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This paper proposes a two-stage planningmethod of distributed generation based
on coordinated recovery of load partition to improve the resilience of the power
grid in extremeweather. Themethod includes a scenario generationmodel and an
optimization model. In the first stage, a scenario generation model is established,
including the distributed generation output and line failure models, to obtain the
power output and line status in different scenarios with different weather. Then, an
optimal subnetwork screening robust optimization model is built to screen the
optimal subnetworks for the deployment of distributed generation in each
scenario. In the second stage, a node location optimization model is
developed to obtain the optimal node locations for deploying distributed
generation within the subnetwork, aiming at maximizing the recovery
efficiency of critical loads. Case studies based on a modified IEEE 30-bus
system are used to demonstrate the effectiveness of the proposed method.
The findings show that the recovered load and recovery efficiency of the
power system can be significantly improved.
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1 Introduction

Extreme disasters have occurred frequently in recent years, seriously endangering the
safe and stable operation of power systems (Ummenhofer and Meehl, 2017). Power systems
are often subjected to large-scale cracking after being affected by damage to lines, towers, or
electrical equipment under extreme disasters (Geng et al., 2021), triggering major power
outages and causing huge economic losses (Ma et al., 2016; Chang and Liu, 2021). At this
time, it often happens that there is an insufficient power supply for important loads and no
power supply for general loads within each subnetwork of the power grid, and it is impossible
to exchange power with the outside world through contact lines for a short period of time. In
such cases, we can only restore the power supply to the important loads as much as possible
through the existing distributed power sources and undamaged lines. Therefore, for this
situation, advance planning of the specific location of distributed power sources in the grid is
necessary to enhance the resilience of the grid. At the same time, deep decarbonization of the
power system is imperative (Chen et al., 2020). In the context of the new power system with
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new energy sources as the mainstay, the proportion of outbound
clean power and local distributed generation (DG) in the urban grid
will increase and take a dominant position. When compared with
the traditional distribution grid, DG sources not only have the
characteristics of flexibility, environmental protection, and
economy but can also continue to supply power to the load in
case of grid failure. Power system resilience is the ability of the power
system to prevent, resist, and quickly recover from small
probability–high loss extreme disasters (Bie et al., 2020).
Improving the power system resilience (Li et al., 2019) can
greatly reduce the adverse effects of extreme disasters on people’s
life and property safety.

During extreme weather, the available DG in the urban grid can
become an important support for the black start of the grid and
contribute to the resilience of the urban grid. Therefore, for different
disaster types after an extreme disaster, studying the role of DG in
the grid recovery process and planning the location of DG rationally
would help improve the resilience level of the urban grid. Load
partition recovery, as a load recovery strategy, could quickly and
reliably restore power to important loads and enhance the level of
system resilience during the post-disaster recovery phase.

For power planning, scholars have focused on improving the
economy and reliability of power systems. In terms of economics,
Qing et al. (2014), Zhang et al. (2015), and Ding et al. (2019) have
established a power system planning model to reduce the integrated
costs and network losses and maximized the net system benefits. In
terms of reliability, Shi et al. (2018) and Wang et al. (2021) have
studied the impact of the DG type, location, capacity, and output
characteristics on reliability. Traditional black-start power sources,
such as hydroelectricity, are under great pressure to meet urban
water use and ensure power supply during the dry season. DG,
which includes distributed wind turbines (DWT), DPV, and energy
storage devices, can be used as a better black-start power to
participate in the post-failure black start. It has the characteristics
of economy, environmental protection, flexible load regulation and
convenient opening, and cutting machine. Ali et al. (2020a) used the
improved decomposition-based evolutionary algorithm to select the
number of DGs and their capacities along with the best location, all
of which effectively minimize the real power losses and voltage
deviations andmaximize the voltage stability index. Ali et al. (2020b)
proposed a novel method to find the optimal feeder reconfiguration
(OFR) of the radial distribution network along with optimal site and
size of distributed generation (DG) with an objective of power loss
reduction. Yin et al. (2022) proposed a two-stage adaptive robust
optimization framework DDARDGP for microgrid utility to
investigate the DG planning strategy that includes the category,
type, number, and location decisions, which effectively avoids
excessive conservatism while keeping the costs well down.

For the recovery of load partitioning, scholars have focused their
research on partitioning methods using different indexes. Sun et al.
(2015) grouped units with the objective of the fastest power delivery
from the black-start power source to the units to be recovered, which
accelerated system recovery, but did not consider the importance of
different loads and recovery line security. Li et al. (2018) proposed a
comprehensive and practical parallel recovery strategy based on an
improved label propagation algorithm that reflects the tightness of
connections between nodes, but not the security of line power
delivery. Yida et al. (2020) considered the recovery cost of DG

