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With the expansion of power grid scale and the deepening of component
coupling, the operation behavior of power system becomes more and more
complex, and the traditional function decoupling dispatching architecture is not
available anymore. Firstly, this paper studies the corresponding relationship
between reinforcement learning method and power system dispatching
decision problem, and constructs the artificial intelligent dispatching
knowledge learning model of power system based on reinforcement learning
(AIDLM). Then, a data-driven intelligent dispatching knowledge learningmethod is
proposed, and interpretable dispatching decision knowledge is obtained. Finally, a
knowledge efficiency evaluation indexes is proposed and used to guide the
extraction of original acquired knowledge. The intelligent economic
dispatching problem of a regional power grid is analyzed. The results show
that the AIDLM method can intelligently give the dispatching strategy of power
generation according to the time series changing load, which effectively reduces
the cost of power generation in the grid. The method proposed in this paper can
make up for the shortcomings of traditional dispatching methods and provide
strong support for modern power system dispatching.
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1 Introduction

The power system is one of the most complex artificial large-scale systems, and its basic
operation requirements are to maintain the real-time balance of generation, transmission,
and consumption of electricity, meet the security constraints, and pursue the minimum
operation cost.

Due to the limitations of existing methods and computing power, the traditional
dispatching system divides the whole dispatching problem into different modules. Each
module solves one sub-problem, such as active power economic dispatching (Li et al., 2021a),
reactive power optimization (Ju and Chen, 2023), security check, and real-time control to
form a dispatching problem-solving method system based on sub-problem solving, multi-
module combination, and functional partition. Due to the effective reduction of sub-problem
complexity, the existing dispatching method performs an important role in ensuring safety
and quality of power system operation.

However, with the continuous expansion of the power grid and the great changes of the
power supply structure, the operation mode is becoming variable and complicated. In the
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dispatching process, not only the complex temporal characteristics
of the loads should be considered, but also the operation
characteristics of different power sources should be coordinated.
At the same time, the operation state of the modern power system
tends to be critical, which leads to a significant increase in the
probability of the operation mode close to the safety boundary, and
the dispatching of power grid faces multidimensional security risks.
The traditional dispatching architecture based on sub-problem
solving method is not available anymore.

In recent years, the application of the new generation of artificial
intelligence (AI) methods, represented by deep learning (DL) and
reinforcement learning (RL), has made remarkable achievements in
complex decision-making fields such as simulation (Francis et al.,
2020), robot control (Johannink et al., 2019), Go game (Schrittwieser
et al., 2020) and automatic driving. In 2017, NVIDIA took the
human driving experience as prior knowledge and used DL and RL
to achieve self-driving vehicles for long distances in a real road
environment for the first time. This accomplishment fundamentally
changed the situation that the previous intelligent driving
technology could only be used as the human driving assistance.
At the end of 2017, Google’s DeepMind reported in the journal
Nature that its latest Go program, Alpha Zero based on RL (Silver
et al., 2017), defeated AlphaGo, which had defeated the human
world champion of Go with a score of 100:0. These achievements
have shown the great potential and broad prospects of AI in solving
complex decision-making problems.

The RL is a decision optimization method based on knowledge
learning, unlike supervised and unsupervised learning in the
traditional machine learning field (Wang et al., 2021; Luo et al.,
2022). Therefore, the RL method is particularly suitable for solving
highly complex decision-making problems (Zhang et al., 2019). The
basic idea behind RL can trace back to the law of utility proposed by
Thorndike in 1911 that in each situation, an agent can make the
most appropriate behavior choice after learning experience through
continuous trial and error. In 1989, Q-learning proposed byWatkins
could solve the optimal policy without an instant reward and state
transition functions and became a widely used RL method.

The RL method has been used for some applications in the
electric power industry. In Literature (Zhang et al., 2017), the RL
method is used to solve the decentralized optimization problem of
dynamic power allocation of AGC in a large-scale complex power
grid, which belongs to a nonlinear programming problem. The
implementation of a power grid cutting machine control strategy
based on deep reinforcement Q learning was presented in (Liu et al.,
2018). Firstly, the generator’s electromagnetic and mechanical
powers are taken as sample data to complete feature extraction.
Then, the strategy is constantly modified according to the revenue
value to complete the cutting optimization strategy. Literature (Bao
et al., 2018) established a real-time supply and demand interaction
model for power systems based on the Stackelberg game. Also, a new
deep transfer RL algorithm was proposed to quickly obtain high-
quality optimal solutions with the advantage of distributed
computing. Literature (Yang et al., 2020) introduced deep
reinforcement learning into the modeling of the relationship
between wind power generation and the effect of electricity price
uncertainty on generation revenue, and improves the revenue of
wind farms using the proposed optimization and decision
algorithms.

