• We present an offline learning approach where specific agents,
stemming from theMUCmodelling, are imitiation learners (or
adversarial imitation learners) for DRL agents.

Frontiers in Energy Research 02 frontiersin.org

https://doi.org/10.3389/fenrg.2023.1138446
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles

Veith et al. 10.3389/fenrg.2023.1138446

• We outline a research direction on how to create offline
learning datasets from MUCs by analyzing embedded Unified
Modelling Language (UML) diagrams, based on specific
anotations.

Technically, the novelty of our contribution exists in the
complete software stack, from MUC to experiment definition,
to Design of Experiments (DoE), to reproducible experiment
execution with offline and online learning.

The remainder of this paper is structured as follows: In
Section 2, we review related work and present the state of the
art. Section 3 outlines our approach in broad terms as a high-
level overview. We then present the MUC modelling format in
detail in Section 4. Afterwards, Section 5 turns towards our DoE
approach. Section 6 presents our execution software stack and the
data storage and analysis backend. We follow the theoretical part
with an experimental validation in Section 7. We present initial
results in Section 8, which we discuss in Section 9. We conclude in
Section 10 with an outlook towards future work.

2 Related work

2.1 Cyber Threat Intelligence

The term Cyber Threat Intelligence (CTI) describes the process
of knowledge acquisition for cyber threat data and also the
data itself. As there are known attack pattern and vulnerabilities
in systems, sharing and maintaining this data sets becomes
important.

2.1.1 Structured Threat Information eXpression
(STIX™)

With Structured Threat Information eXpression (STIX™) the
Organization for the Advancement of Structured Information
Standards (OASIS) Cyber Threat Intelligence Technical Committee
developed a standardized language. Data in form of Structured
Threat Information eXpressions (short: STIX data) gives structured
information about cyber attacks (Barnum, 2012). STIX data is
stored in an graph based information model and OASIS defines
eighteen such called STIX Domain Objects for entity nodes,
which are connected via two defined STIX Relationship Objects
(OASIS Open Cyber Threat Intelligence Committee, 2022). Some of
these entity node types are referred to as TTPs, which can
be traced back to the military origin of this abbreviation. The
types thereby belong to the category of tactics, techniques, and
procedures.

2.1.2 Trusted Automated Exchange of
Intelligence Information (TAXII™)

The Trusted Automated Exchange of Intelligence Information
(TAXII™), which is also developed by the OASIS Cyber Threat
Intelligence Technical Committee, describes the way, STIX data is
meant to be exchanged. Therefore TAXII is an application layer
protocol with an RESTful API. OASIS also provides requirements
for TAXII clients and servers. By development TAXII is meant to be
simple and scalable to make sharing STIX data as easy as possible
(Connolly et al., 2014).

2.1.3 MITRE ATT&CK R© STIX data
The MITRE Adversarial Tactics, Techniques, and Common

Knowledge (MITRE ATT&CK) collects and provides cyber attack
data. It targets the missing communication between communities
dealing with the same attacks (The MITRE Corporation, 2022).

2.2 (Mis-)Use case methodology

The misuse case methodology used in this paper is based on
the use case methodology from the IEC 62559 standards family.
This standard describes a systematic approach for eliciting use cases.
IEC 62559-2 also provides a template for the use cases according
to this standard. In this template the use case data is noted in a
structured form and contains the description of the use case with
its name and identifier as well as scope, objectives, conditions and
narrative in natural language, further information like the relations
to other use cases or its prioritization and a set of related KPIs. In
the second section of the use case template, the associated diagrams
of the use case are depicted. This is followed by an overview about
the technical details where every acting component is listed as well
as a step-by-step analysis for every scenario belonging to this use
case. Linked to these steps are lists of exchanged information and
requirements, which are also part of the template. Finally common
terms and custom information are placed.

As shown by Gottschalk et al. (2017), the IEC 62559 is a family
of standards that is used in many areas. Trefke et al. (2013) show the
application of the use case methodology in a large European smart
grid project, while Clausen et al. (2018) show a similar approach
in the German research project enera. In the DISCERN project,
Santodomingo et al. (2014) present approaches of an analysis based
on the use case standard, while Schütz et al. (2021) take up these
approaches as well as the related approaches from Neureiter et al.
(2014), van Amelsvoort et al. (2015), and van Amelsvoort (2016)
and continue them.

The here used misuse case methodology is based on the use
case methodology taken from the IEC 62559. This standard is then
combined with the concept of misuse cases. In general a misuse
case is a description of a scenario which is known but explicitly
unwanted. This contains, among others, unwanted behaviour of a
system as well as cyber (-physical) attacks. The need of misuse
cases was described by Sindre and Opdahl (2005) and applied to
a template based on a use case template by Cockburn (2001)1 in
the work of Sindre and Opdahl (2001). Concepts and notation of
misuse cases as well as textual specification and examples for the
work with misuse cases are part of the paper of Sindre and Opdahl
(2005). In addition to the general template according to IEC 62559-
2 the misuse case template contains information about misactors,
which are placed in the same section as the actors in the standard.
The section containing the scenarios is adapted to failure scenarios,
which need additional information like the worst case threat or the
likelihood of occurrence.

This leads to a set of tables in the following structure2.

1 This template is not the same as the template from the IEC 62559-2 standard.

2 For a detailed view on the MUC template see: https://gitlab.com/arl2/
muclearner.

Frontiers in Energy Research 03 frontiersin.org

https://doi.org/10.3389/fenrg.2023.1138446
https://gitlab.com/arl2/muclearner
https://gitlab.com/arl2/muclearner
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles

Veith et al. 10.3389/fenrg.2023.1138446

1 Description of the Misuse Case
2 Diagrams of the Misuse Case
3 Technical Details
4 Step-by-Step analysis of the Misuse Case
5 Requirements
6 Common Terms and Definitions
7 Custom Information (optional)

Considering the nature of a misuse case and the given
information in misuse case template used here, a link to a
representation of the information in the form of STIX data (cf.
Section 2.1.1) is natural.Therefore data in STIX format shall be used
in the presented approach as an expedient addition to the misuse
case template.

2.3 Deep reinforcement learning and its
application in smart grid cyber security

Undoubtedly, research in the domain of AI has yielded many
noteworthy results in the last years. One of the most spectacular,
the “superhuman” performance in the game of Go, can be
largely attributed to DRL. From the resurrection of (model-free)
reinforcement learningwith the 2013 hallmark paper to the publicly-
noted achievements of AlphaGo, AlphaGo Zero, AlphaZero, and
(model-based) MuZero (Mnih et al., 2013; Lillicrap et al., 2016;
Hessel et al., 2018; Silver et al., 2016a; b, 2017; Schrittwieser et al.,
2019), DRL has attracted much attention outside of the AI domain.
Much of the attention it has gained comes from the fact that,
especially for Go, DRL has found strategies better than what any
human player had been able to, and this without human teaching
or domain knowledge.

DRL is based on the Markov Decision Process (MDP), which is
a quintruplet (S,A,T,R,γ).

• S, the set of states, e. g, the voltage magnitudes at all buses at
time t, St = {V1(t),V2(t),…,Vn(t)}
• A, the set of actions, e. g, the reactive power generation (positive
value) or consumption (negative value), at t, of a particular node
the agent controls, At = {q1(t),q2(t),…,qn(t)}
• T, the set of conditional transition probabilities, i. e, the
probability that, given an action at ∈ At by the agent, the
environment transitions to state st+1. T (st+1‖st ,at) is observed
and learned by the agent
• R, the reward function of the agent R:S×A→ℝ
• γ, the discount factor, which is a hyperparameter designating
how much future rewards will be considered in calculating the
absolute Gain of an episode: G = ∑tγtrt ,γ ∈ [0; 1).

Basically, an agent observes a state st at time t, executes action
at , and receives reward rt . The transition to the following state
st+1 can be deterministic or probabilistic, according to T. The
Markov property states that, for any state st , given an action at ,
only the previous state st−1 is relevant in evaluating the transition.
We consider many problems in CNIs to be properly modelled
by a Partially-Observable Markov Decision Process (POMDP). A
POMDP is a 7-tuple (S,A,T,R,Ω,O,γ), where, in addition to the
MDP.

• Ω, the set of observations, being a subset of the total state
information st : For each time t, the agent does observe the
environment through its sensors, but this may not cover the
complete state information. E. g, the agent might not obseve all
buses, but only a limited number.
• O, the set of conditional observation properties determines
whether an observation by the agent might be influenced by
external factors, such as noise.

The goal of reinforcement learning in general is to learn a
policy, such that at ∼ πθ(⋅|st). Finding the optimal policy π*θ is the
optimization problem at the heart of all reinforcement learning
algorithms.

Mnih et al. (2013) introduced DRL with their DQNs. Of
course, Reinforcement Learning itself is older than this particular
publication (Sutton and Barto, 2018). However, Mnih et al. were
able to introduce deep neural networks as estimators for Q-values,
providing stable training. Their end-to-end learning approach, in
which the agent is fed raw pixels from Atari 2,600 games and
successfully plays the respective game, is still one of the standard
benchmarks in DRL. The DQN approach has seen extensions until
the Rainbow DQN (Hessel et al., 2018). DQN are only applicable
for environments with discrete actions; the algorithm has been
superseeded by others.

DDPG (Lillicrap et al., 2016) also builds on the policy gradient
methodology: It concurrently learns a Q-function as well as a policy.
It is an off-policy algorithm that uses the Q-function estimator
to train the policy. DDPG allows for contiuous control; it can be
seen as DQN for continuous action spaces. DDPG suffers from
overestimating Q-values over time; TD3 has been introduced to fix
this behavior (Fujimoto et al., 2018).

PPO (Schulman et al., 2017) is an on-policy policy gradient
algorithm that can be used for both discrete and continuous
action spaces. It is a development parallel to DDPG and TD3
and not an immediate successor. PPO is more robust towards
hyperparamter settings than DDPG and TD3 are, but as an on-
policy algorithm, it requires more interaction with the environment
train, making it unsuitable for computationally expensive
simulations.

SAC, having been published close to concurrently with TD3,
targets the exploration-exploitation dilemma by being based on
entropy regularization (Haarnoja et al., 2018). It is an off-policy
algorithm that was originally focused on continuous action
spaces, but has been extended to also support discrete action
spaces.

PPO, TD3, and SAC are the most commonly used model-free
DRL algorithms today.

With the promise of finding novel strategies, DRL has long since
entered the smart grid cyber security research domain. Adawadkar
and Kulkarni (2022) and Inayat et al. (2022) provide a recent survey
in this regard; in the following paragraphs, we will take note of
publications not listed in the survey or those which are especially
interesting in the context of this article.