with the units to be recovered and the importance of the different
loads, but did not consider the coordination of the loads in each
partition. Gu et al. (2009) grouped units with the objective of having
the closest electrical distance from the black-start power to the unit
to be recovered, and partitioned the system with the least power on
the contact line and the least loss in each partitioned network. But, it
however did not consider the importance of each load node and the
safety of the restoration line. Shi et al. (2011) assumed that the units
could recover all loads. It considered the safety and rapidity of the
path from the unit to be recovered and load to the black-start power
source, and the restoration time and size of each partition. However,
this method is not applicable when the unit may cannot meet all load
recovery requirements when extreme disasters occur. Zhao et al.
(2023) divided the power system recovery partition based on the
improved label propagation algorithm and proposed a multi-black-
start power distribution optimization method with zonal recovery,
which not only reduced the outage time but also improved the
restoration efficiency. Li et al. (2021) proposed a partition scheme of
islands and put forward the black-start strategy of DG to continue to
supply power to the loads, and it effectively reduced the power
outage loss. Zhang et al. (2022) proposed a multi-objective cluster
partition method considering the uncertainty of sources and loads
and constructed a multi-objective cluster partition model with
cluster economic cost, net power complementarity, control
dimension, and corresponding constraints, which rationalized
resource allocation and reduced economic costs.

From the abovementioned studies, the existing DG planning is
mainly aimed at economy and reliability, and the planning context
usually applies to a situation where each line is intact. Fewer studies
have been conducted on power location deployment with the goal of
load restoration levels in the case of line damage where power
cannot be resupplied within a short period of time. Similarly, as a
common recovery strategy, the parallel partitioning strategy also
does not consider how to partition when the power output of each
subnetwork is less than the load after a disaster. Finally, in this
context, there are fewer studies on combining load zoning strategies
with power supply planning to accelerate load recovery efficiency
while planning power supply locations to achieve higher levels of
load recovery. Thus, DG cannot be effectively used to achieve rapid
system recovery, which is not conducive to extreme disaster
resilience of the system.

In response to the abovementioned shortcomings, this article
proposes a distributed power planning method based on the
coordinated recovery of load partitioning under extreme weather.
Firstly, the distributed power output and line damage probability are
determined by the type of disaster, and a series of disaster scenarios
are generated through Monte Carlo simulation. Then, considering
the uncertainty of DG and load, an optimal subnetwork screening
robust optimization model is established with the objective of
maximizing the recovered load in the system. Then, the DG node
location optimization model is established considering the load
importance, recovery path security, rapidity, and coordination of
load recovery in each partition. The model aims to maximize the
recovery value from each unit to be recovered to the black-start
power source and from each load to the unit. Finally, a two-stage
planning method for DG is developed based on load partitioning
coordinated recovery under extreme weather. The method can be
used to optimize the location of DG to enhance the level of resilience
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of the power system. The key contributions of this article are
summarized as follows, firstly, considering the uncertainty of
power and load output, a robust optimization model for optimal
subnetwork is established to maximize the sum of the recovered load
in each subnetworks; it screens the most suitable subnetwork for
deploying DG under the worst-case scenario of power and load
output in each subnetwork; and the uncertainty of DG and load
output is represented by the set of scenarios containing the
uncertainty intervals.

Secondly, the partitioning strategy, which includes unit
grouping and load partitioning, is improved to ensure recovery
speed, safety, and coordination of loads; it is partitioned based on the
maximum recovery value of the unit and load while considering the
matching of unit generation and load.

Thirdly, in order to improve the level and efficiency of load
recovery, an optimization model for the node location of DG is
established; it determines the optimal deployment node for
distributed power by comparing the recovery value of distributed
power when deployed at different nodes.

2 Formation of post-disaster scenes

The focus of this article is on the urban grid containing WT and
PV distributed power sources, and the scenario in this study is a
situation where WT, PV, and lines are damaged in extreme weather
and the damage cannot be repaired in the short term. The main
models constructed in this section include the line fault probability
model, distributed wind power, and PV power output model.

2.1 Data of lines and power output

The failure probability of the lines and power output of DG vary
between different disasters (Li et al., 2016). In this study, only typical
typhoons and heavy rainfall are considered in extreme weather, and
the line and unit output data under the corresponding weather are
generated by the line fault probability model and unit output model.
DGs used in this study are distributed photovoltaic power (DPV),
DWT, and conventional distributed generation (CDG). DG to be
planned is CDG.

The fault probability vector of the line is defined as

Q � Q1, . . .Qi, . . . , QN{ } (1)
where i represents the line number andQi represents the probability
of failure of the ith line under the corresponding disaster.

The power output vector of DPV at each node is defined as PPV:

PPV � PPV,1, . . .PPV,i, . . . , PPV,N1( )T (2)
where N1 represents the number of nodes and PPV,i represents the
actual output of the distributed wind turbine at node i.

The power output vector of DWT at each node is defined
as PWT:

PWT � PWT,1, . . .PWT,i, . . . , PWT,N1( )T (3)
where PWT,i represents the actual output of the distributed wind
turbine at node i.

The power output vector of the CDG at each node is defined
as PDG:

PDG � PDG,1, . . .PDG,i, . . . , PDG,N1( )T (4)
where PDG,i represents the actual output of the CDG at node i, and it
is assumed that the output of CDG is unaffected by disasters.