The above studies all adopt newAImethods to solve problems in
different fields such as power system supply and demand balance (Li
et al., 2022), generation control (Xi et al., 2019), power prediction,
fault identification (Yang et al., 2018), and transient stability control
(Huang et al., 2019). Also, some studies use supervised and
unsupervised learning methods to solve the problems of pattern
recognition and fault diagnosis in power systems (Xu and Yue, 2020;
Parizad and Hatziadoniu, 2021). Currently, whether the knowledge
learned by the agent is concise and efficient and whether it can be
understood by the power grid operators have not attracted enough
attention.

In this study, the basic idea of RL is applied to the power system
dispatching problem by constructing the artificial intelligent
dispatching knowledge learning model (AIDLM) for power
systems. In this way, the agent can constantly explore and
compare the rewards of different “actions” to learn and
accumulate dispatching experience according to the different
operating states of the power grid. To realize knowledge
extraction and application, an ontology-oriented and data-driven
knowledge validity assessment index is established. The AIDLM is a
new attempt to solve the complex decision-making problem of
power system dispatching. By “observing” the state of the power
system, the optimal dispatching decision can be obtained directly by
using “knowledge".

2 General description of intelligent
dispatching and RL in power system

Before applying RL method to specific power system intelligent
dispatching problems, the essential characteristics of intelligent
dispatching problems should be clarified first, and a general
framework for solving the target problem should be constructed.

2.1 Intelligent dispatching problem of power
system

Because many power generation and loads are connected in
the power system, the power transmission between power
generation and load is realized through grid connection.
Therefore, power grid operation requires meeting various
constraints to ensure safety. The constraints are generally
divided into equality and inequality constraints (Li et al.,
2021b). Equality constraints come from conservation
conditions, such as power flow equation constraints, while
inequality constraints are more complicated, and some
constrained boundaries can be given directly according to the
system operation requirements, such as the upper and lower
limits of node voltage and the upper limit of branch power. As
many constraint boundaries are difficult to be given directly, they
can only be given or approximately given by other special
calculations, such as transient stability constraints and voltage
stability constraints. Thus, the operation decision problem is
extremely complex, and the number of power generation
combinations that meet the demand of the same group of
loads is huge or even inexhaustible. The above-mentioned
analysis illustrates the power system dispatching complexity,
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which is also the reason and process for forming the current
functional partition dispatching architecture.

The dispatching process can be abstracted as follow: among
many feasible combinations of control variables, a set of optimal
control decision schemes is determined in a certain physical
environment. Hence, the performance of a specific aspect or
some aspects of the power grid can reach the optimum.

In the traditional optimal power system dispatching methods,
the optimal power flow (OPF) can directly achieve the optimal
computation of dispatching schemes under various constraints.
Moreover, the operational optimization with more controllable
variables can also be considered in OPF (Bazrafshan et al., 2019;
Nojavan and Seyedi, 2020; Davoodi et al., 2021).

However, when the whole dispatching problem is decomposed,
different aspects of the problem adopt different description
architecture, and even a variety of interrelated dispatching
objectives cannot be considered simultaneously due to the
inconsistent problem model architectures. Therefore, if the
dispatching problem is regarded as a tightly coupled whole, a
unified problem description model and a universal solution
method will fundamentally provide feasible approaches to
breaking the barriers of the current dispatching functional zones.
The intelligent dispatching knowledge learning model established
based on DL and RL in AI has the advantage of end-to-end. It means
that with the current state given as the input, the optimized
dispatching decision-making scheme will be continuously learned
or directly output.

In this study, the power system dispatching problem with
complex constraints is simplified to an economic dispatching
problem with the goal of minimizing the generation cost to
visually demonstrate the dispatching effect, verify and evaluate
the power system dispatching “knowledge” validity acquired by
agents, and facilitate the calculation of the potential generated
“revenue” by intelligent dispatching. It is worth noting that an
independent model can be designed without any specific
dispatching objective by establishing a basic architecture of
intelligent dispatching based on knowledge “learning”. The
method of knowledge acquisition, knowledge application, and
knowledge assessment can be applied to complex online
dispatching processes undoubtedly.