However, we note that the majority of publications, even recent
ones, focus on a particular scenario, which is well known from
the electrical engineering perspective. The authors then reproduce
this scenario, using DRL algorithms to show the discoverability and
feasibility of the attack, to learn a strategy of attack for changing grid

Frontiers in Energy Research 04 frontiersin.org

https://doi.org/10.3389/fenrg.2023.1138446
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles

Veith et al. 10.3389/fenrg.2023.1138446

models, or to provide a defense against a particular, specific type
of attack, leveraging DRL to provide dynamic response. Thus, the
goal is mostly to automate a specific attack with DRL, which can
be deduced from the formulation of rewards. Using the versatility
of DRL to discover any weakness in a power grid, regardless of a
specific attack vector (i. e, letting the agent find the attack vector), is
a clear research gap.

Wang et al. (2021) apply DRL to coordinated topology attacks,
having the agent learn to trip transmission lines and manipulate
digital circuit breaker data. Surprisingly, the authors still employ
DQNs for this (rather recent) publication.Wolgast et al. (2021) have
used DRL to attack local energy markets, in which the attacker aims
to achieve local market dominance. Wan et al. (2021) consider a
DRL agent that implements demand response as the victim, using
particle swarm optimization to pertubate the DRL agent’s input to
cause erroneous behavior.

Roberts et al. (2020) provide a defender against attacks from
malicious DERs that target the voltage band. They consider
the DER inverters’ P/Q plane, but disregard grid codes as well
as other actions, such as line trippings. They use PPO and
are explicitly agnostic to the concrete attack, but their agent
also trains without prior knowledge. Roberts et al. (2021) work
from a similar premise (compromised DERs), paying special
attention to non-DRL controllers, but otherwise achieving similar
results.

2.4 Offline reinforcement learning for deep
reinforcement learning

The core of reinforcement learning is the interaction with the
environment. Only when the agent explores the environment,
creating trajectories and receiving rewards, can it optimize its
policy. However, many of the more realistic environments, like
robotics or the simulation of large power grids, are computationally
expensive. Obviously, training from already existing data would
be beneficial. For example, an agent could learn from an
already existing simulation run for optimal voltage control
before being trained to tackle more complex scenarios. Learning
from existing data without interaction with an environment
is called offline reinforcement learning (Prudencio et al.,
2022).

The field of offline reinforcement learning can roughly
be subdivided into policy constraints, importance sampling,
regularization, model-based offline reinforcement learning, one-
step learning, imitation learning, and trajectory optimization. For
thesemethods, wewill give only a very short overview as relevant for
this article, since Levine et al. (2020)3 and Prudencio et al. (2022)
have published extensive tutorial and review papers, to which we
refer the interested reader instead of providing a poor replication of
their work here.

3 The tutorial by Levine et al. (2020) is available only as preprint. However, to
our knowledge, it constitutes one of the best introductionary seminal works
so far. Since it is a tutorial/survey, and not original research, we cite it despite
its nature as a preprint and present it alongside the peer-reviewed publication
by Prudencio et al. (2022), which cites the former, too.

Policy constraints modify the learned policy: They modify the
unconstrained objective to a constrained objective by introducing
a devergence metric between the learned policy, πθ(⋅|s), and the
behavioral policy created from offline data, πβ(⋅|s). Given π̂β(⋅|s) as
an estimate of the behavioral policy, maximizing the objective J(θ)
becomes subject toD(πθ(⋅|s), π̂β(⋅|s) < ε). Peng et al. (2019) describe
a different approach that eschews estimating πβ, needing only to
estimate the advantage Âpi(s,a). Since the advantage describes the
relative improvement of an action, not the absolute one, it is easier
to derive from a dataset.

Importance sampling introduces weights for the samples in the
offline learning dataset. Reducing the variance of the important
weights is crucial, since the produce of important weights, w0:H , is
exponential in H.

Regularization adds a regularization term, R(θ), to J(θ). It makes
the estimates of the value function learned by the agent more
conservative, preventing over-estimation of the value objective,
thus preventing the agent to take Out-Of-Distribution (OOD)
actions.

An optimization of this approach is uncertainty estimation,
which allows to switch between conservative and naive off-policy
DRL methods. By estimating the uncertainty of the policy or
value function over their distribution, the penalty term added
to the objective, J(θ), is dynamically adjusted based on this
uncertainty.

Model-based methods estimate transition dynamics
T (st+1|st ,at) and the reward function r (st ,at) from a dataset
D, often learned through supervised regression. E.g., a world
model can be a surrogate model for a power grid, learned
from a number of power flow calculations during a simulation.
However, world models cannot be corrected by querying the
environment as this would normally be done in online DRL.
Thus, world models in offline DRL need to be combined with
uncertainty estimation in order to avoid transitioning to OOD
states.

One-step methods collect multiple states to estimate Q (s,a)
from offline data; afterwards, a single policy improvement step is
done. This is in contrast to iterative actor-critic methods (e.g, SAC),
which alternate between policy evaluation and policy improvement.
Since the latter is not possible, the single-step approach ensures that
the estimate for Q (s,a) represents the distribution, i.e, evaluation is
never done outside the distribution of D.

Trajectory optimization aims to learn a state-action model over
trajectories, i.e, a model of the trajectory distribution introduced by
the policy from the dataset. Given any initial state s0, this model
can then output an optimal set of actions. Querying for whole
trajectories makes selecting OOD actions less likely.

Finally, imitation learning aims to reduce the distance between
the policy out of the dataset D and the agent’s policy, such that the
optimization goal is expressed by J(θ) = D (πβ(⋅|s),πθ(⋅|s)). This so-
called Behavior Cloning requires an expert behavior policy, which
can be hard to come by, but is readily available in some power-grid-
related use cases, such as voltage control, where a simple voltage
controller could be queried as expert.

To our knowledge, there is currently no notion of employing
offline learning for DRL in the context of smart grid cyber security
(Adawadkar and Kulkarni, 2022; Berghout et al., 2022; Inayat et al.,
2022).

Frontiers in Energy Research 05 frontiersin.org

https://doi.org/10.3389/fenrg.2023.1138446
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles

Veith et al. 10.3389/fenrg.2023.1138446

2.5 Software frameworks for deep
reinforcement learning in complex cyber
physical system simulations

During the last years, numerous frameworks for DRL have
emerged. The smallest common denominator for all these
frameworks is their usage of the Application Programming Interface
(API) offered by OpenAI’s Gym plattform (Brockman et al., 2016),
which offers standard benchmark environments, such as cartpole.
Gym has been superseeded by Gymnasium,4 which retains a
comptabile API.

Several libraries exist or have existed that implement
DRL algorithms, such as Stable Baselines (SB3) (Raffin et al.,
2021), Tensorforce (Kuhnle et al., 2017), or Google Dopamine
(Castro et al., 2018). These focus almost exclusively on a Gym-like
API—SB3 enforces it by providing a code checker—, having the goal
of providing well-tested implementations, but nothing beyond it.
Their distinctive feature is the code style or approach on framework
design. In the same vein, Facebook’s ReAgent framework (formerly
known has Horizon, Gauci et al. (2018)5 provides a smaller subset
of algorithms and relies on a complex preprocessing and dataflow
pipeline that uses libraries from Python as well as Java. ReAgent
relies on theGymAPI,making inverted control flow as it is necessary
for CPS simulations almost impossible. d3rlpy (Seno and Imai,
2022) focuses on offline learning, but shares otherwise many design
decisions of the aforementioned libraries.

rllib (Liang et al., 2018), which is part of the ray project,
has emerged as one of the most comprehensive frameworks for
DRL, covering the most common algorithms (model-free and
model-based), offline DRL, and supports several environment
APIs, including external environments with inverted control flow
(i.e, the environment queries the agent instead of the agent
stepping the environment). This makes it suitable for co-simulation
approaches, which are commonly applied in CPS simulations.
However, rllib does not have the goal of providing a comprehensive
scientific simulation platform, and as such lacks facilities for DoE,
interfaces to commonly used simulators, or results data storage and
analysis.

To date, there is no comprehensive framework that takes
an experimentation process as a whole into account, i.e, DoE,
executions, results storage, and results analysis. Furthermore,
the most actively developed libraries referenced in the previous
paragraphs have—with the exception of rllib—committed
themselves to enforcing an Gym-style flow of execution, in
which the agent “steps,” i.e, controls the environment. This design
decision makes them unsuitable for more complex simulation
setups, such as complex co-simulation (Veith et al., 2020), in
which the co-simulation framework has to synchronize all parties
and, therefore, reverses control flow by querying the agent for
actions instead of allowing the DRL agent to control the flow of
execution.

4 https://github.com/Farama-Foundation/Gymnasium, retrieved: 2022-01-03.

5 The technical report for Horizon is available only as preprint. We treat it the
same way as a website reference and provide the bibliography entry here
for easier reference.

3 High-level approach

The available CTI and descriptions fromMUCs already contain
domain expert knowledge that describes how a system’s vulnerability
is being exploited. The MUC template format contains an extended
tablespace to describe actors, their behavior, and systems; it also
allows for modelling of this through diagrams—mostly sequence
diagrams—in the UML. UML allows to annotate diagram elements
through stereotypes and parameters. UML modelling tools, such as
VisualParadigm, usually allow to export diagrams as XMLMetadata
Interchange (XMI) (OMG Group, 2005) files. This then makes the
MUC a twofold datasource, first through its table format—a specific
notation can be easily enforced as well as exportet to a XML file —,
second through the UML sequence diagrams.

On the other hand, DRL-based software suites allow to connect
learning agents and environments so that the agents, giving the
corresponding objective function, can learn to exploit a (simulated)
system. However, the agent starts training with zero knowledge,
effectively “wasting” iterations before the informed trail-and-error
style training that DRL yields first successes. In order to converge
faster to a successful policy, we describe a pipeline that connects
these two domains. Its main connecting point is an experiment
definition with agents that serve as experts (via imitation learning)
to the DRL agents. It consists of five steps (cf. Figure 1).

1 Gathering expert knowledge
2 Formulating the MUC
3 Creating an UML diagram
4 Exporting and reading the XMI/XML file(s)
5 Generating the experiment definition from the XMI/XML file(s)

The first step of this process is knowledge gathering and, in
stage 2, filling out the misuse case templates. These have to be
very specific and well reviewed to be able to process the domain
knowledge further. An error in this stage might lead to severe
misunderstanding or wrong defined information and therefore
wrong processes learned by the agent. This step is done by domain
experts who are able to describe the domain knowledge in a
sufficiently precise form. Since the MUC will be machine-read,
enforcing certain syntactic elements is important (cf. Section 4 for
details).

Afterwards, a STIX model of the misuse case scenario can be
build for later usage.