2.2 Power output model

Differences in the type and level of extreme disasters play an
important impact in the extent of damage to distributed power
supplies (Wang et al., 2013; Li et al., 2015). In this study, it is
assumed that all DWTs are damaged while DPVs are still partially
generating electricity after typhoons; similarly, it is assumed that all
DPVs are damaged while DWTs are still partially generating
electricity after a stormy weather. In this way, the DG output
model after a typhoon and rainstorm is established.

2.2.1 DPV output model under typhoon
The damage rate of DPV under the different levels of a typhoon

is defined as shown in Table 1.
The output of the distributed PV under the different levels of a

typhoon is calculated by Eq. 5 as

PPV � PPV,rUr,i i � 1, 2, . . . , 4 (5)
where PPV,r represents rated power of DPV and Ur,i represents the
unit survival rate under disaster level i.

2.2.2 DWT output model under rainstorm
The damage rate of a DWT under the different levels of a

typhoon is defined as shown in Table 2.
The power output of the DWT can be calculated by Eq. 6 as

PWT � PWT,rUr,i i � 1, 2, . . . , 4 (6)
where PWT,r represents rated power of the DWT and Ur,i represents
the unit survival rate under disaster level i.

2.3 Line failure probability model

The probability of line failure varies with the type and level
of disaster. The probability of line failure under different levels
of typhoons and rainstorms can be calculated according to Eq.
7 as

TABLE 1 DPV survival rate under different levels of typhoon.

Level 1 2 3 4

Unit survival rate 0.75 0.55 0.45 0.3

TABLE 2 DWT survival rate under different levels of stormy weather.

Level 1 2 3 4

Unit survival rate 0.8 0.6 0.4 0.2
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Qi �
Qnorm,i ω<ωh

1 + ki
ω2

ωh
2 − 1( )[ ]Qnorm,i ω>ωh

⎧⎪⎪⎨⎪⎪⎩ (7)

where Qnorm,i represents the failure probability of line i in normal
weather. ω represents the actual wind speed or light intensity. ωh

represents the threshold value of wind speed or rainfall, and the line
probability of failure increases when ω exceeds this threshold. ki
represents the sensitivity factor of line i to the disaster, and the
impact of the disasters on the line increases as long as this factor
rises.

Monte Carlo simulations (Zhang et al., 2007) are performed
based on the statistical data under different disasters, and the
number of simulations is set to M. si represents the state of the
ith line. Random number Ri uniformly distributed in the interval
[0,1] is generated for each line i. Then, si is calculated by Eq. 8 as

si � 1 working state( ) if Ri >Qi

0 fault state( ) if 0≤Ri ≤Qi
{ (8)

Finally, the fault state vector S of all lines is obtained as shown in
Eq. 9. Then, the nodes and lines contained in each subnetwork are
obtained based on the line status.

S � s1, . . . si . . . , sN( ) (9)

3 Two-stage planning model for
distributed power based on
coordinated recovery of load
partitioning

In this study, we propose a two-stage planning model (Ma et al.,
2021; Ma et al., 2022) for distributed power considering the
coordinated recovery of load zoning, consisting of an optimal
subnetwork screening model and an optimal node location
planning model; the type of DG to be planned is conventional
distributed power and the planned quantity is NB2.

The first stage is to screen the subnetworks for DG deployment
with the objective of maximizing the overall system load level, and
the objective function is shown in Eq. 14 and the decision variable is
the deployment selection of the subnetworks. After the screening of
the deployment subnetwork is completed in the first stage, the
second stage further selects specific nodes within the subnetwork
for distributed power deployment with the objective of maximizing
the recovery value of each node within the subnetwork, and the
objective function is shown in Eq. 13, which consists of two parts: the
recovery value of the node of the unit to be recovered (as shown in
Eq. 14) and recovery value of the load node (as shown in Eq. 19); the
decision variables of the whole second-stage objective function are
the locations of the distributed power deployment nodes, the unit
grouping method, and the load division method.

3.1 Optimal subnetwork screening model

The model aims to recover as much load as possible by selecting
the subnetworks where distributed power is deployed, considering

the load recovery coordination and robustness of each subnetwork.
This optimization model is a mixed-integer linear program and can
be expressed as follows:

max
x

min
d∈D

∑N
j�1
PM,j (10)

PM,j � min PG,j, PL,j( )
PG,j � PB1,j + PB2,jx,j + PU,j

PB1,j � PWT,a,j + PDG,j + PPV,a,j

x|x ∈ {0, 1{ }N,∑N
j�1
xj � NB2

⎫⎬⎭

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(11)

where x represents the deployment subnetwork of DG. xj represents
the jth dimensional component of the vector. N represents the
number of subnetworks under the current scenario. PM,j represents
the recovered load in subnetwork j. PL,j represents the sum of load
values in subnetwork j. PG,j represents the sum of generation values
in subnetwork j. PB1,j represents the output value of the original
black-start power sources in subnetwork j, which include DWT,
DPV, and CDG. PB2,j represents the power output value of the DG
to be planned in subnetwork j. PU,j represents the power output
value of the units that can be recovered in subnetwork j.