2.2 General description of RL method

General RLmodeling relies onMarkov Decision Process (MDP),
which is a quintuple < S, A, P, R, γ >, in which S represents the state
of the agent, with St ∈ S, where S is the set of all possible states. A
represents the action executed by the agent, with at ∈ A(St), where
A(St) indicates the set of all actions that can be executed under the
state St. P is the state transition probability with
Pa
ss′ � P[St+1 � s′ | St � s, At � a], and R is revenue with Ra

s �
E[Rt+1 | St � s, At � a].

For the multi-step decision problem, the total revenue of
subsequent actions is calculated by the discount factor γ as
Gt �∑∞

k�0γ
kRt+k+1, where γ is the discount factor, with γ ∈ [0, 1].

In terms of the agent policy π, the value of performing action a in the
state s is qπ(s, a), and qπ(s, a) � Eπ[Gt | St � s, At � a].

The action value function records the value of performing each
feasible action in the current state. The knowledge acquired by Q
learning is stored as a Q table, with the basic form shown in Figure 1
as follows.

In the knowledge learning process, the Q matrix is first
initialized to an all-zero matrix, which means that there is no
prior knowledge in the initial state of the agent, and the agent
continues to explore the environment. The updating principle of the
Q-learning algorithm is shown in Eq. 1, where α represents the
learning rate; γ is the revenue decay coefficient; s and a represent the
current state and action taken; s′ and a′ represent the state and
action at the next moment.

Q s, a( ) � Q s, a( )+
α r + γmax

a′∈A
Q s′, a′( ) − Q s, a( )( ) (1)

When decision-making is implemented by using the acquired
knowledge, only by performing the most valuable action a*
corresponding to the state sk can enter state sk+1 and realize the
optimal decision-driven state progression. The process of the agent
applying knowledge is shown in Eq. 2.

π* s( ) � argmax
a∈A

Qπ s, a*( ) (2)

3 AIDLM for power system based on RL

The AIDLM for power system based on reinforcement learning
clarifies the basic elements of intelligent dispatching and the
relationship between the elements from the architecture level.
The data-driven AIDLM describes the basic process of how to
refine data into knowledge. In order to improve the conciseness
and effectiveness of knowledge, this chapter also explores the
extraction and application of AI dispatching knowledge.

3.1 Establishment of AIDLM for power
system

Due to the large scale of the power system, there are many
variables related to the operation of the power system. The goal of
power system dispatching is to adjust some controllable variables in
which the system operation can meet the load demand and have
acceptable technical and economic performances. According to this
feature, the objective and control variables in the power system can
be determined.

The objective variable set Ops is a set of variables that reflect the
system’s operation goal or technical and economic performances,
such as the load of each node, voltage of the load node, network loss
rate, and transmission element load rate. Generally, the state S in
reinforcement learning method comes from the target variable
set Ops.

The control variable set Cps is a set of variables that can be used
in power system dispatching and can change the value of the
objective variable, such as the active power of the generator,
nodal voltage of generator, the reactive power by the reactive
compensation equipment, and the switching of components.
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The environment Eps covers all operating variables obtained by
sensing the practical power system, and it can also establish a
mathematical model to reflect the correlation of all operating
variables.

Accumulated reward Gps evaluates the technical and economic
performance of an objective variables and the corresponding
control. As the revenue assessment requires environment Eps, all
kinds of constraints can be tested in this module. Moreover, the
violation and the impact of the violation on the control value can be
corrected. The exploration reward of single-step actions to the
environment is called immediate reward r, and in each episode,
the agent will choose multi-step control actions to maintain a better
economic and technical performance of the power system.

Since the problem of intelligent power system dispatch needs
to meet both multiple operational objectives in time series and
optimal decision making for multiple generation control
variables. The knowledge of optimal dispatching under a
single objective can be characterized as a Q table. However,
Knowledge extraction is the process of dealing with the
original knowledge formed by “target-control” to gain more
refined knowledge expression (repository) Kps(i).

Based on the above analysis, the architecture of AIDLM in the
power system is presented as shown in Figure 2. The above model
architecture can achieve the learning and post-processing of power
system AI dispatching knowledge.