The next step (stage 3) is the generation and annotation
of an UML diagram that shows the relevant information to
build an experiment file. MUCs will most likely contain at least
one sequence diagram in any case. UML allows to introduce
archetypes and parameters, building a model repository. We define
custom stereotypes, like agent and environment, along with their
parameters, which are then used to derive experiments definitions.
Agents are of particular interest here, since our framework does not
just employ DRL algorithms, but can use any agent. We define and
implement simple agents with scripted behavior that reflects actors
in theMUCs.These agents with hard-coded behavior are the experts
that are necessary for imitation learning6.

6 At a later stage, we also plan to directly derive trajectories by parsing sequence
diagrams, but this is currently future work.

Frontiers in Energy Research 06 frontiersin.org

https://doi.org/10.3389/fenrg.2023.1138446
https://github.com/Farama-Foundation/Gymnasium
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles

Veith et al. 10.3389/fenrg.2023.1138446

FIGURE 1
From expert knowledge to an experiment file for the ARL toolchain.

The UML diagrams are exported to XMI; along with the MUC,
they serve as a data source to derive experiment definitions (stage
4).

Stage 5 entails generating the experiment defintion file. We
provide details about this file in Section 5. In general, an experiment
file is the basis for a sound DoE, used for experimentation and
training and evaluation of DRL agents. The experiments employ
several agents in different experimentation phases. DRL agents can
learn from the “scripted” agents. One methodology that commonly
finds application in this setup is that of Adversarial Resilience
Learning (ARL). In ARL, two (or possibly more) agents work
as adversaries against each other. Agents do not have knowledge
of each other or their respective actions, instead, they observe a
systemunder influence by their adversary.This adversarial condition
modifies the distribution of observed sensor inputs to encourage
agents to sample more extreme regions, and also to learn more
robust strategies.When two learning agents compete, they push each
other to learn faster than an agent alonewould normally do; learning
agents working against a scripted agent also adapt counterstrategies
faster in comparison to training solo. Sections 7 and 8 showcase
such a competition setup.

After running the experiment, the STIX data can be updated
with the found vulnerabilities as well as possible mitigation or attack
differentiation.

4 Misuse case modelling and data
transfer method

As mentioned in Section 2.2, the misuse-case method is used
to precisely describe originally unintended behavior of a system.
Therefore, all information from a mostyl regular IEC 62559-based
use case template is included as well as the additional knowledge,
which is distinctively used to document unintended behaviour.

The overall idea of this approach is to solve an existing semantic
gap between two important aspects for the topic. In order to
learn form proper attack libraries with real world incidents, a large
amount of information for training is needed. Usually, in knowledge
management, things are structures to refrain from being anecdotal.
This leads to structures documents based on meta models making
sure that all important aspects and attributes are covered and, thus,

the information is self-contained and useful in a different context.
This often involves eliciting the knowledge and experience of
domain experts and stakeholders who are not experts in modeling.
Structuring this knowledge into a standardized document leads
to re-useable, useful knowledge. Often, this process is done in
the context of systems engineering or development. However, it is
apparent that the scope and detail as well as format for a learning
AI is different. There is no fixed suitable API to re-use the use cases
as of now. However, the large knowlwdge base both for use cases as
well as misuse cases, documenting observable behaviour which is
non-intended is large. Security incidents mostly are non-intended
behaviour, so re-using the knowledge gathered in a structured
manner is the aim discussed in detail in this contribution.

For this paper we do not consider misbehaviour of the system
in terms of a faulty implementation but respective stakeholders, e.g,
people acting maliciously. Therefore, the actors (and especially the
misactors, called “crooks”) are in focus of the high-level modeling
at first. Hence, these areas of the template must be filled out with
particular care.

Two methods are conceivable for the proposed approach in this
contribution: Use case supported elicitation of the templates and
domain knowledge supported elicitation of the templates. In the first
method, a completed use case template is examined to determine
the undesired (system) behavior (or, in this case, the attacks) that
could affect this use case. This can be done, e.g, by systematically
checking the data within the MITRE ATT&CK data set identified to
be suitable.

The second method is based on known attacks (in general
terms: known undesired behavior) without an underlying use case
in particular. Here, the misuse case template is filled in based on the
known attack information and, thus, known mitigations.

By following one of these approaches, an domain expert is able
to create amisuse case for the desired scenario. Afterwards, checking
for consistencywith other domain experts and by reviewing different
modelling formats like the Smart Grid Architecture Model (SGAM)
from the IECSRD63200 standard for the energy domain or the STIX
data is recommended to rule out possible ambiguity and vagueness
resulting from natural language usage.

For the approach presented in this paper, a nearly completed
misuse case template is important as a base for the next steps since
errors at this level are very likely to propagate to the next steps, thus,

Frontiers in Energy Research 07 frontiersin.org

https://doi.org/10.3389/fenrg.2023.1138446
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles

Veith et al. 10.3389/fenrg.2023.1138446

Open XML input file ⊳ MUC XML and/or diagram

XML export

 name_list = empty list

 objective_list = empty list

 for actor in MUC do ⊳ either from UML actor

definition or by scanning the actor tables in

the MUC

 Add name of agent to name_list

 Add objective to objective_list

 end for

 Close XML input file

 Open YAML output file

 Write experiment setup data to the output

file ⊳ This is simplified for a first

presentation of this approach

 for agent_name in name_list do

 Write agent description to the output file ⊳

This data is a mixture of already created

experiment definitions and the agent

description from the input.

 Map agent objective from objective_list

 Write mapped objective to the output file

 end for⊳ The following is as well simplified

for a first presentation of this approach

 Write sensor and actor information to the

output file

 Define phases according to actor information

in the output file

 Close YAML output file

 Output the generated YAML file

Algorithm 1. Pseudocode: Simplified Generation of a Experiment File from XML

Data.

lowering the data quality and validity of the final conclusions to be
drawn form the method.

After theMUC template is filled out, the diagrams and the tables
of the MUC are exported as serialized and standardized XMI/XML
files based on IEC 62559-3. Therefore, the diagrams are exported
as a XMI from a tool like visual paradigm, while the MUC DOCX
file is exported as a XML file via Microsoft Word. These files are
then read into a script that generates an experiment file based on
the information from the MUC and commonly known information
such as the structure. The simplified version of this algorithm is
presented as pseudocode in Algorithm 1. For the presentation of
this approach only a limited set of information is taken from the
MUC.The remaining needed information like, e.g. the environment
and the mapped, distinct sensors in this environment are derived
from a previous created experiment file.

For receiving the agent data the exported diagram is scanned for
entitieswith the agent stereotype, if aMUCexport is used to generate
the experiment file, the XML is scanned for the actor table. From
these sources the agent name and its objectives are taken. Afterwards
the YAML output file is generated. Therefore the setup information

from a already created experiment are taken (cf. Section 5 for a
description of needed information). The information taken from
the input is then merged with the additional information and put
together to a complete experiment file.

5 Design of experiments with arsenAI

In order to tackle the problem outlined in Sections 1,2, namely,
that currently, there exists no software stack that allows for sound,
systematic, and reproducible experimentation of learning agents in
CPSs (co-) simulation environments, we have created the palaestrAI
software stack7. Part of the palaestrAI suite is a tool named arsenAI,
whose focus is to read experiment definitions in YAML format.
This experiment definition file contains environments, agents and
their objective and defines parameters and factors to vary upon. An
arsenAI run outputs a number of experiment run definitions, which
contain concrete instantiations of the factors.

An experiment definition start with a unique, user-defined
identifier (a unique name for the experiment), a seed value
(for reproducibility), a version string to ensure software API
compatibility, the number of repetitions and how many experiment
runs should be generated from it. It also consists of a number of sub-
definitions for agents, environments, sensor sets and actuator sets,
and phase configurations.

An agent consists of a learner (nicknamed brain), an inference
rollout worker (nicknamed muscle), as well as an objective.
Objectives are agent-specific and based upon the reward definition
of an environment, as well as the agent’s internal state. An
environment has a reward definition: While the reward describes
the states of the environment (e.g, bus voltages), the agent’s objective
qualitatively describes the agent’s goal with regards to the current
state/reward (e.g, the deviation from 1.0 pu).

Sensor and actuator sets connect environments to agents. A
sensor is a particular input to an agent (e.g, a bus voltage), an actuator
is a setpoint (e.g, reactive power generation).

An experiment is subdivided into phases, each phase describing
a stage of the experiment. Therefore, an experiment also contains
phase configuration definitions. A phase configuration describes
whether agents learn (training mode) or only exploit their policy
(testing mode), and how many episodes a phase consists of.

Within phases, factors are defined. Possible factors are the
combination of agents, environments, phase configurations, and
sensor/actuator-set-to-agent mappings. The environments and
agents factors have two levels, since agents and environments can
be combined.

After computing the design of the experiment, arsenAI decides
on the sampling strategy. If the computed number of runs for a
full factorial design from the factors (considering all levels) is less
or equal than the user-defined maximum number of runs, a full
factorial design is indeed generated. Otherwise, the full factorial
design is optimized (i.e, sampled) according to the maximin metric
(Pronzato and Walter, 1988).

Figure 2 shows a schema of the experiment definition.

7 https://gitlab.com/arl2, retrieved: 2023-01-03.

Frontiers in Energy Research 08 frontiersin.org

https://doi.org/10.3389/fenrg.2023.1138446
https://gitlab.com/arl2
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles

Veith et al. 10.3389/fenrg.2023.1138446

FIGURE 2
Experiment definition schema.

For each sample—and the number of desired repetitions—,
arsenAI creates an experiment run definition, which is then picked
up by palaestrAI to execute. We detail palaestrAI, along with agent
designs and learning algorithms, in the next section, Section 6.

6 The palaestrAI execution framework

palaestrAI8 is the execution framework. It offers packages to
implement or interface to agents, environments, and simulators.
The main concern of palaestrAI is the orderly and reproducible
execution of experiment runs, orchestrating the different parts of the
experiment run, and storing results for later analysis.

palaestrAI’s Executor class acts as overseer for a series of
experiment runs. Each experiment run is a definition in YAML
format. Experiment run definitions are, in most cases, produced
by running arsenAI on an experiment definition. An experiment
defines parameters and factors; arsenAI them samples from a space
filling design and outputs experiment run definitions, which are
concrente instanciations of the experiment’s factors.

ExperimentRun objects represent such an experiment run
definition as is executed. The class acts as a factory, instanciating
agents alongwith their objectives, environmentswith corresponding
rewards, and the simulator. For each experiment run, the Executor
creates a RunGovernor, which is responsible for governing the run.

8 https://gitlab.com/arl2/palaestrai, retrieved: 2023-01-03.

It takes care of the different stages: For each phase, setup, execution,
and shutdown or reset, and error handling.