The linearization procedure for the first equation in (11) is as
follows:

PG,j ≥PM,j

PL,j ≥PM,j

PG,j ≤PM,j −M 1 − ς1( )
PL,j ≤PM,j −M 1 − τ2( )
ς1 + ς2 ≥ 1
ς1, ς2 ∈ 0, 1{ }

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
(12)

where M represents very large positive numbers.
The magnitude and fluctuation of the power output of DPV and

DWT vary under different disaster levels. Therefore, the fluctuation
interval of DWT, DPV, and load under the current disaster scenario
are characterized by D. It can be expressed as follows:

D �
PWT, PPV, PL |
P
–WT ≤PWT ≤ �PWT

P
– PV ≤PPV ≤ �PPV

P
– L ≤PL ≤ �P

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎫⎪⎪⎪⎬⎪⎪⎪⎭ (13)

where PWT, PPV represent the output of DWT and DPV under the
current scenario, respectively; PL represents the load under the
current scenario. �PWT, PWT represent the upper and lower limits of
the DWT output under the current scenario; �PPV, PPV represent the
upper and lower limits of the DPV output under the current
scenario; �PL, PL represent the upper and lower limits of the load
under the current scenario.

3.2 Optimal node location planning model

Based on the optimal subnetwork screened in Section 3.1, to ensure
the recovery speed, safety, and coordination of units and loads, the
model selects the node with the largest recovery value in the subnetwork
to deploy distributed power sources; it mainly consists of a unit
grouping planning model and load partitioning planning model,
both of which are mixed integer linear optimization models.
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3.2.1 Node location optimization model
The objective function of the node location optimization model

is as follows:

max F3
t∈T j( )

� C · F1 + 1 − C( ) · F2,∀j (14)

where T represents the node set of the subnetwork; j represents the
serial number of the subnetworks; t is the node deploying DG in the
subnetwork. F1, F2 represent the objective functions of the unit
grouping model and the load partitioning model, respectively. C
represents the scale factor, which is used to reflect the relative
importance of the two objective functions.

3.2.2 Unit grouping planning model
With the objective of getting the maximum restoration value, we

group DG and the units to be recovered; based on this grouping
approach, the recovery value is calculated to obtain the optimal node
when the distributed power supply is located at different nodes. This
model can be expressed as follows:

max F1
t∈T j( )

� ∑
m∈ga k j( )[ ]

∑
i∈gv j( )

RGm,iom,i,∀j (15)

RGm,i � 1/ lm,i ·Xcm,i( ) (16)
om,i ∈ Ok j( )×n gvm( ), om,i ∈ 0, 1{ } (17)

O �
o1,1 o1,2 L o1,n gv j( )( )
o2,1 O / M

M ..
.

1 ..
.

om,1 L / ok j( ),n gv j( )( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (18)

whereT(j) represents the nodes set of the subnetwork j. t is the node
deploying DG in the subnetwork j. k(j) represents the number of
partitions in the subnetwork j. ga[k(j)] represents the partitioned
set of subnetwork j. gv(j) represents the nodes set of units to be
recovered in subnetwork j. n(gv(j)) represents the number of units
recovered in subnetwork j. om,i represents the attribution of the unit
to be recovered at node i to the black-start power in the mth
partition, and if the unit to be recovered is divided to this
partition, om,i � 1, otherwise, om,i � 0. RGm,i represents the
recovery value of the unit to be recovered at node i to the mth
partition. lm,i represents the length of the shortest path from node i
to the black-start power in the mth partition; Xcm,i represents the
capacitive reactance of this path from node i to the black-start power
in the mth partition.

The constraint of this model is formulated as follows:
Black-start power constraint (Liu et al., 2008; Sarmadi et al.,

2011): comparing the number of black-start power and loads, the
number of partitions in the subnetwork j is equal to the
smaller one:

k j( ) � min NBL j( ) + 1, NPL j( )[ ] (19)
whereNBL(j) andNPL(j) represent the number of black-start units
and loads in subnetwork j, respectively.

Unit grouping constraint: each unit to be recovered can belong to
only one partition.

∑k j( )
m�1

om,i � 1,∀i � 1, 2, . . . , n gv j( )( ) (20)

Unit start-up power constraint (Xueping et al., 2020): there is at
least one unit to be recovered in the partition whose starting power is
less than 70% of the rated power of the black-start unit.

∃
i∈m

0.7PBZ,m ≥PB2,m,i (21)

where PBZ,m represents the rated power of all black-start units in the
mth partition. PB2,m,i represents the start-up power of the unit to be
restored at node i in the mth partition.

3.2.3 Load partition planning model
In order to obtain the maximum recovery value, we partition the

loads and units; based on this partitioning method, the recovery
value is calculated to obtain the optimal node when DG is located at
different nodes. This model can be expressed as follows:

maxF2
t∈T

� ∑
m∈ga k j( )[ ]

∑
i∈gl j( )

RVm,i]m,i (22)

ov,i ∈ Ok j( )×n gl j( )( ), vm,i ∈ 0, 1{ } (23)

V �

]1,1 ]1,2 ]1,n gl j( )( )
]2,1 1 ..