3.2 Data-driven AIDLM

As can be seen in Figure 1, the exhaustive method can be simply
used as the way for agents to explore the environment and obtain the
optimal decision knowledge, in terms of finite state and finite action
discrete decision problems.

For general RL problems involving massive states and
continuous actions, the Markov chain, ε − greedy, Monte Carlo
decision tree, and other methods are usually used to select
feasible actions. If the environment of the agent is complex, the
state set S may face the problem of dimension explosion. At this
time, the action evaluation Q under each state and action can be
obtained by fitting a neural network with parameter ω, which
provides method support for the accumulation and application of
complex intelligent dispatching knowledge. In this way, when the

FIGURE 1
The Q table for knowledge describing.

FIGURE 2
The architecture of AIDLM in power system.
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neural network reaches convergence, the optimal decision under a
certain target Ops(i) can be achieved by comparing the values of
neural network outputs among different actions.

The action value-based reinforcement learning method outputs
the values of all possible actions within each iteration step. In
addition, the convergence process of optimization decision can be
observed when using the knowledge of agent for optimal
dispatching, so the reinforcement learning method proposed in
this paper has a better interpretability.

The power system has a relatively complete data acquisition
system, including supervisory control and data acquisition
(SCADA), to record the operation conditions of the system.
The data reflect the relationship among the variables such as
the environment, objective, and control in the past operation of
the actual power system. The long-term accumulated historical
operation data cover the steady-state operation behavior of the
power system in conventional scenarios. Based on the
historical data, a data-driven AI dispatching
learning knowledge method for the power system can be
constructed.

Supposing the historical data set {Data(i)} contains the
operation data of n scenarios, the environment Eps(i) can be
constructed from the data of scenario i. The objective vector
Ops(i) and control vector Cps(i) can also be extracted from
{Data(i)} to form the initial “objective-control".

During the whole training process of the agent, AIDLM sets
the initial state of the agent to the initial control given by the
historical data in each episode. However, due to the influence
of time difference, the state faced by the agent in each episode
of learning is uncertain, and the optimal dispatching
knowledge to deal with Ops(i) needs to be updated through
multiple episode cycles. In each episode, the agent will choose
multi-step control actions to make the system’s operating state
gradually converge. The learning process of each episode is
shown in Figure 3.

Using the example of the economic dispatching problem, the key
steps of the agent exploring the environment in Figure 3 are
illustrated.

(1) Definition of state, action and reward

The state s is composed of the demand vector PL{ } and the power
supply vector PG{ }.

Each generator can be discrete into p actions at the current
output level, and if there are l generators in the system, the total
number of optional actions in the action set k = p×l. Since the agent
can form the final optimal dispatching decision through multi-step
actions, if the deviation between the optimal control Cps*(i) and the
initial control Cps(i) is large, the action steps required by the agent
to explore the optimal control will increase.When defining an action
set, coarse adjustment action with large step size and fine adjustment
action with small step size can be defined at the same time. The
knowledge learning process of the agent not only ensures high
dispatching accuracy, but also takes into account high exploration
efficiency.

The immediate reward r of agent consists of three components,
i.e., r = r1+r2+r3, where r1 denotes the convergent performance
evaluation. The agent needs to give positive rewards for performing
excellent actions, conversely, negative rewards will be given for
selecting poor actions.

r1 � k1 × exp −∑l
i�1
f PGi( )/c1( )∣∣∣∣∣∣∣∣

s�st
−

k1 × exp −∑l
i�1
f PGi( )/c1( )∣∣∣∣∣∣∣∣

s�st ,a�at

(3)

In Eq 3, k1 and c1 are the proportional factor and scaling
adjustment factor, respectively. f(PGi) represents the operating
cost of generator i.

r2 represents the penalty for exceeding the limit. The agent needs
to continuously obtain the power flow information of the grid
during the exploration of the environment. If the power flow
does not meet the given operation constraints, the actions that
do not meet the power grid operation constraints should be
punished to reduce the probability of the agent making similar
actions.

r3 represents the penalty of exploration efficiency. In order to
prevent the agent from repeatedly exploring around the local
optimal solution, it is necessary to punish each adjustment action
executed by the agent. r3 is usually constant, but when the action
selected by the agent is to maintain the output of the generator
unchanged, r3 = 0.