The core design decision that was made for palaestrAI is to favor
loose coupling of the parts in order to allow for any control flow.
Most libraries9 enforce anOpenAI-Gym-styleAPI,meaning that the
agent controls the execution:The agent can reset() the environment,
call step(actions) to advance execution, and only has to react to the
step(⋅) method returning done. Complex simulations for CPSs are
often realized as co-simulations, meaning that they couple domain
specific simulators. Through co-simulation software packages like
mosaik (Ofenloch et al., 2022), these simulators can exchange data;
the co-simulation software synchronizes these simulators and takes
care of proper time keeping. This, however, means that palaestrAI’s
agents act just like another simulator from the perspective of the
co-simulation software. The flow of execution is controlled by the
co-simulator.

palaestrAI’s loose coupling is realized using ZeroMQ (Hintjens,
2023), which is a messaging system that allows for a reliable
request-reply patterns, such as the majordomo pattern (Górski,
2022; Hintjens, 2023). palaestrAI starts a message broker
(MajorDomoBroker) before executing any other command; the
modules then either employ amajordomo client (sends a request and
waits for the reply), or the corresponding worker (receives requests,
executes a task, returns a reply). Clients and workers subscribe to
topics, which are automatically created on first usage. This loose

9 cf. Section 2.

Frontiers in Energy Research 09 frontiersin.org

https://doi.org/10.3389/fenrg.2023.1138446
https://gitlab.com/arl2/palaestrai
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles

Veith et al. 10.3389/fenrg.2023.1138446

FIGURE 3
The palaestrAI core framework.

coupling through a messaging bus enables the co-simulation with
any control flow.

In palaestrAI, the agent is split into a learner (Brain) and a
rollout worker (Muscle). The muscle acts within the environment.
It uses a worker, subscribed to the muscle’s identifier as topic
name. During simulation, the muscle receives requests to act with
the current state and reward information. Each muscle then first
contacts the corresponding brain (acting as a client), supplying state
and reward, requesting an update to its policy. Only then does the
muscle infer actions, which constitute the reply to the request to act.
In case of DRL brains, the algorithm trains when experiences are
delivered by the muscle. As many algorithms simply train based on
the size of a replay buffer or a batch of experiences, there is no need
for the algorithm to control the simulation.

But even for more complex agent designs, this inverse control
flow works perfectly fine. The reason stems directly from the MDP:
Agents act in a state, st . Their action at triggers a transition to the
state st+1. I. e, a trajectory is always given by a state, followed by an
action, which then results in the follow-up state. Thus, it is the state
that triggers the agent’s action; the state transition is the result of
applying an agent’s action to the environment. A trajectory always
starts with an initial state, not an initial action, i. e, τ = (s0,a0,…).
Thus, the control flow as it is realized by palaestrAI is actually closer
to the scientific formulation of DRL than the Gym-based control
flow.

In palaestrAI, the SimulationController represents the control
flow. It synchronizes data from the environment with setpoints
from the agents, and different derived classes of the simulation
controller implement data distribution/execution strategies (e.g,
scatter-gather with all agents acting at once, or turn-taking,
etc.)

Finally, palaestrAI provides results storage facilities. Currently,
SQLite for smaller and PostgreSQL for larger simulation projects
are supported, through SQLalchemy10. There is no need to provide
a special interface, and agents, etc. do not need to take care of results
storage.This is thanks to the messaging bus: Since all relevant data is
shared via message passing (e.g, sensor readings, actions, rewards,
objective values, etc.), the majordomo broker simply forwards a
copy of each message to the results storage. This way, the database
contains all relevant data, from the experiment run file through
the traces of all phases to the “brain dumps,” i.e, the saved agent
policies.

Figure 3 shows an excerpt of the palaestrAI software stack with
the packages and classes mentioned until now.

arsenAI’s and palaestrAI’s concept of experiment run phases
allow for flexibility in offline learning or adversarial learning
through autocurricula (Baker et al., 2020). Within a phase, agents

10 https://www.sqlalchemy.org/, retrieved: 2023-01-04.

Frontiers in Energy Research 10 frontiersin.org

https://doi.org/10.3389/fenrg.2023.1138446
https://www.sqlalchemy.org/
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles

Veith et al. 10.3389/fenrg.2023.1138446

can be employed in any combination and any sensor/actuator
mapping. Moreover, agents—specifically, brains—can load “brain
dumps” from other, compatible agents. This enables both offline
learning and autocurricula within an experiment run in distinct
phases.

7 Experimental concept validation

7.1 (Mis-) use cases considered

For initial validation of our approach, we describe twoMUCs in
the power grid domain that constitute clear attacks on normal grid
operation. For both scenarios, we generate experiment definitions
from the MUC; we execute the experiment runs and showcase
the results in Section 8. We believe that this validates the initial
feasibility of our approach. Since we focus on the software part of the
approach, we do not provide extensive analysis of agents that have
learned in an autocurriculumor offline learning scenario versus pure
(single) DRL agent learning scenarios, as we regard this as future
work.

The MUCs considered in this paper are.

• Inducing of artificial congestion as a fascailly motivated attack
on local energy markets
• attacking reactive power controllers by learning oscillating
behavior.

While the first MUC describes an internal misbehaviour
in which the participating actors have the rights to
control their components, while in the second MUC, the
components controlled by the attacking agent have been
corrupted.

7.1.1 Market exploitation misuse case

The first scenario, which is shown in Figure 4, can be described
as a loophole in the operation of local energy markets. Local
energy markets exist to allow operation of a (sub-) grid in a
more efficient manner without needing grid expansion: They
incentivize load shifting or feed-in adjustment to resolve congestion
situation. Whenever the grid operator forecasts a congestion, it
will place an offer on the local energy market for consumption
reduction. Participants can bid on this offer, and if they adjust their
consumption, they will receive compensation according to their
bid.

The loophole exists in market participants artificially creating
the congestion. A group of participants can “game” the market by
creating a bottleneck in their energy community (e.g., by charging
electric vehicles). The grid operator will react by incentivizing load
shifting. Since this load was created without a real need, it is easy for
the crooks to place bids and, once won, follow the new load schedule
in order to receive compensation. This can be repeated easily. The
grid operator, however, is not able to distinguish this from legitimate
demand, since consumers use the appliance they have access to in
any normal case.

7.1.2 Voltage band violation attack through
oscillating reactive power
feed-in/consumption

The second considered scenario describes a different kind
of attack. It is assumed that a attacker already claimed some
components in the energy grid and is able to control them (e.g.,
photovoltaic panels). One of the main tasks in distribution grids is
voltage control. DERs can be used for this through their inverters.

FIGURE 4
Misuse case actor diagram depicting energy market exploitation through artificially created congestions.

Frontiers in Energy Research 11 frontiersin.org

https://doi.org/10.3389/fenrg.2023.1138446
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles

Veith et al. 10.3389/fenrg.2023.1138446

Since the distribution grids have been carrying most of the DER
installations, incorporating these into the voltage control scheme is
an obvious strategy.

DERs also turn voltage control into a distributed task. We do
not propose a new voltage control scheme; instead, we employ
a distributed control scheme that has also been proposed and
used by other authors. Namely, Zhu and Liu (2016) proposed
a distributed voltage control scheme where the reactive power
injection/consumption at a time t at each node is governed by:

q (t+ 1) = [q (t) −D (V (t) − 1)]+, (1)

where the notation [⋅]+ denotes a projection of invalid values to the
range [qg,qg], i.e., to the feasible range of setpoints for q (t+ 1) of
each inverter. D is a diagonal matrix of step sizes.

We denote the attack strategy described by Ju and Lin (2018)
as “hard-coded oscillating attacker behavior.” It can be described
by a simple Mealy automaton with the internal state t, which is a
time-step counter that represents the time the agent remains in a
particular state. We note two states,

Q = {low,high}. (2)

This attacker remains in a particular state until a hold-off time Th
is reached. The hold-off time allows the benign voltage controller to
adjust their reactive power feed-in/consumption, q(t). The attacker
then suddenly inverts its own reactive power control, i. e, switches
between qg and qg.

δ (low, t) =
{{
{{
{

high if t = Th,

low else,
(3)

δ (high, t) =
{{
{{
{

low if t = Th,

high else.
(4)

Thus, q(t, low) = qg and q(t,high) = qg.
In this scenario, the attackerwants to exploit the behavior (=AE)

of the defending agent. Therefore, the attacking agent controls the
assets taken over by him in a way that the voltage level is dropped or
increased. In the next step the voltage band defending agent controls
its assets to compensate the changes applied by the attacking agent.
The attacking agent then operates contrary to his previous action.
Therefore the compensation of the defender leads to an even higher
outcome for the attacker.

In the next iteration the defending agent would again
compensate by an even higher value also contrary to his previous
action. The attacker would repeat his behaviour. These repeated
behaviours then would lead into a pendulum movement of the
voltage band and eventually lead to a loss of function as the deviation
becomes to high to keep the energy grid stable.

For the simulation, we define the reward as a vectorized function
of all bus voltage magnitudes observable by an agent, after all agent
actions are applied:

rs,a (t) = [V1 (t) ,V2 (t) ,…,Vk (t) ,…,Vn (t)]
⊤, ∀Vk (t) :Vk (t) = o ∈Ω

(5)

As the agent’s objective expresses the desired state (i. e, goal)
of the agent, we formulate pΛ(rs,a(t)) such that it induces an
oscillating behavior, where the agent switches between full reactive
power injection and full reactive power consumption within the
boundaries of what the connected inverter is able to yield. Since
we are not bound to formulate the objective in a specific way, we
described this desired behavior by a functionmodeled after a normal
distribution’s probability density function:

g(x,A,μ,C,σ) = A ⋅ exp(−
(x− μ)2

2σ2
−C). (6)

In order to encourage the agent to make use of the oscillating
behavior, we formulate the attacker’s objective by using the reward
machine device (Icarte et al., 2018). That is, we introduce three
states, modeled as a Mealy state machine:

Q = {low,nominal,high}. (7)

The state machines alphabet Σ consists of the reward,

Σ = {r∼s,a =median(rs,a)∀rs,a}. (8)

We transition between the three states based on the current reward
as well as the time the reward machine’s initial state remains the
same. This holdoff time Th is chosen deliberately to give the benign
voltage controllers time to adjust, i. e, to find equilibrium in the
current extreme state the attacker agent has introduced. The state
transition functions are thus.

δ (nominal, t) =

{{{{{{{{{{
{{{{{{{{{{
{

low if r∼s,a ≥ 1.05∧ t = Th,

high if r∼s,a ≤ 0.95∧ t = Th,

nominal else,

(9)

δ (low, t) =
{{{{
{{{{
{

nominal if r∼s,a ≤ 0.88∧ t = Th,

low else,

(10)

δ (high, t) =
{{{{
{{{{
{

nominal if r∼s,a ≥ 1.12∧ t = Th,

high else.