.

..

.

]k j( )+n gvm( ),1 / ]k j( ),n gl j( )( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (24)

RVm,i
i∈gl j( )

� RV1,m,i · RV2,m,i

RV1,m,i � 1/ l ·Xc( )
RV2,m,i � PL,m.i

α

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(25)

where T(j) represents the nodes set of subnetwork j. t is the node
deploying DG in subnetwork j. gl represents the set of load in
subnetwork j. n(gl(j)) represents the number of loads in
subnetwork j. vm,i represents the attribution of the load at node i
to the units in the mth partition, and if the load is divided to this
partition, vm,i � 1, otherwise, vm,i � 0. RVm,i represents the recovery
value of the load located at node i to themth partition; the length of
the shortest path from this load to the connecting unit and the
capacitance of this path are multiplied to obtain V1,m,i; it represents
the rapidity and security of this recovery path; this load divided by its
node importance that α gives RV2,m,i, and it represents the
importance of this load. α is calculated with reference to the
literature (Tan et al., 2006).

The constraint of this model is formulated as follows:
Load Partition constraints: each load belongs to only one

partition:

∑k j( )
m�1

vm,i � 1,∀i � 1, 2,/, n gl j( )( ) (26)

The minimum unit output constraint (Shu et al., 2013) is

∑
j∈ngi

PG,i,j
min ≤ ∑

k∈gli

PL,i,k (27)

where ngi represents the nodes set of units in the ith partition. gli
represents the nodes set of load in the ith partition. PG,i,j

min

represents the minimum output of the unit at node j in the ith
partition. PL,i,k represents the load at node k in the ith partition.
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The load coordination constraints are

PdG,i �
∑

j∈ngi
PG,i,j

PG

PdL,i �
∑
j∈gli

PL,i,j

PL

(28)

where ngi represents the set of units in the ith partition. gli
represents the nodes set of load. PG,i,j represents the output of
the unit at node j in the ith partition. PL,i,k represents the load
at node k in the ith partition. PdG,i represents the ratio of
power generation of all units in partition i to the total
power generation of the subnetwork. PdL,i represents the
ratio of all loads in partition i to the total load of the
subnetwork.

Pd< ϑ
Pd � ∑k

i�1
PdG,i − PdL,i

∣∣∣∣ ∣∣∣∣
⎧⎪⎨⎪⎩ (29)

PdG,i, PdL,i can be calculated by Eq. (27). K represents the
number of partitions in the subnetwork. ϑ is the factor of load
coordination and balance among the sub-areas.

3.3 Overall acquisition flow of optimal node

The optimal subnetwork screening model and optimal node
optimization model are solved, and the optimal node locations in all
disaster scenarios are counted and sorted in the descending order by the
number of each node; then, the node in the top of the ranking is taken as
the optimal planning location for DG and is the number of distributed
power sources to be planned. Theplanningflowchart is shown inFigure 1.

4 Modeling of load recovery process

After completing the power planning based on system partition
recovery, the next step is to restore the power supply of critical loads

FIGURE 1
Planning flow chart of the proposed method.
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in each partition; this phase aims to determine the priority of each
load restoration and then restore the high-priority loads in the
shortest time.

4.1 Node location optimization model

From Section 2.1, it is known that the output of generating units
in each subnetwork may not meet the demand of all loads; it is

therefore necessary to select the loads with higher importance to
restore first. In a real implementation, the prioritization of loads is
mainly based on the first-, second-, and third-level loads classified by
the load level, importance of the load node, and size of the load
value. Therefore, we propose a recovery load screening model:

maxF4 � ∑
i∈gl

RV2,i · ωi (30)

ωi | ∑
i∈gl

PL,i · ωi ≤ ∑
j∈ng

PG,j,ωi ∈ 0, 1{ }
⎧⎪⎨⎪⎩

⎫⎪⎬⎪⎭ (31)

FIGURE 2
Modified IEEE 30-bus system.

TABLE 3 Line fault probability.

Line serial number Failure probability/%

5-7, 6-7, 9-11, 12-13, 23-24 10

1-2, 1-3, 3-4, 6-8, 8-28 20

6-28, 9-10, 12-16, 14-15 20

16-17, 15-18, 18-19, 19-20 20

22-24, 24-25, 25-26, 27-29 20

27-30, 29-30 20

2-4, 2-5 40

12-14, 12-15 60

2-6, 4-6 70

4-12, 6-9, 6-10, 10-17 80

10-20, 10-21, 10-22, 27-28 85

The bold value represent the probability of failure of the line in the context of this arithmetic

example

TABLE 4 Line recovery time.