(2) Construction and training of deep neural networks

For deep Q learning, the main function of the neural network is
to fit a Q table. Therefore, according to the difference in the
complexity of the problem, the neural network structure can be
composed of 2–5 fully connected layers. In order to solve the
overestimation of action value by neural network, the estimation
network and target network are used to jointly complete the iterative
update of action value function Q in the process of agent training.
The estimation network is used to fit the mapping relationship from

FIGURE 3
Schematic diagram for the process of data-driven AIDLM.
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states to Q values, and the target network is used to generate Q
values for constructing learning targets. Therefore, in AIDLM, the
target network Q values update formula is:

Q � rt+1 + γmaxQ st+1, a′,ω−( ) (4)
In Eq 4, ω− represents the parameters to be trained for the target

network, and Q(st+1, a′,ω−) is the Q values of the target network
fitting in the next state.

The target network structure is the same as the estimation
network structure. The target network is updated with the latest
estimation network parameters after several steps and keeps the
parameters constant during the interval, making the overall iterative
process more stable. The update quantity of Q value in estimation
network is as follows:

ΔQ st, at( ) � α Q st, at,ω
−( ) − Q st, at,ωt( )[ ] (5)

In Formula 5, ωt is the network parameter of the estimated
network, α is the learning rate of the neural network.

When the neural network converges, the optimal control Cps*(i)
corresponding to the objective Ops(i) and the optimal dispatching
knowledge Qps

i (s, a,ω) in the form of a deep neural network can be
obtained.

For convenience, the optimal control accumulated reward of the
objective Ops(i) is denoted as Gps*(i), and three column vectors are
defined as follows:

Ops,vector � Ops 1( ) Ops 2( ) . . . Ops n( )[ ]T
Cps*,vector � Cps* 1( ) Cps* 2( ) . . . Cps* n( )[ ]T
Gps*,vector � Gps* 1( ) Gps* 2( ) . . . Gps* n( )[ ]T (6)

where Ops(i) and Cps(i) themselves are vectors, and then the
generalized n × 3 original knowledge repository matrix Kps,ori

can be defined as:

Kps,ori � Ops,vector Cps*,vector Gps*,vector[ ] (7)
The knowledge distribution of the original knowledge matrix

Kps,ori is related to the data volume n and the distribution of the
historical dataset. When the historical dataset is large and dense
enough, Kps,ori will have much redundancy. Therefore, it is
necessary to perform further post-processing.

3.3 Extraction and application of AI
dispatching knowledge

In the original knowledge matrix of Eq. 6, each row of Ops,vector

has a corresponding Cps*(i), and the optimal control is associated
with each specific objective. Therefore, the original knowledge can
only deal with a specific problem but not a certain kind of problem.
When the operational objective of the power system changes, the
optimal control scheme cannot be obtained directly through the
original knowledge matrix. In the field of machine learning, it
generally adopts the method of additionally constructing a
strongly nonlinear function. Thus, although it can approximately
solve the problem without bringing significant performance loss,
this method cannot reveal the relationship between knowledge
validity and control results, and it is difficult to find the reasons
for the poor effect of “control”. Hence, it is necessary to establish a
knowledge validity assessment method to guide the knowledge
extraction, and make the extracted knowledge expression concise
and effective.

Clustering is used to calculate the “distance” between the data, in
which the data in the same class have similar features. Moreover, the
mentioned data are distinguished from the data with different
features, simultaneously. By using the clustering method, the n
elements of the first column (i.e., Ops,vector) of the original
knowledge matrix Kps,ori are divided into m classes. Accordingly,
the original knowledge matrix Kps,ori is divided into m
submatrices, i.e.,:

Kps,ori �
Kps,ori

1

Kps,ori
2

..

.

Kps,ori
m

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (8)

Each sub-matrix corresponds to a knowledge subclass, and the
elements in each the subclass have similar information. According to
the definition of the original knowledge matrix Kps,ori, its jth sub-
matrix can be written as:

Kps,ori
j � Ops,vector

j Cpsp,vector
j Gpsp,vector

j[ ] (9)

The number of its rows (the number of objective-control pairs
containing) is βj, and following can be obtained as follows:

∑α
j�1
βj � n (10)

For the objective set Ops,vector
j of the jth knowledge subclass, the

cluster center Oj and relative standard deviation εOj of the set are
defined as:

FIGURE 4
Topology diagram of an actual power system.
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Oj � 1
βj
∑βj
γ�1
Ops,vector

j γ( ) (11)

εOj � 1

Oj

���� ����
�������������������
1
βj
∑βj
γ�1

Ops,vector
j γ( ) − Oj

���� ����√√
(12)

Similarly, for the control set Cps*,vector
j of the jth subclass, the

cluster center Cj and the relative standard deviation εCj of the set are
defined.