(11)

For each state, we define an objective function based on Eq. 6.

pΛ,nominal (rs,a) = g(r
∼
s,a,−12,1,−10,−0.05), (12)

pΛ,low (rs,a) = g(r
∼
s,a,−14,0.84,−12,−0.08), (13)

pΛ,high (rs,a) = g(r
∼
s,a,−14,1.16,−12,−0.08). (14)

Thevalues forA, μ,C, and σ are chosen by us deliberately to create the
desired effect. Visual inspection of the resulting objective function,
plotted over the voltage band in Figure 5, where the state transitions

Frontiers in Energy Research 12 frontiersin.org

https://doi.org/10.3389/fenrg.2023.1138446
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles

Veith et al. 10.3389/fenrg.2023.1138446

FIGURE 5
Attacker objective as a function of the voltage magnitude, with state transition boundaries.

aremarked by the vertical dashed lines, shows the desired shape that
urges the agent to apply an oscillating behavior to foil simple reactive
power controllers. Essentially, the attacker starts in the state fitting
to the current reward r∼s,a, which will most likely be q = nominal.
As it then works towards over- or under-voltage. If attained, the
agent remains in the state until the holdoff time is reached, all the
while receiving positive objective value for keeping the extreme state.
Note that the objective value will diminish due to the benign voltage
controllers’ actions. Then, q ∈ {low,high} is chosen according to r∼s,a.
With the changed state, the agent receives a lowobjective value and is
subsequently forced to act towards the other extreme voltage region.
The state changes back to q = nominal, the agent’s momentum as
well as the actions by the benign voltage controllers will yield the
transition to the opposite extreme state. Note that δ(⋅) implements a
hysteresis with regards to r∼s,a.

7.2 Experiment setup

To validate the described method, an experimental setup was
build. Therefore the needed information of the misuse cases
described in chapter 7.1 were transferred to the misuse case
template11 described in Section 4. Afterwards this template (written

11 These templates can be found here: https://gitlab.com/arl2/muclearner.

in DOCX format) is exported to a XML-file. The next step is to
then export the required information from this format and paste it
into the YAML experiment description presented in chapter 5. The
considered information in the experimental setup is the objective
as well as the name of the agents. To achieve the correct syntax,
the agents entered objectives are mapped to the syntax of the file
in YAML format. In this experimental setup, the exact input is used.
Therefore, a strict restriction is given.

For our experiment, we additionally employ the MIDAS12

software suite that provides the simulation environment setup:
It incorporates the PySimMods13 software package that contains
numerous models for power grid units, such as batteries,
Photovoltaic (PV) or Combined Heat and Power (CHP) power
plants. The grid model is a CIGRÉ Medium Voltage (MV) grid
model (Rudion et al., 2006).

Each node has a constant load of 342+ j320 kVA attached to;
the loads are not subject to time series, but remain constant in all
experiment scenarios.This constant load accounts for the real power
feed-in that occurs naturally because of the inverter model.The goal
is to maintain an average voltage magnitude close to 1.0 pu on every
bus if no action is taken. This way, the reactive power controllers
suffer no handicap in their ability to feed or consume reactive

12 https://gitlab.com/midas-mosaik/midas, retrieved: 2023-01-04.

13 https://gitlab.com/midas-mosaik/pysimmods, retrieved: 2023-01-04.

Frontiers in Energy Research 13 frontiersin.org

https://doi.org/10.3389/fenrg.2023.1138446
https://gitlab.com/arl2/muclearner
https://gitlab.com/midas-mosaik/midas
https://gitlab.com/midas-mosaik/pysimmods
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles

Veith et al. 10.3389/fenrg.2023.1138446

FIGURE 6
The CIGRÉ MV grid used for the simulation, with attacker nodes marked.

FIGURE 7
STIX visualization of the energy market exploitation through artificial congestion misuse case.

Frontiers in Energy Research 14 frontiersin.org

https://doi.org/10.3389/fenrg.2023.1138446
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles

Veith et al. 10.3389/fenrg.2023.1138446

FIGURE 8
STIX visualization of the voltage band violation attack misuse case.

FIGURE 9
Voltage magnitudes for each experiment phase in the voltage band violation scenario.

power when the attack starts. The power grid has 9 PV power plants
attached at buses 3 to 9, 11, and 13. The PV plants’ output is
dependent on the solar irridation, which is governed by amulti-year
weather dataset from Bremen, Germany14.The PV installations vary
between Ppeak = 8.2 kW to 16.9 kW, with cosφ = 0.9.This represents
smaller PV plants in rural areas as a realistic setup. The individual
values in this range have been chosen so that the reactive power
control scheme can maintain 1.0 pu on all relevant buses without
using the full capability range of the inverters. We have deliberately
chosen not to include any consumers governed by load profiles
in order to make the effect of the controlled inverters visible in
isolation; we rely on the aforementioned constant load to provide
a balanced grid without tap changers or other measures.

The attacker controls the buses 3, 4, and 8, as depicted in
Figure 6. Buses 5, 7, 9, and 11 are governed by the distributed voltage
control scheme. To each attacker and defender bus, a PV plant is
connected.The other buses are not governed by any controller. Each

14 Publicly available from https://opendata.dwd.de/climate_environment/CDC/
observations_germany/climate_urban/hourly/, last accessed on 2022-12-21.

benign voltage controller applies the distributed control law (Zhu
and Liu, 2016) as described in Eq. 1. We have chosenD = 10J for all
experiments as this provides stable operation in all normal cases and
allows the voltage controllers to converge at 1.0 pu quickly.

8 Initial results

After completing theMUC templates, a STIX 2.1 file was created
for both scenarios.The STIX visualization for the local marketMUC
and the oscillating attackMUC is shown inFigures 7, 8, respectively.

From the oscillation MUC, we have derived 10 distinct
simulation phases: Two baseline phases, in which only the
voltage controller acted (with and without time series). Then,
two reproduction phases implementing the voltage controller and
the “hard-coded” oscillating attacker. Three phases then pitched
learning agents as attackers against the voltage controller without
time series for solar irradiation (using DDPG, PPO, and TD3).
Finally, three phases with learning agents against the voltage
controller with time series for PV feed-in (again, using DDPG,
PPO, and TD3). For a more concise naming, we attribute all phases

Frontiers in Energy Research 15 frontiersin.org

https://doi.org/10.3389/fenrg.2023.1138446
https://opendata.dwd.de/climate_environment/CDC/observations_germany/climate_urban/hourly/
https://opendata.dwd.de/climate_environment/CDC/observations_germany/climate_urban/hourly/
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles

Veith et al. 10.3389/fenrg.2023.1138446

TABLE 1 Bus voltage statistics per phase.

Voltage magnitude (V) Voltage change (ΔV) |ΔV|

Baseline (Dynamic Environment) count 11516.000000 11516.000000 11516.000000

mean 0.999872 0.057361 0.090698

std 0.062668 0.097921 0.068207

min 0.811263 −0.433200 0.000000

25% 0.999930 0.010224 0.050958

50% 1.000047 0.082429 0.092514

75% 1.004542 0.109869 0.110435

max 1.108212 0.299196 0.433200

Baseline (Static Environment) count 11516.000000 11516.000000 11516.000000

mean 0.999981 0.072921 0.110966

std 0.001362 0.096093 0.047298

min 0.959793 −0.433243 0.000000

25% 1.000000 0.106728 0.106728

50% 1.000000 0.110000 0.110459

75% 1.000000 0.111117 0.116616

max 1.028069 0.146148 0.433243

DDPG Attacker Test (Dynamic Environment) count 11516.000000 11516.000000 11516.000000

mean 0.995789 0.063267 0.101744

std 0.152639 0.143687 0.119567

min 0.566757 −0.353225 0.000000

25% 0.945417 −0.029111 0.031682

50% 1.022739 0.037074 0.056725

75% 1.115075 0.114114 0.139078

max 1.146148 0.543701 0.543701

DDPG Attacker Test (Static Environment) count 11516.000000 11516.000000 11516.000000

mean 1.107688 −0.072166 0.078247

std 0.014004 0.104255 0.099771

min 0.966473 −0.543701 0.000000

25% 1.106728 −0.110459 0.010518

50% 1.110000 −0.033108 0.034676

75% 1.110459 −0.000402 0.110459

max 1.111117 0.093318 0.543701

Oscillating Attacker Test (Dynamic Environment) count 11516.000000 11516.000000 11516.000000

mean 1.014041 0.023748 0.078241

std 0.187259 0.148614 0.128561

min 0.566757 −0.365138 0.000000

25% 0.943205 −0.032850 0.000048

50% 1.110759 0.000000 0.022270

75% 1.128298 0.000259 0.110939

max 1.146148 0.543701 0.543701

(Continued on the following page)

Frontiers in Energy Research 16 frontiersin.org

https://doi.org/10.3389/fenrg.2023.1138446
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles

Veith et al. 10.3389/fenrg.2023.1138446

TABLE 1 (Continued) Bus voltage statistics per phase.

Voltage magnitude (V) Voltage change (ΔV) |ΔV|

Oscillating Attacker Test (Static Environment) count 11516.000000 11516.000000 11516.000000

mean 1.107784 −0.061371 0.069888

std 0.013851 0.102469 0.096860

min 0.966473 −0.543701 0.000000

25% 1.106728 −0.110459 0.000000

50% 1.110000 −0.000025 0.027149

75% 1.110459 0.000000 0.110459

max 1.111117 0.111526 0.543701

PPO Attacker Test (Dynamic Environment) count 11516.000000 11516.000000 11516.000000

mean 1.040090 0.011982 0.071037

std 0.093043 0.102387 0.074700

min 0.769513 −0.365138 0.000000

25% 0.932489 −0.036045 0.015108

50% 1.089641 0.003176 0.039290

75% 1.113058 0.044599 0.105719

max 1.146148 0.326380 0.365138

PPO Attacker Test (Static Environment) count 11516.000000 11516.000000 11516.000000

mean 1.092604 −0.053452 0.074535

std 0.019241 0.108056 0.094750

min 0.916199 −0.543701 0.000000

25% 1.085396 −0.101075 0.014728

50% 1.096973 −0.004827 0.040984

75% 1.105993 0.016971 0.101154

max 1.111117 0.125942 0.543701

TD3 Attacker Test (Dynamic Environment) count 11516.000000 11516.000000 11516.000000

mean 1.043524 0.018580 0.081877

std 0.113429 0.118515 0.087673

min 0.865940 −0.299182 0.000000

25% 0.878356 −0.032807 0.002785

50% 1.110759 −0.000204 0.034394

75% 1.128298 0.105044 0.133033

max 1.146148 0.244519 0.299182

TD3 Attacker Test (Static Environment) count 11516.000000 11516.000000 11516.000000

mean 1.107784 −0.060843 0.069028

std 0.013851 0.101105 0.095703

min 0.966473 −0.543701 0.000000

25% 1.106728 −0.110459 0.000000

50% 1.110000 −0.000144 0.025354

75% 1.110459 0.000000 0.110459

max 1.111117 0.109631 0.543701

Frontiers in Energy Research 17 frontiersin.org

https://doi.org/10.3389/fenrg.2023.1138446
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles

Veith et al. 10.3389/fenrg.2023.1138446

TABLE 2 Number of voltage band violations.