Line serial number Recovery time/p.u

6-9, 15-18, 18-19, 19-20, 27-28 1

1-2, 2-5, 3-4, 4-12, 6-10, 5-7 2

6-8, 6-28, 8-28, 9-10, 9-11 2

12-13, 14-15, 24-25, 25-26 2

27-29, 27-30, 29-30 2

10-17, 12-16, 16-17 2.5

1-3, 2-4, 6-7, 10-22, 22-24 4

2-6, 10-20 6

4-6, 12-14, 12-15, 10-21 5

25-27 7

23-24 8

The bold value represent the standard values of the line’s delivery time in the context of this

example

FIGURE 3
Post-disaster line cracking scenario.
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where RV2,i represents the importance of load, which basically
reflects the priority of each load in the implementation. ωi

represents the load recovery status, which is 1, if the load is
recovered, and 0, if otherwise. PL,i represents the load at node i.
PG,j represents the power generation at node j.

4.2 Calculation of recovery time

The load recovery process refers to the islanding technique (Xin
and Yuping, 2006) and has the following steps:

• Step 1: the load obtained from the load screening model is
the target load, which is sorted in the descending order
based on the importance to obtain the sequence of load
recovery.

• Step 2: the optimal path from the black-start unit to the unit to
be recovered is searched by the Dijkstra algorithm (Wang et al.,
2011), and the recovery order of the units to be recovered is
determined by the rapidity and security of their paths to the
black-start units.

• Step 3: after selecting the units that have to be prioritized for
recovery, whether the recovery path contains the target load is
judged: if yes, to go to the next stage; if no, to go to step 5.

• Step 4: to determine if the black-start power can restore the
unit to be recovered after restoring the load contained in the

path: if yes, restore the load and then the unit to be recovered
and go to step 6, if no, go to step 5.

• Step 5: the unit to be recovered is started directly.
• Step 6: the black-start power source, recovered units, and load

are used as the new black-start power source. Repeat step
3 until all units to be recovered have been recovered.

• Step 7: based on the method in steps 3–6, the load with the
highest current recovery priority is recovered. Repeat this step
until all loads are recovered.

The total recovery time, starting with the first load recovery and
ending with the recovery of all loads, is calculated as follows:

TABLE 5 Load recovery value.

Subnetwork I II III IV V VI VII

Recovered load (before deploying DG)/MW 120 342 0 0 0 14 0

Recovered load (after deploying DG)/MW 170 342 50 10 20 14 48

Increment/MW 50 0 50 10 20 0 48

TABLE 6 Comparison of load recovery values.

Subnetwork 1 2 3 4 5 6 7 Sum of recovered load/MW

Recovered load (consider grid splitting)/MW 170 342 50 0 0 14 0 576

Recovered load (without considering grid splitting)/MW 170 342 0 0 0 14 0 526

TABLE 7 Maximum recovery value of subnetwork.

Node Recovering value/p.u

12 6.575 598

15 5.642 206

16 3.810 762

27 5.752 895

29 3.964 432

30 4.470 048

23 3.579 729

FIGURE 4
Group diagram and partition diagram of subnet Ⅰ.
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T � TB + TL (32)
TB � ∑

j∈gv
tB,j (33)

LINE � linei ∪ linej, . . . , linek i, j, k
∣∣∣∣i, j, k ∈ gl l, i, j, k ∉ nb, i ≠ j ≠ k{ }

(34)
TL � ∑

i∈LINE

tL,i (35)

where TB represents the recovery time of units. TL represents the
recovery time of loads. tB,j represents the recovery time of the unit to
be recovered at node j. tL,i represents the recovery time of the load at
node i. linei represents the set of lines passing from load i to the
nearest unit. gll represents the set of loads prioritized for recovery.
nb represents the set of recovered nodes that are in the optimal
recovery path from the unit to be recovered to the black-start power
supply. tli represents the recovery time of line i in set LINE.

5 Solution methodology

The two-stage model solution in this study includes the solution
of the optimal subnetwork screening model in the first stage and the
solution of the optimal node location planning model in the second
stage.

5.1 Solution of first-stage model

The one-stage optimal subnetwork screening model belongs to
the max–min model, whose model can be simplified and
summarized as follows:

max
x

min
yj

∑N
j�1
CT

1yj (36)

By≤ c (37)
Ey≤Fx + C (38)

{x|x ∈ {0, 1}N,∑N
j�1
xj � NB2

⎫⎬⎭ (39)

where x denotes the one-stage decision variable, yj denotes the
DPV, DWT, and the load output in subnetwork j under the
uncertainty scenario.

Then, the duality of the inner layer problem is solved to turn the
optimization directions of the two layers to be the same, and the
transformed problem is as follows:

TABLE 8 Generation and load values for each partition.

Index Partition I Partition Ⅱ Sum

Before improving the partitioning strategy Power generation/MW 80 90 170

Load/MW 90 87 177

Recovered load/MW 167

After improving the partitioning strategy Power generation/MW 80 90 170

Load/MW 84 93 177

Recovered load/MW 170

TABLE 9 Maximum recovery value of subnetwork.

Node Recovering value/p.u

10 8.732 447

17 1.482 390

FIGURE 5
Group diagram and partition diagram of subnet Ⅲ.