For the control set Cps*,vector
j of the jth subclass, the mean of all

control values is defined as Gj.

Gj � averge Gps,vector
j( ) (13)

The maximum relative deviation δGj of revenues in the
subclass is:

δGj � max Gps,vector
j( ) −min Gps,vector

j( )
Gj

(14)

The final knowledge matrix Kps is formed after extraction:

Kps �
Kps

1

Kps
2

..

.

Kps
m

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (15)

where Kps reduces from βj rows of original K
ps,ori
j to one:

Kps
j � Oj Cj Gj[ ] (16)

The knowledge validity assessment index VK
j of knowledge

subclass j (or sub-matrix j) is defined as triplet:

VK
j � εOj , ε

C
j , δ

G
j{ } (17)

For a certain knowledge subclass j of a given classification, a
smaller VK

j tripartite element means a better knowledge

composition or a shallower knowledge compression.
Relatively large εOj and relatively small εCj and δGj mean that
this control group has adaptability to wider objective
requirements. The control shows a convergence trend to the
objective. Moreover, relatively small εOj and relatively large εCj
and δGj mean that this group of controls is very sensitive to the
objective. The control shows a divergency trend to the objective,
which may face control errors with large fluctuation in the
control implementation.

For different subclass partitioning schemes, it is evident that
when the original repository Kps,ori is deeply compressed in the
extraction process (fewer knowledge subclasses are retained), the
triples in the knowledge validity assessment index should present
large values. Conversely, if subclass compression is not carried out,
i.e.,m = n, all knowledge validity assessment indexes for the original
repository Kps,ori are 0.

According to the knowledge validity assessment index VK
j ,

the contradiction between knowledge simplification and
guaranteeing control effect can be balanced in progressive
knowledge extraction. For the divided knowledge subclasses,
VK

j can be used to diagnose and compare the quality
differences of each knowledge subclass.

When applying knowledge, for any new specified objective
Ops,spec, the Oj nearest to it in the first column of the knowledge
matrix Qps can be found. In this condition, control Cj can be
adopted, and the loss in revenue will not be greater than δGj .

4 Case studies

In this paper, an actual regional power grid in Northeast China is
taken as an example. The actual operation data collected by SCADA
are used to learn the AI dispatching knowledge and evaluate the
acquired dispatching knowledge validity. The mentioned knowledge
is used to simulate dispatching and test the effect of intelligent
dispatching.

FIGURE 5
The measured total load and the power of each generator for 14 days.
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4.1 Introduction of a practical power system

The practical power system is derived from Northeast of China,
which has 22 loads, and the maximum total load is 2.283 million
kW. There are five power plants, all of which have an installed
capacity of 600 MW. The cost function of each power plant is as
follows:

f1 PG1( ) � 0.00011P2
G1 + 0.005PG1 + 0.15

f2 PG2( ) � 0.000125P2
G2 + 0.0011PG2 + 0.7

f3 PG3( ) � 0.0001225P2
G3 + 0.001PG3 + 0.335

f4 PG4( ) � 0.00013P2
G4 + 0.004PG4 + 0.25

f5 PG5( ) � 0.000085P2
G3 + 0.0012PG3 + 0.6

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩ (18)

where fi(P) and PGi are the generation cost (ten thousand yuan/
hour) and active power (MW) of power plant i, respectively.

The topology is shown in Figure 4.
For this study, a total of 15 days on the regional power grid in the

winter of 2015 were selected as the measured data, with a sampling
interval of 15 min and a total of 1,440 sampling moments. The data
of the first 14 days are used as the data set of AI dispatching
knowledge learning. The total grid load and output curve of each
generator in this period are shown in Figure 5.

FIGURE 6
AI dispatching schemes at the different load levels under lumped
load case.

FIGURE 7
The statistics of knowledge validity indexes under different
extraction depths in the lumped load case.

FIGURE 8
The generating cost curves of the AI dispatching and the real
system in the lumped load case.
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4.2 AI dispatching knowledge learning and
intelligent dispatching based on AIDLM
under lumped load

Loads of 22 nodes in the whole system are first accumulated into
a lumped load, and the lumped load-multi-generation system
dispatching is studied to display the results of the proposed
method in this paper more clearly.