V < 0.96p.u. V > 1.04p.u. Total violations

Phase

DDPG Attacker Test (Dynamic Environment) 4554 5397 9951

DDPG Attacker Test (Static Environment) 0 11333 11333

Oscillating Attacker Test (Dynamic Environment) 3519 7780 11299

Oscillating Attacker Test (Static Environment) 0 11333 11333

PPO Attacker Test (Dynamic Environment) 3360 7263 10623

PPO Attacker Test (Static Environment) 15 11277 11292

TD3 Attacker Test (Dynamic Environment) 3248 7454 10702

TD3 Attacker Test (Static Environment) 0 11333 11333

without time series as “static” and those with time series data as
“dynamic.”

Figure 9 shows a box plot of the voltagemagnitudes at the victim
buses for each phase. The boxplot is based on the raw data available
in Table 1. Additionally, Table 2 counts the voltage band violations
for each phase.

The baseline phases verify that the reactive power controller
works, because apart from some outliers that are due to initial swing-
in behavior of the controller (cf. also the baseline in Figure 10),
voltage median is at 1.0 pu.

All “attacker” boxes in Figure 9 show deviation from 1.0 pu.The
hard-coded oscillating attacker sets the Voltage Magnitude (VM)
median value to ≈ 1.1 pu in the “static” as well as in the “dynamic”
environment phase. From this, we infer that the attack was indeed
effective. The maximum VM in terms of voltage is 1.11 pu for the
static, and 1.146 pu in the dynamic case. As the only difference
between the two phases the introduction of time series, we believe
that, in general, the hard-coded oscillating behavior amplifies the
effect of change in solar irradiation over the day. However, due to the
hard-codednature of the simple attacker, finding the “right”moment
to leverage, e. g, sunrise happens most probably by coincidence,
since Th is static.

The Oscillating Attacker phases in Figures 9, 10 serve as an
additional baseline in order to reproduce and ascertain the attack
documented by Ju and Lin (2018). As the effects of this kind of attack
have already been published, these phases serve as a validation of our
simulation set-up and baseline for comparison.Thus, we believe that
the effectiveness of the original attack has been reproduced, and the
relationship (Ju and Lin, 2018) holds:

lim
Th→∞
[Vb (Th + 1)] = −2 [X] q̄, (15)

where Th is the hold-off time of the attacker (usually until the victim
buses have reached equilibrium), X is the reactance of the subgrid
with the attackers as root nodes, and q̄ represents the extreme
reactive power value of the attacker (either feed-in or consumption).

Through Figure 9, we can compare these baselines to the phases
in which the learning agents are employed. All algorithms also
obtain a maximum VM of 1.1 pu and 1.146 pu (static and dynamic
environment, respectively), which seems to be the maximum

attainable VM for our simulation setup. Considering the VM ranges
obtained by the learning agents, the highmediumVM, which are on
par with the hard-coded oscillating attacker (with the exception of
DDPG in the dynamic environment), the simulation results indicate
that the learning agents have discovered an attack.

As scenario 2 enables time series for solar irradiation, we observe
that good timing of the oscillation increases the deviating effect on
the voltage band, most probably owing to the real-power feed-in
happens in addition to the effect of the reactive power curve on
voltage levels.

Scenarios 3 and 4 replace the simple oscillating attacker with
an DRL-based agent. The phases are, in accordance, labeled from
the algorithm that was employed: DDPG, PPO, or TD3. Again,
Figure 9 establishes that each agent was able to generate an effect
that can be seen as an attack to the power grid. Each produced the
same maximum voltage level, with DDPG obtaining the exact same
under-voltage level and in general similar values—albeit with a lower
median, close to 1.0 pu—as the simple oscillating attacker. Notably,
PPO- and TD3-based attackers did not produce any outliers while
maintaining a high median in the dynamic environment. The box
plot of the TD3-based attacker suggests that this is the deadliest
attacker, obtaining a high voltage band deviation (median VM, no
outliers) throughout the simulation runs.

In order to verify our imitation learning hypothesis, we must
establish whether the agents have actually learned to attack. The
most commonly used method to infer whether an agent has learned
to reach a certain objective is to analyze its objective function, which
is the agent-specific reward for a state transition, considering its
goal. We have already described the employed attacker objective in
Eq. 12. Figure 11 plots the objective function (raw objective as well
as moving average) for all four attacker phases for the “dynamic”
grid, i. e, with time series for solar irradiation.

The objective plot of the simple oscillating attacker is
straightforward, showing the oscillation clearly during the night,
when the PV inverters’ capabilities directly influence the grid.
During the day, the real power feed-in leads to over-voltage, no
longer making the oscillating behavior effective or even visible.

DRL essentially solves the optimization problem, that each
algorithm ultimately attempts to find an optimal policy π* by
maximizing the agent’s objective function. We can therefore

Frontiers in Energy Research 18 frontiersin.org

https://doi.org/10.3389/fenrg.2023.1138446
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles

Veith et al. 10.3389/fenrg.2023.1138446

FIGURE 10
Setpoints of the attackers’ actuators as well as the obtained objective value. Note that the graphs contain an intentional time gap between 00:50 and
03:15.

infer the attacker agents’ policy from the objective function
plots.

Both the DDPG-based as well as the PPO-based agent have
derived a policy that incorporates an oscillating behavior. Although
theDDPG-based agentwas not able to yield behavior that came close
to the original attack, with only mediocre average objective values.

The PPO-trained agent, on the other hand, obtained higher
average objective values while still showing the oscillating behavior
of the original attack. It obtained reliable over- and undervoltages.
From the shape of the objective function (cf. Figure 5), we know
that residing in extreme values is discouraged by the objective (and
values close to 1.0 pu are penalized). PPO takes advantage of daytime
solar irradiation but maintains the oscillating behavior even during
midday.

TD3 shows to be the most interesting of all attackers. The
TD3-based attacker has learned no oscillating behavior at all.

However, the policy obtained by training with TD3 manages to
yield consistently high objective values. By simple deduction, we can
therefore infer that the oscillating behavior of malicious inverters is
not necessary to yield appropriate damage to victim buses.

Investigating actual agent behavior during two timeframes in
Figure 10 in combination with data displayed in Figures 9, 11
gives rise to the hypothesis that (1) damaging the power grid
does not need oscillating behavior, (2) can have an equally high
impact, and (3) is potentially more dangerous as it does need several
oscillating steps, thus making it more surprising for benign buses
and the grid operator. None of the learning agents possessed any
domain knowledge or had access to sensors apart from its own,
node-local ones. While the TD3-based agent has simply learned
a vector of setpoints that will eventually prove to be fatal, the
DDPG-based attacker’s slight oscillations cause the benign reactive
power controller to yield stark oscillating behavior, too.

Frontiers in Energy Research 19 frontiersin.org

https://doi.org/10.3389/fenrg.2023.1138446
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles

Veith et al. 10.3389/fenrg.2023.1138446

FIGURE 11
Attacker objective function, plotted over simulation time. Light colors depict absolute values, bold lines the moving avarage with a window of 100 steps.

9 Discussion

Our approach creates a bridge between informal modelling
of domain expert knowledge in terms of scenarios to rigorous
experimentation with learning agents. The second MUC—the one
that shows the oscillation attack—is a simple, yet comprehensive
scenario that allows to verify the general hypothesis, that MUCs can
be part of a immediate pipeline allowing to train agents in an offline
learning or autocurriculum.

Our initial approach outlined in this article uses an expert
through the objective as a simple form of imitation learning,
specifically, behavior cloning. The objective we presented in the
experimental validation is a very focused one, based on the behavior
we model in the MUC. It is based on an already known behavior,
specifically created to teach the agent an exact strategy. However, the
DRL agents have discovered another behavior that led to the same
goal, but exhibited a different behavior, even though the objective
was not changed between phases.While PPO immitated the original
strategy quite well, did TD3 resort to fixed setpoints that maximized
reward without oscillating. Considering a “following the goal by
intention,” this makes the TD3-based agent the potentially most
destructive one, as it avoids steep gradients, which would quickly
alert the grid operator, because they violate grid codes. Therefore,
we assume that using the agent’s objective as expert for behavior
cloning is not only effective, but also does not hinder the agent in
devision new attack vectors when it has the chance to interact with
the environment.

Nevertheless, it is not known whether an agent would have
learned a different strategy to achieve the goal without the
specified behavior. Therefore, running additional experiments

without predefined trajectories might be beneficial in cases where a
general approach without specified behaviour is wanted. Regardless
of this, the approach presented here can still be useful in such a
situation because general concepts can be passed as trajectories that
do not describe a direct, goal-directed action. An example is bidding
on a local market, which does not yet describe misbehavior, but
conveys the basic concepts for dealing with the market to the agent.

The most cumbersome part of our approach is the fact that the
domain expert still needs a MUC modelling expert familiar with
our approach to apply the correct stereotypes and to ensure that
the correct XML/XMI file is created. Otherwise, depending on the
severity of the syntax and semantic errors, our approach might lead
to wrong learned behaviour or not executable experiments. Still, this
technical breakthrough allows extension now that baseline scenarios
have been established. For example, a direction of research could
employ text recognition in the way ChatGPT was trained to arrive
at properly formatted MUCs from non-precise wording.

10 Conclusion and future work

In this article, we have demonstrated a software framework
that enables sound experimentation from MUC descriptions and
embedded diagrams. Our approach enables domain experts to
model scenarios, which are then analyzed by using learning agents.
Moreover, our approach enables autocurricula and a limited form
of offline learning by imitation learning with experts through the
agents’ objectives. We have furthermore shown two MUCs, which
have been converted into experiment definitions; one scenario has
been extensively simulated and analyzed.

Frontiers in Energy Research 20 frontiersin.org

https://doi.org/10.3389/fenrg.2023.1138446
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles

Veith et al. 10.3389/fenrg.2023.1138446

For future work, we will construct trajectories from sequence
diagrams, extending the offline learning approach significantly. It
might also be interesting to examine whether agents learn different
strategies in the same environment when provided with knowledge
through this approach, or whether, given sufficient training time,
both procedures lead to the same behavior. As such, we plan to
extend the MIDAS benchmark environment further, adding more
domains, such as ICT.We will then build a repository of MUCs, and
likewise, agents trained on there MUCs.