TABLE 10 First and third priority recovery load nodes of subnetworks.

Subnetwork I Priority recovery node for partition Ⅰ 12, 15, 16

Priority recovery node for partition Ⅱ 27, 30, 24, 29, 25, 26

Subnetwork III Priority recovery node for partition I 10
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max
x,π1 ,π2{ }

cTπ1 + KTπ2 + uTπ2( ) (40)
BTπ1 + ETπ2 � C1 (41)

π1 ≥ 0, π2 ≥ 0 (42)
Fx � u, C � K (43)

{x|x ∈ {0, 1}N,∑N
j�1
xj � NB2

⎫⎬⎭ (44)

The contained objective function of the pairwise problem is a

non-linear term. Setting L � uTπ2 � xTFTπ2 � ∑N
j�1

ujπ2j � ∑N
j�1

Lj,

then Lj � F j, :( )xπ2j � F j, :( )
x1π2j
x2π2j

..

.

xNπ2j

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ � ∑N

i�1
F j, i( )xiπ2j, where xj is

a 0 1 variable, π2j pi is a continuous variable, and π2j ≥ 0. The linearization
process of the bilinear term xiπ2j becomes

zi ≤Mxi

zi ≤ π2j

zi ≥ π2j −M 1 − xi( )
zi ∈ 0,M[ ]

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (45)

At this point, Lj can be expressed as follows:
zi � xiπ2j (46)

Lj � ∑N
i�1
F j, i( )zi � F j, :( )z (47)

Ultimately, the abovementioned Eqs 45–47 can be simplified as

max
x,π1 ,π2 ,L{ }

cTπ1 + KTπ2 + L( ) (48)
L � FZ (49)

HZ≥Tπ2 + Rx (50)
where H, T, and R represent the constraint matrix of Eq. 45.

Up to this point, the objective function (48), constraints (41–44), and
(49–50) constitute the new problem. The optimal subnetwork
deployment location is obtained by solving the model with the
Gurobi solver.

5.2 Solution of second-stage model

Based on the optimal subnetwork obtained in the first stage, the
second stage optimization is performed within this subnetwork. The

TABLE 11 Recovery time of each partition of subnetworks I and III.

Subnetwork I Partition I

Recovery time (before deploying DG)/p.u 35

Partition I Ⅱ

Recovery time (after deploying DG)/p.u 15

Subnetwork III Partition I

Recovery time (before deploying DG)/p.u ∞

Recovery time (after deploying DG)/p.u 1

FIGURE 6
Recovered load curve.
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two-stage optimal power supply location planning model can also be
simplified and summarized as follows, where oi,j and vi,j denote the
two-stage decision variables.

max
oi,j ,vi,j{ } c1

Toi,j + c2
Tvi,j( ) (51)

oi,j ∈ O, vi,j ∈ V (52)
YTO � C3, Z

TV � C4 (53)
The final node location of DG is obtained by completing the

abovementioned two stages of solution.

6 Case study

6.1 Case data

Case studies have been conducted on a modified 30-bus test
system to demonstrate the advantages of the proposed two-stage
planning method. The diagram and detailed information about the
modified 30-bus system is given in Figure 2; Table 3 and Table 4. The
case assumes that there are two CDG to be planned as black-start
power and the context is a two-level storm disaster.

6.2 Optimum subnetwork screening

According to Section 2.2 power output model and Section 2.3
line fault probability model, the power output and line fault
probability under the two-level storm disaster are obtained; the
line cracking scenario after the disaster is generated by the Monte
Carlo simulation method given in Section 2.3 that is shown in
Figure 3.

From Figure 3, the power system is cracked into seven
subnetworks after the disaster, and the optimal subnetworks
screening model shows that the recovered load is the largest
when DG is deployed in subnetworks I and V. The load recovery
values of each subnetwork at this time are shown in Table 5.

As seen from Table 5, the recovered load is enhanced after
deploying distributed generation in subnetworks I, III, IV, V, and
VII, and the most significant enhancement is achieved in I and III.

At the same time, based on the same data, the node locations are
planned using the model in this study without considering the case
of disasters leading to grid splitting, and the maximum recovering
value of load is obtained when the nodes are deployed at nodes 6 and

TABLE 12 Frequency and proportion of each node as the optimal node.

Node Number/p.u Ratio/% Node Number/p.u Ratio/%

1 0 0 16 1 0.373 134

2 0 0 17 7 2.611 94

3 7 2.611 94 18 2 0.746 269

4 15 5.597 015 19 14 5.223 881

5 0 0 20 2 0.746 269

6 16 5.970 149 21 17 6.343 284

7 12 4.477 612 22 2 0.746 269

8 0 0 23 0 0

9 3 1.119 403 24 0 0

10 38 14.179 1 25 0 0

11 0 0 26 0 0

12 50 18.656 72 27 61 22.761 19

13 0 0 28 9 3.358 209

14 1 0.373 134 29 0 0

15 7 2.611 94 30 4 0.014 925

FIGURE 7
Recovered load curve.
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12, at which time, the recovered load of each subnetwork is as shown
in Table 6.