Data-driven AIDLM is used to learn intelligent dispatching
knowledge. In this model, Ops(i) is selected as the total load to be
allocated at scenario i, i.e., OPS(i) � PL∑(i). Due to the
intelligent economic dispatch of lumped load-multiple
generation, the objective variable has only one dimension at
each moment.

The state s of the agent is defined as a 5-dimensional vector,
including s � [PG1, PG2,/, PGNg]which is generated by each power
plant at scenario i, and Ng is the number of power plants in the
power grid. Ng takes the value of five because of there are five power
plants in the grid. The operation status of each power plant should
meet the following equation and inequality constraints:

PL∑ i( ) �∑ng
j�1

PGj i( )
PGjmin ≤PGj i( )≤PGjmax

⎧⎪⎪⎨⎪⎪⎩ (19)

PGjmin andPGjmax are the minimum andmaximum output of power
plant j, which are set as 100 MW and 600MW, respectively.

Take themeasured power generation schemeCps(i) as the initial
state of the agent exploration, and set five alternative actions for each
power plant, corresponding to different operations for the current
active output PGj of power plant j, including increasing by 3%,
increasing by 1%, keeping unchanged, decreasing by 1% and
decreasing by 3%. According to the above definition, the
dimension of total action space is 20.

When calculating the immediate reward of the agent, the
proportional adjustment coefficient k1 = 2, the scale adjustment
coefficient c1 = 6,000, and the penalty r2 = −1 for the generator
exceeding the operating limitation. The agent adjusts the output of
the power plant at each step and obtains the exploration efficiency
penalty r3 = −0.05. Set the maximum number of control steps for
each episode to 1,000, and the learning rate α = 0.0001. The agent is
composed of four fully connected layers, and experience pool
contains 10000 items.

After being sufficiently trained, the agent will output the optimal
action a*t corresponding to the state s = st. With the progression of
the state, eventually the agent will stay in the execution of the action
where the power plant output remains unchanged.

Accumulated reward G represents the total operating cost of all
power plants in the grid after the optimal control actions are applied.
Figure 6 shows the optimal control Cps*(i) and optimal Gps*(i) of
the five generators.

It can be seen that, after the full exploration of “control”, under
1,344 control objectives, the optimal control Cps*,vector has obtained
different degrees of revenue improvement compared with the actual
power generation method.

Currently, the average cost of the AI dispatching knowledge
acquisition scheme is 851,000 yuan/h, and the cost of the
measured operation mode is 902,000 yuan/h, in average. TheTA
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unit price of power supply in the original scheme is 0.48 yuan/
kWh, and that in the new scheme is 0.456 yuan/kWh, which is 5%
lower.

Knowledge extraction is conducted on the original knowledge
matrixKps,ori (96 × 14 rows in total), and the compression ratios are
taken as 14, 28, and 56 to extract the subclass 96, 48, and 24. Figures
7A, B show the average and maximum values of the triplet εOj , ε

C
j , δ

G
j

of knowledge validity assessment index when extracting subclass 96,
48, and 24, respectively. Statistical results indicate that the revenue
loss δGj of knowledge subclass increases with the decrease of the
divided knowledge subclasses. For this example, subclass 48 shows a
smaller deterioration than subclass 96, while subclass 24 shows a
clear trend of deterioration.

Regarding the test of AI dispatching knowledge, the measured
total load data of the 15th day are taken as the objective OPS(i). The
knowledge matrix Q ps of formed subclass 96 after extraction is used
to simulate dispatching and obtain the intelligent dispatching curves
of five generators in 15th day.

Figure 8 shows the comparison of the total generation cost
between the knowledge-based intelligent dispatching scheme and
the actual operation mode.

The cumulative daily generation cost of the actual operation
mode is 23.536 million yuan, while this value for AI dispatching is
22 million yuan. Compared with the actual mode, the cumulative
daily power generation cost of AI dispatching decreases by
1.536 million yuan or 6.52%. It shows that AI dispatching can

reduce the power generation cost based on the actual operation
mode of the system.

4.3 Intelligent dispatching of distributed load
based on AIDLM

For the operation problem of the 22 loads and five power
generators in the example system, the data of the first 14 days
are used to train the AI dispatching knowledge, and then AI
dispatching knowledge is used for dispatching the load of the
15th day.

In this case, the objective OPS(i) is the active power of each
load in the network at scenario i, which is a 22-dimensional
vector, with OPS(i) � [PL1(i), PL2(i),/, PL22(i)]. Table 1 shows
load distributions at four typical moments. Although the total
loads are similar, the distributions of the loads are quite
different. Therefore, AI dispatching in this case requires agent
to acquire oriented knowledge to more specific dispatching
objectives.

Cps(i) is selected as the measured active power Cps(i) �
[PG1(i),/, PG5(i)] generated by each power plant at moment i.
Unlike the intelligent dispatching of a lumped load, here only the
power of generator two to generator five can be directly controlled.
Generator one is designated as the slack node of power flow
calculation, and its power is determined by power flow
calculation, but it does not affect its calculation of revenue.

Figure 9 presents the statistics of knowledge validity assessment
indexes under different extraction schemes.

The original knowledge is extracted and compressed into
subclass 96. Table 2 compares the knowledge validity indexes
under the dispatching modes of lumped and distributed loads.
Compared with the case of lumped load, when the distributed
load is taken as the objective, the dispersion degree of the
objective set OPS increases and εo becomes larger, and the
dispersion εc of the optimal control set also tends to improve.

FIGURE 9
The statistics of knowledge validity indexes under different
extraction depths in the distributed loads case.

FIGURE 10
The generating cost curves of the AI dispatching and the real
system in distributed load case.
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In the training process of intelligent dispatching knowledge
under lumped load, Ops,vector only contains a 1-dimensional
feature quantity, and the mode is simplex when divided into
different subclasses. However, under the dispatching mode of
distributed load, Ops,vector contains 22-dimensional feature
quantities, which can present more complex modes.

As the maximum relative deviation of the control value, the
subset revenue deviation δG reflects the effect of knowledge
extraction from the value perspective. Therefore, with the same
number of knowledge subclasses divided, the control value deviation
under distributed load will be higher than that under
centralized load.

Figure 10 compares the knowledge application effect of
intelligent dispatching for lumped and distributed loads. The
cumulative daily generation cost of AI dispatching under the
distributed load case is 22.29 million yuan, which is 1.246 million
yuan lower than the actual operation cost, with a decrease of 5.3%.
The cumulative daily generation cost of AI dispatching in the
scheme under the distributed load case is 290,000 yuan higher
than the lumped load case, and the deterioration is 1.3%. Since
the dispatching scheme under the distributed load case considers the
network loss, the total power generation is slightly larger than the
total load. The average network loss power is 11.69 MW, and the
total daily network loss power is 280.5 MWh. Considering the
average electricity price, the network loss value will be
132,700 yuan. After deducting the network loss, the dispatching
scheme under the distributed load case has a net cost increase of
157,300 yuan compared with the lumped load case, and the actual
deterioration is 0.7%.

5 Conclusion

Using the new progress of RL in AI, this paper has been
investigated the modeling of intelligent dispatching knowledge
learning in power systems, data-driven knowledge learning
methods, and knowledge validity assessment. The main
conclusions are as follows.

(1) The correspondence between reinforcement learning
knowledge composition and power system operation
problems is researched, and the reinforcement learning-based
knowledge learning model AIDLM for AI dispatching of power
systems is proposed.

(2) A data-driven AI dispatching knowledge learning method is
proposed. Based on the interaction between agent and
environment, the dispatching strategy under a given load
objective can be learned, and then the optimal dispatching

knowledge under different objectives can be continuously
accumulated through Q-learning.

(3) Knowledge effectiveness evaluation indexes are proposed, which
can analyze the performance of each knowledge subclass and
guide the effective extraction of the acquired original
knowledge.

(4) The example of a real power system shows that the AIDLM
model and data-driven method can learn dispatching
knowledge from operation data. The system operation cost
can be reduced by more than 5% by applying the acquired
intelligent dispatching knowledge. It has preliminarily
demonstrated the feasibility of power system intelligent
dispatching based on knowledge learning.
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TABLE 2 Comparison of statistics of the knowledge validity index under lumped and distributed load cases.

Dispatching mode εo εc δG

Average Maximum Average Maximum Average Maximum

Lumped load 0.0027 0.0072 0.0028 0.0050 0.0062 0.015

Distributed load 0.01 0.019 0.0045 0.0072 0.14 0.31
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