We expect to open the domain of online learning, or, more
specifically, lifelong learning at this point. Agents can learn from
multiple MUCs (not just one MUC per agent). However, this will
surely lead the agents to encounter the plasticity-stability dilemma,
where agents need to retrain learned behavior while learning
new tasks. We will verify and analyze this, and propose a more
complex agent that is able to incorporate knowledge from multiple
MUCs.

Data availability statement

The datasets presented in this study can be found in online
repositories.The names of the repository/repositories and accession
number(s) can be found below: https://gitlab.com/arl-experiments.

Author contributions

EV contributed the introduction, sections on DRL, the
descriptions of arsenAI and palaestrAI, as well as the execution and
analysis of the oscillating voltage attack. AW contributed sections on
the MUCs and the converter for MUC/XML to arsenAI experiment

file. MU transferred theMUCmethodology to power grid scenarios
in general. He co-designed the MUCs for the scenarios described in
this article.

Funding

This work has been funded by the German Federal Ministry
for Education and Research (Bundesministerium für Bildung und
Forschung, BMBF) under the project grant Adversarial Resilience
Learning (01IS22071). The work on the Misuse Case Methodology
has been funded by the German Federal Ministry for Economic
Affairs and Climate Action (Bundesministerium für Wirtschaft
und Klimaschutz, BMWK) under the project grant RESili8
(03EI4051A).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those
of the authors and do not necessarily represent those of
their affiliated organizations, or those of the publisher,
the editors and the reviewers. Any product that may be
evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

References

Adawadkar, A. M. K., and Kulkarni, N. (2022). Cyber-security and reinforcement
learning — a brief survey. Cyber-security Reinf. Learn. — a brief Surv. 114, 105116.
doi:10.1016/j.engappai.2022.105116

Apoorva, M., Eswarawaka, R., and Reddy, P. V. B. (2017). “A latest comprehensive
study on structured threat information expression (STIX) and trusted automated
exchange of indicator information (TAXII),” in Proceedings of the 5th International
Conference on Frontiers in Intelligent Computing: Theory and Applications. Advances
in intelligent systems and computing. Editors S. C. Satapathy, V. Bhateja, S. K. Udgata,
and P. K. Pattnaik, 477–482. doi:10.1007/978-981-10-3156-4_49

Baker, B., Kanitscheider, I., Markov, T., Wu, Y., Powell, G., McGrew, B., et al. (2020).
“Emergent tool use from multi-agent autocurricula,” in International Conference on
Learning Representations.

Barnum, S. (2012). Standardizing cyber threat intelligence information with the
structured threat information expression (STIX).Mitre Corp. 11, 1–22.

Berghout, T., Benbouzid, M., and Muyeen, S. M. (2022). Machine learning for
cybersecurity in smart grids: A comprehensive review-based study on methods,
solutions, and prospects. prospects 38, 100547. doi:10.1016/j.ijcip.2022.100547

Briliyant, O. C., Tirsa, N. P., and Hasditama, M. A. (2021). “Towards an automated
dissemination process of cyber threat intelligence data using STIX,” in 2021 6th
International Workshop on Big Data and Information Security (IWBIS), 109–114.
doi:10.1109/IWBIS53353.2021.9631850

Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., et al.
(2016). Openai gym.

Bush, S. F. (2014). Smart grid: Communication-enabled intelligence for the electric
power grid. IEEE. Chichester, UL: John Wiley & Sons.

Castro, P. S., Moitra, S., Gelada, C., Kumar, S., and Bellemare, M. G. (2018).
Dopamine: A research framework for deep reinforcement learning.

Clausen, M., Apel, R., Dorchain, M., Postina, M., and Uslar, M. (2018). Use case
methodology: A progress report. Energy Inf. 1, 19–283. doi:10.1186/s42162-018-0036-0

Cockburn, A. (2001).Writing effective use cases. London, UK: Pearson Education).

Connolly, J., Davidson, M., and Schmidt, C. (2014).The trusted automated exchange
of indicator information (TAXII) (The MITRE Corporation), 1–20.

Fischer, L., Memmen, J. M., Veith, E. M., and Tröschel, M. (2019). “Adversarial
resilience learning—Towards systemic vulnerability analysis for large and complex
systems,” in ENERGY 2019,TheNinth International Conference on Smart Grids, Green
Communications and IT Energy-aware Technologies (IARIA XPS Press), 24–32.

Frost, E., Veith, E. M., and Fischer, L. (2020). “Robust and deterministic scheduling
of power grid actors,” in 7th International Conference on Control, Decision and
Information Technologies (CoDIT) (IEEE), 1–6.

Fujimoto, S., Hoof, H., and Meger, D. (2018). “Addressing function approximation
error in actor-critic methods,” in Proceedings of the 35th International Conference on
Machine Learning (PMLR), 1587–1596 (Stockholm, Sweden: ISSN), 2640–3498.

Gauci, J., Conti, E., Liang, Y., Virochsiri, K., Chen, Z., He, Y., et al. (2018).
Horizon: Facebook’s open source applied reinforcement learning platform. arXiv preprint
arXiv:1811.00260.

Górski, T. (2022). Uml profile for messaging patterns in service-oriented
architecture, microservices, and internet of things. Appl. Sci. 12, 12790.
doi:10.3390/app122412790

Frontiers in Energy Research 21 frontiersin.org

https://doi.org/10.3389/fenrg.2023.1138446
https://gitlab.com/arl-experiments
https://doi.org/10.1016/j.engappai.2022.105116
https://doi.org/10.1007/978-981-10-3156-4_49
https://doi.org/10.1016/j.ijcip.2022.100547
https://doi.org/10.1109/IWBIS53353.2021.9631850
https://doi.org/10.1186/s42162-018-0036-0
https://doi.org/10.3390/app122412790
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles

Veith et al. 10.3389/fenrg.2023.1138446

Gottschalk, M., Uslar, M., and Delfs, C. (2017). The use case and smart grid
architecture model approach: The IEC 62559-2 use case template and the SGAM applied
in various domains. Springer.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. (2018). Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor.

Hessel, M., Modayil, J., Van Hasselt, H., Schaul, T., Ostrovski, G., Dabney, W., et al.
(2018). “Rainbow: Combining improvements in DQN,” in The Thirty-Second AAAI
Conference on Artificial Intelligence (AAAI-18), 3215–3222.

Hintjens, P. (2023). 0MQ— the guide, 4. Sebastopol, CA: O'Reilly.

Holly, S., Nieße, A., Tröschel, M., Hammer, L., Franzius, C., Dmitriyev, V., et al.
(2020). Flexibility management and provision of balancing services with battery-
electric automated guided vehicles in the Hamburg container terminal Altenwerder
(SpringerOpen). Energy Inf.

Hong, J., Liu, C.-C., and Govindarasu, M. (2014). “Detection of cyber intrusions
using network-based multicast messages for substation automation,” in Isgt 2014, 1–5.
doi:10.1109/ISGT.2014.6816375

Hu, L., Wang, Z., Han, Q.-L., and Liu, X. (2018). State estimation under false data
injection attacks: Security analysis and system protection. Automatica 87, 176–183.
doi:10.1016/j.automatica.2017.09.028

Huang, B., Cardenas, A. A., and Baldick, R. (2019). “Not everything is dark and
gloomy: Power grid protections against IoT demand attacks,” in Procedings of the
28th USENIX Security Symposium, Santa Clara, CA, USA (Berkeley, CA: Usenix
Association).

Icarte, R. T., Klassen, T., Valenzano, R., and McIlraith, S. (2018). “Using reward
machines for high-level task specification and decomposition in reinforcement
learning,” in Proceedings of the 35th International Conference on Machine Learning
(Stockholm, Sweden: PMLR), 2107–2116.

IEA (2019). Status of power system transformation 2019. Paris, France: resreport, IEA.
CC-BY-SA 4.0.

Inayat, U., Zia, M. F., Mahmood, S., Berghout, T., and Benbouzid, M. (2022).
Cybersecurity enhancement of smart grid: Attacks, methods, and prospects. Attacks,
methods, prospects 11, 3854. doi:10.3390/electronics11233854

Ju, P., and Lin, X. (2018). “Adversarial attacks to distributed voltage control in
power distribution networks with DERs,” in Proceedings of the Ninth International
Conference on Future Energy Systems, 291–302. doi:10.1145/3208903.3208912

Kuhnle, A., Schaarschmidt, M., and Fricke, K. (2017). Tensorforce: A tensorflow
library for applied reinforcement learning.

Levine, S., Kumar, A., Tucker, G., and Fu, J. (2020). Offline reinforcement
learning: Tutorial, review, and perspectives on open problems. arXiv.
doi:10.48550/arXiv.2005.01643

Liang, E., Liaw, R., Nishihara, R., Moritz, P., Fox, R., Goldberg, K., et al.
(2018). “RLlib: Abstractions for distributed reinforcement learning,” in International
Conference on Machine Learning (ICML).

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., et al.
(2016). “Continuous control with deep reinforcement learning,” in 4th International
Conference on Learning Representations, ICLR 2016 - Conference Track Proceedings.

Liu, Y., Ning, P., and Reiter, M. K. (2011). False data injection attacks against state
estimation in electric power grids. ACM Trans. Inf. Syst. Secur. (TISSEC) 14, 1–33.
doi:10.1145/1952982.1952995

Mahela, O. P., Khosravy, M., Gupta, N., Khan, B., Alhelou, H. H., Mahla, R., et al.
(2022). Comprehensive overview of multi-agent systems for controlling smart grids.
CSEE J. Power Energy Syst. 8, 115–131. doi:10.17775/CSEEJPES.2020.03390

Mathas, C.-M., Vassilakis, C., Kolokotronis, N., Zarakovitis, C. C., and Kourtis, M.-
A. (2021). On the design of IoT security: Analysis of software vulnerabilities for smart
grids.MDPI Energies 14, 2818. doi:10.3390/en14102818

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., et al.
(2013). Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602.

Nair, A. S., Hossen, T., Campion, M., Selvaraj, D. F., Goveas, N., Kaabouch, N., et al.
(2018). Multi-agent systems for resource allocation and scheduling in a smart grid.
Technol. Econ. Smart Grids Sustain. Energy 3, 15. doi:10.1007/s40866-018-0052-y

Neureiter, C., Engel, D., Trefke, J., Santodomingo, R., Rohjans, S., and Uslar, M.
(2014). “Towards consistent smart grid architecture tool support: From use cases to
visualization,” in IEEE PES Innovative Smart Grid Technologies, Europe (IEEE), 1–6.

OASIS Open Cyber Threat Intelligence Committee (2022). Introduction to STIX.
Availableat: https://oasis-open.github.io/cti-documentation/stix/intro (Accessed 02
2023, 01).