As seen from Table 6, the load recovery value of the grid is
significantly reduced due to the planning of power supply without
considering the grid splitting under disasters and is not conducive to
the resilience of the grid.

6.3 Unit grouping and load partitioning

After obtaining the optimal deployment subnetworks, the
optimal nodes for deploying distributed power are obtained in
these subnetworks by a node location optimization model.

Subnetwork I: there are two original black-start powers and three
units to be recovered in subnetwork I; the DGs are deployed at different
load nodes in order and compared for the maximum recovery value of
the subnetwork; the results obtained are shown in Table 7.

From the table, it can be seen that the recovery value is the
greatest when DG is deployed at node 12, whose unit grouping and
load partitioning are shown in Figure 4.

Two partitions exist in subnetwork I: before and after the
adoption of the improved load partitioning strategy; the
comparison of generation and load values during the two
partitions is shown in Table 8.

The traditional partitioning strategy (Lin et al., 2009; Guangqi
et al., 2019) usually does not consider scenarios where lines are
severely damage after a disaster and cannot be recovered in a short
period of time. Due to the damage to lines, insufficient power supply
occurs in the partitions and the power balance constraints cannot be
met. Based on the improved partitioning strategy, critical loads can
be assigned to the units with the closest path and highest recovery
security. Based on the generation value of each partition, the load
distribution ratio is adjusted, therefore the generation capacity of
each partition is not wasted and the load recovery value is increased.

Subnetwork III: there is no black-start power and units to be
recovered in subnetwork 3. Under the deployment constraint of the
distributed power, there is no need to group the units and partition
the load; the black-start power can be deployed sequentially in
different nodes to obtain the maximum recovery value of the
subnetwork as shown in Table 9.

From the table, it can be seen that the recovery value is the
greatest when DG is deployed with node 10, whose unit grouping
and load partitioning are shown in Figure 5.

6.4 Load recovery

After partitioning is completed, the model with high importance is
selected for priority recovery by the load screening model. The priority
recovery nodes of load in subnetworks I and III are shown in Table 10.

Before and after deploying DG in subnetworks I and III, the
recovery times are shown in Table 11.

Before and after deploying DG in subnetwork I, the load
recovery values at different moments are shown in Figure 6.

From Figure 6 and Table 10, after and before deploying DG, the
load recovery time and load recovery value of subnetwork I was
35 and 120 MW, while the load recovery time and load recovery
value in the case of DG deployment were 17 and 170 MW,

respectively, corresponding to a 42.85% reduction in recovery
time and a 41.6% increase in the load recovery value. Therefore,
after deploying DG at subnetwork I and using the zonal recovery not
only improved the load recovery value and accelerated the load
recovery speed but also resulted in a significant increase in load
recovery efficiency. Similarly, when compared to the inability to
recover the load before deploying distributed power, the recovery
efficiency of subnetwork III was also improved after the deployment
of distributed power.

6.5 Data collation

The optimal nodes of the subnetworks in all different disaster
scenarios are counted; the number of each node and its percentage
are calculated; the top two nodes with the highest number are the
optimal black-start power deployment nodes; the statistics are
shown in Table 12 and Figure 7.

Since this study uses the number of simulated scenarios to represent
the probability of an event occurring, the higher the percentage of nodes,
the more often it is used as the best deployed node in the scenario. From
Table 11 and Figure 7, it is seen that nodes 27 and 12 are the nodes with
the highest number, and their percentages are 22.761% and 18.657%,
respectively. This example sets the number of power supplies to be
deployed as 2, therefore prioritizing the deployment of distributed power
at this location ismost beneficial to the load recovery of the power system
after disasters. All of this demonstrates the effectiveness of deployingDGs
on power system resilience improvement.

Meanwhile, the research method proposed in this study still has
some limitations

Firstly, the line fault model in this study has to obtain the
historical base fault probability of the line and then derive the fault
probability of the line under different disasters based on this. When
the base historical failure probability is inaccurate or incomplete, the
model cannot effectively quantify the line status for different levels
of extreme weather. Secondly, this study lacks the historical
probability data for different levels of extreme weather, therefore
the accuracy of the final power deployment location will be affected,
and this location is determined by the probability of each extreme
weather and the optimization results under that weather.

7 Conclusion

This study proposes a two-stage planning method for DG based
on the coordinated recovery of load partitioning under extreme
weather conditions. The method plans the location of DG by
establishing the optimal subnetwork screening model and the
node location optimization model. Analyzing the modified IEEE
30-bus system, we obtain the following conclusions:

By deploying distributed generation at the optimal nodes of the
optimal subnetwork, the load recovery level and the load recovery
efficiency of the system can be effectively improved, and the improved
zoning strategy within the subnetwork can not only improve the load
recovery efficiency but also ensure the priority recovery of important
loads. In addition, the research methodology of this study relies heavily
on line historical basic fault probability data and extreme weather
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occurrence probability data, therefore the completeness and accuracy of
the data will significantly affect the final power deployment results.
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