Ofenloch, A., Schwarz, J. S., Tolk, D., Brandt, T., Eilers, R., Ramirez, R., et al. (2022).
“Mosaik 3.0: Combining time-stepped and discrete event simulation,” in 2022 Open
Source Modelling and Simulation of Energy Systems (Piscataway, NJ: OSMSES), 1–5.
doi:10.1109/OSMSES54027.2022.9769116

OMG Group (2005). XmiTM: Xml metadata interchange. web page.

Peng, X. B., Kumar, A., Zhang, G., and Levine, S. (2019). Advantage-
weighted regression: Simple and scalable off-policy reinforcement learning. arXiv.
doi:10.48550/arXiv.1910.00177

Pronzato, L., and Walter, E. (1988). Robust experiment design via maximin
optimization.Math. Biosci. 89, 161–176. doi:10.1016/0025-5564(88)90097-1

Prudencio, R. F., Maximo, M. R. O. A., and Colombini, E. L. (2022). A survey
on offline reinforcement learning: Taxonomy, review, and open problems. arXiv.
doi:10.48550/arXiv.2203.01387

Raffin,A.,Hill, A., Gleave, A., Kanervisto, A., Ernestus,M., andDormann,N. (2021).
Stable-baselines3: Reliable reinforcement learning implementations. J. Mach. Learn.
Res. 22, 1–8.

Roberts, C., Ngo, S.-T., Milesi, A., Peisert, S., Arnold, D., Saha, S., et al.
(2020). “Deep reinforcement learning for DER cyber-attack mitigation,”
in 2020 IEEE International Conference on Communications, Control, and
Computing Technologies for Smart Grids (Piscataway, NJ: SmartGridComm),
1–7. doi:10.1109/SmartGridComm47815.2020.9302997

Roberts, C., Ngo, S.-T., Milesi, A., Scaglione, A., Peisert, S., and Arnold, D.
(2021). “Deep reinforcement learning for mitigating cyber-physical der voltage
unbalance attacks,” in 2021 American Control Conference (ACC), 2861–2867.
doi:10.23919/ACC50511.2021.9482815

Roche, R., Lauri, F., Blunier, B., Miraoui, A., and Koukam, A. (2013). Multi-agent
technology for power system control. J. Abbr. Green Energy Technol. 59, 567–609.
doi:10.1007/978-1-4471-5104-3_15

Rudion, K., Orths, A., Styczynski, Z., and Strunz, K. (2006). “Design of benchmark of
medium voltage distribution network for investigation of dg integration,” in 2006 IEEE
Power Engineering Society General Meeting, 6–14. doi:10.1109/PES.2006.1709447

Santodomingo, R., Uslar, M., Göring, A., Gottschalk, M., Nordström, L., Saleem,
A., et al. (2014). “SGAM-based methodology to analyse smart grid solutions in
discern European research project,” in 2014 IEEE International Energy Conference
(ENERGYCON IEEE), 751–758.

Schrittwieser, J., Antonoglou, I., Hubert, T., Simonyan, K., Sifre, L.,
Schmitt, S., et al. (2019). Mastering Atari, Go, chess and shogi by planning
with a learned model. Nature 588, 604–609. doi:10.1038/s41586-020-
03051-4

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. (2017). Proximal
policy optimization algorithms. doi:10.48550/arXiv.1707.06347

Schütz, J., Clausen, M., Uslar, M., and Gómez, J. M. (2021). “IEC 62559-2 use
case template-based smart grid architecture analytics,” in CIRED 2021-The 26th
International Conference and Exhibition on Electricity Distribution (IET), 2935–2939.

Seno, T., and Imai,M. (2022). d3rlpy: An offline deep reinforcement learning library.
J. Mach. Learn. Res. 23, 1–20.

Silver, D., Huang, A.,Maddison, C. J., Guez, A., Sifre, L., VanDenDriessche, G., et al.
(2016a). Mastering the game of Go with deep neural networks and tree search. Nature
529, 484–489. doi:10.1038/nature16961

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., et al. (2017).
A general reinforcement learning algorithm that masters chess, shogi, and Go through
self-play. Science 362, 1140–1144. doi:10.1126/science.aar6404

Silver, D., Schrittwieser, J., Simonyan, K., Nature, I. A., Huang, A., Guez, A., et al.
(2016b). Mastering the game of Go without human knowledge. Nature 550, 354–359.
doi:10.1038/nature24270

Sindre, G., and Opdahl, A. L. (2005). Eliciting security requirements with misuse
cases. Requir. Eng. 10, 34–44. doi:10.1007/s00766-004-0194-4

Sindre, G., and Opdahl, A. L. (2001). “Templates for misuse case description,”
in Proceedings of the 7th International Workshop on Requirements Engineering,
Switzerland (Foundation for Software Quality (REFSQ’2001).

Soltan, S., Mittal, P., and Poor, V. H. (2018). “BlackIoT: IoT botnet of high wattage
devices can disrupt the power grid | USENIX,” in Proceedings of the 28th Usenix
Security Symposium, Baltimore, MA, USA (Berkeley, CA: Usenix Association).

Styczynski, J., and Beach-Westmoreland, N. (2016). When the lights went out:
Ukraine cybersecurity threat briefing. Booz Allen Hamilt. 12, 20.

Sun, C.-C., Hahn, A., and Liu, C.-C. (2018). Cyber security of a power grid: State-
of-the-art. State-of-the-art 99, 45–56. doi:10.1016/j.ijepes.2017.12.020

Sutton, R. S., and Barto, A. G. (2018). Reinforcement learning: An introduction. MIT
press.

The MITRE Corporation (2022). Mitre ATT&CK R©. Availableat:
https://attack.mitre.org/ (Accessed 02 2023, 01).

Tiemann, P. H., Nebel-Wenner, M., Holly, S., Frost, E., Jimenez Martinez, A., and
Nieße, A. (2022). Operational flexibility for multi-purpose usage of pooled battery
storage systems. Energy Inf. 5, 14. doi:10.1186/s42162-022-00209-4

Trefke, J., Rohjans, S., Uslar, M., Lehnhoff, S., Nordström, L., and Saleem, A. (2013).
“Smart grid architecture model use case management in a large European smart grid
project,” in IEEE PES ISGT Europe 2013 (IEEE), 1–5.

vanAmelsvoort,M. A. (2016). SG-rating–putting values on smart grid architectures.
it-Information Technol. 58, 29–36. doi:10.1515/itit-2015-0044

van Amelsvoort, M., Delfs, C., and Uslar, M. (2015). “Application of the
interoperability score in the smart grid domain,” in 2015 IEEE 13th International
Conference on Industrial Informatics (INDIN) (IEEE), 442–447.

Frontiers in Energy Research 22 frontiersin.org

https://doi.org/10.3389/fenrg.2023.1138446
https://doi.org/10.1109/ISGT.2014.6816375
https://doi.org/10.1016/j.automatica.2017.09.028
https://doi.org/10.3390/electronics11233854
https://doi.org/10.1145/3208903.3208912
https://doi.org/10.48550/arXiv.2005.01643
https://doi.org/10.1145/1952982.1952995
https://doi.org/10.17775/CSEEJPES.2020.03390
https://doi.org/10.3390/en14102818
https://doi.org/10.1007/s40866-018-0052-y
https://oasis-open.github.io/cti-documentation/stix/intro
https://doi.org/10.1109/OSMSES54027.2022.9769116
https://doi.org/10.48550/arXiv.1910.00177
https://doi.org/10.1016/0025-5564(88)90097-1
https://doi.org/10.48550/arXiv.2203.01387
https://doi.org/10.1109/SmartGridComm47815.2020.9302997
https://doi.org/10.23919/ACC50511.2021.9482815
https://doi.org/10.1007/978-1-4471-5104-3_15
https://doi.org/10.1109/PES.2006.1709447
https://doi.org/10.1038/s41586-020-03051-4
https://doi.org/10.1038/s41586-020-03051-4
https://doi.org/10.48550/arXiv.1707.06347
https://doi.org/10.1038/nature16961
https://doi.org/10.1126/science.aar6404
https://doi.org/10.1038/nature24270
https://doi.org/10.1007/s00766-004-0194-4
https://doi.org/10.1016/j.ijepes.2017.12.020
https://doi.org/10.1186/s42162-022-00209-4
https://doi.org/10.1515/itit-2015-0044
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles

Veith et al. 10.3389/fenrg.2023.1138446

Veith, E., Fischer, L., Tröschel, M., and Nieße, A. (2019). “Analyzing cyber-physical
systems from the perspective of artificial intelligence,” in Proceedings of the 2019
International Conference on Artificial Intelligence, Robotics and Control (ACM).

Veith, E. M., Balduin, S., Wenninghoff, N., Tröschel, M., Fischer, L., Nieße, A.,
et al. (2020). “Analyzing power grid, ICT, and market without domain knowledge using
distributed artificial intelligence,” in CYBER 2020, The Fifth International Conference
on Cyber-Technologies and Cyber-Systems (Red Hook, NY: IARIA XPS Press), 86–93.

Veith, E. M. (2017). Universal smart grid agent for distributed power generation
management. Berlin, Germany: Logos Verlag Berlin GmbH.

Wan, Z., Li, H., Shuai, H., Sun, Y. L., and He, H. (2021). “Adversarial
attack for deep reinforcement learning based demand response,” in 2021
IEEE Power & Energy Society General Meeting (PESGM), 1–5. doi:10.1109/
PESGM46819

Wang, Z., He, H., Wan, Z., and Sun, Y. (2021). “Coordinated topology attacks in
smart grid using deep reinforcement learning,” in ConferenceName: IEEETransactions
on Industrial Informatics, 1407–1415. doi:10.1109/TII.2020.2994977

Wolgast, T., Veith, E. M., and Nieße, A. (2021). “Towards reinforcement
learning for vulnerability analysis in power-economic systems,” in DACH+
Energy Informatics 2021: The 10th DACH+ Conference on Energy
Informatics.

Woltmann, S., andKittel, J. (2022). Development and implementation ofmulti-agent
systems for demand response aggregators in an industrial context. Appl. Energy 314,
118841. doi:10.1016/j.apenergy.2022.118841

Zhu, H., and Liu, H. J. (2016). Fast local voltage control under limited reactive
power: Optimality and stability analysis. IEEE Trans. Power Syst. 31, 3794–3803.
doi:10.1109/TPWRS.2015.2504419

Frontiers in Energy Research 23 frontiersin.org

https://doi.org/10.3389/fenrg.2023.1138446
https://doi.org/10.1109/PESGM46819
https://doi.org/10.1109/PESGM46819
https://doi.org/10.1109/TII.2020.2994977
https://doi.org/10.1016/j.apenergy.2022.118841
https://doi.org/10.1109/TPWRS.2015.2504419
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles

