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Due to its fast learning speed, the extreme learning machine (ELM) plays a very
important role in the real-time monitoring of electric power. However, the initial
weights and thresholds of the ELM are randomly selected, therefore it is difficult to
achieve an optimal network performance; in addition, there is a lack of distance
selection when detecting faults using artificial intelligence algorithms. To solve the
abovementioned problem, we present a fault diagnosis method for microgrids on
the basis of the whale algorithm optimization–extreme learning machine (WOA-
ELM). First, the wavelet packet decomposition is used to analyze the three-phase
fault voltage, and the energy entropy of the wavelet packet is calculated to form
the eigenvector as the data sample; then, we use the original ELM model coupled
with the theory of distance selection to locate faults and compared it with the SVM
method; finally, the whale algorithm is used to optimize the input weight and
hidden layer neuron threshold of the ELM, i.e., the WOA-ELMmodel, which solves
the problem of the random initialization of the input weight and hidden layer
neuron threshold that easily affects the network performance, further improves
the learning speed and generalization ability of the network, and is conducive to
the overall optimization. The results show that 1) the accuracy of selecting the data
according to the fault distance is twice that of not selecting data according to it; 2)
compared with the BP neural network, RBF neural network, and ELM, the fault
diagnosis model based on the WOA-ELM has a faster learning speed, stronger
generalization ability, and higher recognition accuracy; and 3) after optimization of
the WOA, the WOA-ELM can improve 22.5% accuracy in fault detection when
compared to the traditional ELM method. Our results are of great significance in
improving the security of smart grid.
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1 Introduction

With the rapid development of modern economy, the consumption of energy is
increasing high (Zhang et al., 2023). The direct consumption and waste of non-
renewable energy are particularly serious. The direct consumption and waste of non-
renewable energy are particularly serious. People’s demand for the energy, power
quality, and power company services are growing (Chang et al., 2023). For the
traditional power grid, with the continuous extension of transmission lines, the
occurrence rate of faults is also constantly improving (Lei et al., 2022). There are many
reasons for the large-scale blackout of the power grid due to fault in transmission, for
example, extreme weather events and aggravating anthropogenic activities (Lei et al., 2022;
Liu et al., 2022). However, faults cannot be completely avoided, as they are not only affected
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by human factors, but also by nature. Therefore, it is very
meaningful to detect, classify, and locate faults in smart grid (Liu
et al., 2022; Waldrigues et al., 2022).

Unified power fault detection methods bring huge costs (Chen
et al., 2022a; Wang, 2022; Yan et al., 2022), so now, many works use
artificial intelligence methods to detect, classify, and locate power
faults (Hou et al., 2022; Li et al., 2022; Ma et al., 2022). For example,
Yuvaraja et al. (2022) examined the effect of smart grid systems by
implementing the artificial intelligence technique with application of
renewable energy sources (Yuvaraja et al., 2022). Chen et al. (2022a)
used the CNN-LSTM model to solve the problem of the slow
transmission rate of high-frequency information in smart grid
and improve the efficiency of information transmission (Xin,
2022). Because the distance of the transmission line is relatively
long, the probability of failure of the transmission line is increased
(Ayushi et al., 2022; Xin, 2022; Yuvaraja et al., 2022). Some scholars
use neural networks to detect whether there is a current that is
directly grounded (Xin, 2022). In their results, the decision tree and
neural network have a good effect in the fault classification and
location of electric wires (Ayushi et al., 2022). Moreover, some
studies have used the neural network coupled with wavelet
transforms to detect faults—specifically, some signals of the layer
are extracted through wavelet transforms to judge whether there is a
fault and then the neural network or regression decision tree is used
to judge what the fault is (Ayushi et al., 2022; Singhal et al., 2022;
Xin, 2022). Generally, the collected data are trained and located by
simulating the fault type and fault location of the wire (Chen et al.,
2022b; Singhal et al., 2022). Furthermore, a complex neural network
is specially designed for the complex of power grid data.

The data used in fault detection are divided into two categories:
one, the data that are collected at only one end and the other, the
data that are collected at both ends (Chen et al., 2022b). If data from
only one end is used, it will be easier to collect than when collecting
data from both the ends at the same time. However, data from only
one end usually show either poor accuracy or incomplete detection.
Some researchers have suggested using the K-nearest neighbor
(KNN) to solve the above problem (Fang et al., 2022). For KNN,
Euclidean distance was calculated, and the smaller one as the similar
standard. Also, the KNNwhen combined with the wavelet transform
can classify and locate wire faults more efficiently, with the data at
one end being used to calculate the wavelet transform before
classification and location. In the past, some scholars have
compared the data only used at one end with that from both
ends (Shafiullah et al., 2022). In these two cases, the accuracy of
fault location estimation is similar. However, since it is more difficult
to collect data to measure the data at both ends, it has been
recommended to use only the data at one end (Fang et al., 2022;
Jia et al., 2022; Shafiullah et al., 2022). Data collection at both ends
has certain requirements for data collection instruments. Because
the data at both ends have to be synchronized, GPS satellites are now
used for synchronization (Jia et al., 2022). However, there are also
some researchers who have recommended using the data at both
ends that can to some extent obtain good performance in fault
detection (You et al., 2021; Dac and Trung, 2023; Ma et al., 2023).

The ELM is the new type of neural network proposed by Professor
Huang Guangbin of NanyangUniversity of Technology in Singapore in
2004. It has been widely used in many fields in recent years. The limit
learning machine randomly selects hidden node parameters (such as

input weights and deviations) and analyzes and judges the output
weights of the single hidden layer feedforward neural network (SLFN).
In this way, when the minimum training error is reached, the training
burden can be significantly reduced. It is a simple and effective SLFN
learning algorithm. It not only has the characteristics of a simple
mathematical model and fast learning speed but also a good
generalization performance. At present, it is being successfully
applied to handwritten font recognition, weather prediction, voice
and image recognition, and other fields. However, since the initial
weights and thresholds of the traditional ELM are randomly selected,
the best network performance is difficult to achieve. Furthermore, the
fault location would be affected by the compensation equipment, but
due to the uncertainty of these models, there would be some deviation
when estimating the error. These shortcomings have currently not been
solved by researchers.

In this article, therefore, a method is proposed to roughly judge
whether the fault may be in the first half or second half with regard
to the data at both ends and then locate the fault with the data at the
end close to the fault. We also use the learning method of artificial
intelligence (the extreme learning machine, ELM) to locate the fault
location. Then, a smart grid fault diagnosis method based on the
whale optimization algorithm (WOA) and extreme learning
machine (ELM) is proposed to improve the ELM method in fault
detection. If the data at the far end is used, the artificial intelligence
method cannot locate the fault location well. This is because the data
collected at the detection data end must pass through more power
components at the end farther from the fault location. These
components have an impact on the transmission of electrical
signals. In order to reduce the unnecessary effects, the data
collected at the nearest end can be selected as the input feature
of the classifier. The methodology in this article is to first use the data
at both ends of the classifier to determine the end at which the fault is
likely to occur and then select the data at the nearest end to locate
fault. Furthermore, because the initial weights and thresholds of the
ELM are randomly selected, it is difficult to reach the optimum
network performance. In order to overcome the abovementioned
shortcomings, a fault diagnosis model is established by using the
whale algorithm optimized–extreme learning machine (WOA-
ELM). The whale algorithm has the characteristics of a simple
parameter setting, fast learning speed, high optimization
accuracy, and strong global optimization ability. It can solve the
problem of manually setting the initial weights and hidden layer
thresholds of the limit learning machine and is conducive to further
improve the recognition accuracy.

Therefore, we 1) first use the ELM to define the fault line and
then analyze its results. At the same time, the support vector
machine classifier and wavelet transforms are used to process the
signal for location; 2) analyze the three-phase fault voltage by
wavelet packet decomposition, and the energy entropy of wavelet
packet is calculated to form the eigenvector as the data sample; 3)
finally, use the whale algorithm to optimize the input weight and
hidden neuron threshold of the ELM, which solves the problem of
random initialization of the input weights and hidden neuron
thresholds that easily affect network performance, which can
further improve the learning speed and generalization ability of
the network and is conducive to global optimization. Some data of
these simulated wire faults are obtained as samples for experimental
learning.
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This study is organized as follows. We summarize the related
works in Section 2; then, we introduce the ELMmethodology, WOA
approach, and data process in Section 3; in Section 4, a model of the
high-voltage transmission system is established; and in the Results
section, the ELM, WOA-ELM, and SVM are used to locate the fault
line, and the results are analyzed.

2 Related works

Compared with the traditional fault diagnosis method, the fault
diagnosis method based on AI technology has a higher diagnosis
accuracy and faster diagnosis speed. Many experts and scholars have
proposed a large number of fault diagnosis methods on the basis of
the AI algorithm, such as the expert system method, method based
on the optimization model, method based on the graph theory
model (such as the Petri net, Bayesian network, spike neural network
(SNP) system, and artificial neural network (ANN).

The method based on the expert system is the earliest AI
method to be applied for power grid fault diagnosis. This method
establishes an expert rule base by simulating the logical
experience of experts when dealing with faults. During
diagnosis, the current fault information is compared with the
rules of the expert base, and the diagnosis results are obtained
according to the matching situation. Due to its good reasoning
ability and fault interpretation ability, this method has become
the most widely adopted and applied method in the field of power
grid fault diagnosis in the early stages. Fukui and Kawakami
(1986) proposed for the first time applying the expert system to
the field of power grid fault diagnosis, using concepts and
simplified information to estimate fault components and
realizing smart grid fault diagnosis. However, due to the
simple rule base, it can deal only with simple fault situations.
The essence of this method based on the analytical model is a
mathematical model built according to the power grid protection
configuration and the action rules of protection and circuit
breaker in case of faults. This method represents the fault
diagnosis problem as a 0-1 integer programming problem and
then uses the intelligent optimization algorithm to find out the

fault hypothesis that can best explain the fault information.
Because the theoretical basis is rigorous and has a
mathematical basis, and the diagnosis process has explanatory
power and is concise and clear, a large number of optimization
algorithms are applied for power grid fault diagnosis. Xiong et al.
(2018) proposed a brainstorming algorithm for binary coding
optimization, established a fast fault diagnosis for large power
grids, and solved the 0-1 integer programming problem using
binary vector coding instead of the algorithm, thus improving the
efficiency of the diagnosis model. The power grid fault diagnosis
method based on the graph theory has strong explanatory power.
The general process of such algorithms is to first establish a causal
model, directly representing the causal relationship between
protection and the circuit breaker through a clear and intuitive
graphical process and then use their respective reasoning
methods to diagnose the fault components. The graphical
process makes it unnecessary to extract the representative fault
samples, while the “transparent” diagnosis process (the diagnosis
process conforms to logical reasoning) enables dispatchers to
understand the whole fault diagnosis process in a very short time,
which is conducive to the subsequent power recovery. The
method based on Petri net is the most widely studied
graphical fault diagnosis model. This method uses the
repository/transition of weighted directed network to clearly
restore the knowledge logic in fault diagnosis. The reverse
reasoning process is simple and clear and the speed is fast, but
the ability to deal with complex problems is low. Since then,
researches in terms of diagnosis detection are mainly
concentrated in high level high-level Petri net (Lcfcbvre, 2014).
The method is based on the Bayesian network and conditional
probability reasoning to realize power grid fault diagnosis. The
diagnosis model is intuitive and can diagnose effectively even
when the alarm information is wrong, but it is difficult to obtain
the prior probability of component fault in a complex power grid
(Ji et al., 2022). The SNP system is essentially a directed graph
composed of multiple neurons and synapses connecting the
neurons, in which the neurons are the nodes and synapses are
the directed arcs of the graph (Wang et al., 2011). In the SNP
system, the transmission of data information is realized through

FIGURE 1
Structure of extreme learning machine. W is input weight, β is output weight.
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the excitation of pulse potentials in the neurons. All pulses are
represented by characters and considered undifferentiated. The
data information in the SNP system can be transferred from the
presynaptic neurons to postsynaptic neurons according to
specific excitation rules. According to the excitation rules, new
pulses are generated after the consumption of a part of the pulses.
These new pulses are transmitted to all the neurons connected
after the synapse. The fault diagnosis method based on the neural
network has the characteristics of distributed storage, adaptive
learning, high fault tolerance rate, and fast diagnosis speed and a
certain development prospect in the field of power grid fault
diagnosis (Luo et al., 2014). At present, there are three types of
fault diagnosis methods based on the neural network: one is the
centralized diagnosis method that takes the whole power grid as a
whole and directly diagnoses; the second is the partition diagnosis
method which divides the large-scale power grid into several
regions for diagnosis; and the third is the component-oriented
diagnosis method of establishing diagnosis network for faults of
various power grid components (lines, buses, and transformers).

Chang et al. (2023) proposed a fault identificationmethod on the
basis of a unified inverse-time characteristic equation to aim at the
problems of large setting workload and easy mis-operation of the
inverse-time overcurrent relay after distributed generation access
(Chang et al., 2023); Lei et al. (2022) proposed the multi-population
particle swarm optimization algorithm and compared it with single-
population particle swarm algorithm on the IEEE 69-node model,
they proved that the new algorithm can find fault locations faster;
meanwhile, they verified the effectiveness of the algorithm in a
variety of distribution network fault location scenarios (Lei et al.,
2022). Liu et al. (2022) considered the randomness and uncertainty
of the output of the solar and wind power, as well as the bidirectional
characteristic of current flow and because the faults in the
microgrids being difficult to identify using the traditional fault
detection methods, they proposed a machine learning–based fault
identification method for microgrids. Waldrigues et al. (2022)
proposed an improved method after Brazil (2020) to verify the
feasibility of using time-series forecasting models for fault
prediction; they also evaluated the long short-term memory

(LSTM) model to obtain a forecast result that an electric power
utility can use to organize maintenance teams. Wang (2022)
presented a fault line selection approach on the basis of the
modified artificial bee colony optimization–deep neural network
(ACB-DNN) to address the difficulties in choosing a fault line in
electric current grounding systems for small electric currents. Chen
et al. (2022a) put forward a novel fault recovery method for
Automatic driving network (ADN) on the basis of an improved
binary particle swarm optimization (BPSO) algorithm, and the
topology constraints were specially considered to accelerate the
recovery operation.

The extreme learning machine (ELM) is a single implicit
feedforward network learning method derived from the neural
network (NN). Because the weight value between the input and
hidden layer and the hidden layer threshold of the algorithm are
randomly generated without adjustments and training and the
output can be obtained only by setting the number of hidden
layer neurons, the algorithm has a good learning efficiency and
high generalization (Luo et al., 2017). However, the ELM has the
following shortcomings: the ELM uses the least squares method to
learn, only considers the empirical risk of the model, and is prone to
over-fitting. Especially, when the training data cannot express the
characteristics of the learning data set, the over-fitting phenomenon
is particularly serious. The accuracy of the ELM is significantly
affected by the number of neurons in the hidden layer. The
calculation error of the ELM depends heavily on the large
number of hidden layers and easily causes dimension disaster,
seriously affecting the practical application of the ELM (Kasun
et al., 2013).

In order to overcome the abovementioned shortcomings, a fault
diagnosis model is established by using the whale algorithm
optimized–extreme learning machine (WOA-ELM). The whale
algorithm has the characteristics of simple parameter setting, fast
learning speed, high optimization accuracy, and strong global
optimization ability. It can solve the problem of manually setting
the initial weight and hidden layer threshold of the limit learning
machine and is conducive to further improve the recognition
accuracy.

FIGURE 2
Structure of microgrid system. L1, L2, and L3 are filter inductances; C1, C2, and C3 are filter capacitors; Load1, Load2, Load3, and Load4 are electrical
loads; r is line resistance; x is line reactance.
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3 Methods and data

3.1 ELM and WOA-ELM

In the single hidden layer feedforward networks (SLFNs),
many parameters have to be adjusted because the weights of the
neurons in the different layers are interdependent. In the past few
decades, the gradient-based learning algorithm has been
generally used in feedforward neural networks. The method is
slow and easy to fall into the local minimum. Different from the
traditional feedforward neural network, the extreme learning
machine (ELM) has to adjust all the parameters of the
feedforward neural network (for the structure of the ELM, see
Figure 1). This method randomly gives the input weight and
threshold value of the neuron weight and then calculates the
output weight by solving the generalized inverse (Dac and Trung,
2023). It has been proved that random selection of the node
parameters of the feedforward neural network of a single hidden
layer does not affect the convergence ability of the neural
network, which makes the network training speed of the ELM
thousands of times higher than that of the traditional network
(Ma et al., 2023). Therefore, we first let SLFN have one hidden
node. For the feedforward neural network with a single hidden
layer, its standard model is

∑
i�1
~N g(wi · xj + bi)βi � oj, j � 1, 2, 3, . . . , N, (1)

where wi · xj is the inner product of vector wiandxj, N is the
training sample, ~N is the number of hidden layer units, oj is the
actual input value. g(x) is the activation function. Using sigmoid
function as the activation function, if let Eq. 2 is the infinite
approximation at 0 with existing W, β, b:

min∑N

j�1‖ oj − tj ‖, (2)
∑

i�1
~N g(wi · xj + bi)βi � tj, j � 1, 2, 3, . . . , N. (3)

Eq. 3 can be written compactly as

Hβ � T, (4)
where T ∈ RN×m and β ∈ RN×m.

H � W, b( ) � hij( )
N× ~N

(5)

where hij � g(wi · xj + bi), andH is the output matrix of the hidden
layer of the neural network. When the number of hidden layer
elements is the same as the total number of training samples, and the
matrix is invertible, Eq. 4 has a unique solution. That is, Eq. 2 is
satisfied. However, in many cases, when the number of hidden layer
elements is far less than the total number of training samples, H is a
rectangular matrix at this time andW, β, b does not necessarily exist
and makes Eq. 2 hold, so it can be equivalent to finding the
minimum value of Eq. 5 as the solution of Eq. 2.

E � ∑N

j�1‖ ∑ i�1
~N g wi · xj + bi( )βi − tj ‖2. (6)

If Eq. 5 is solved by the gradient learning method, it can be used
to represent all parameters, and the iteration can be written as given
in Eq. 7.

θk � θk−1 − η
zE θ( )
zθ

, (7)

where η is the learning efficiency. For feedforward neural networks,
back-propagation neural networks are generally used. The neural
network is a multilayer feedforward network trained according to
error (You et al., 2021). The neural network includes input layer
nodes, output layer nodes, and one or more hidden layer nodes.
First, the input signal reaches the hidden layer node, where it passes
through the excitation function and the output signal of the hidden
layer node is then transmitted to the output node to finally get the
output result. (Fukui and Kawakami, 1986). The learning process is
that the neural network constantly changes the connection weight of
its own network in the case of external input samples, so as to make
the output result of the network closest to the expected output value
(Xiong et al., 2018). If the output results differ greatly from the
expected values, backpropagation can be carried out, and then the
weights of each neuron can be modified again, and finally, a good
classifier can be trained through continuous iteration. If the learning
rate is too small, the learning speed is very slow. If the selection is too
large, it is difficult to obtain network convergence. If Eq. 6 is a non-
convex function, it is easy to fall into a local minimum by
continuously iterating and adjusting parameters. Repeated
iteration is not only time consuming but also easily falls into the
situation of learning and fitting (Lcfcbvre, 2014).

In SLFNs, W and b are given at the beginning of the algorithm
and can be arbitrarily specified. Then,H is calculated, while the value
remains unchanged. In this way, only the parameter β that can be
changed is left, and this shows that the given W and b do not affect
the results.

When W and b are fixed, Eq. 4 is solved by replacing it with
Eq. 8:

‖ Hβ̂ − T ‖� min ‖ Hβ − T ‖ . (8)
The least squares solution can be obtained by solving the Eq. 8.
In some large-scale projects, the learning process usually uses all

the data and these learning times are very long. If new samples are
added at this time, they have to learn together with the original data.

TABLE 1 Test error in the experiments (%).

Number B1 B2 B1B2 Present study

1 3.96 1.85 6.83 0.59

2 4.76 0.95 1.78 0.31

3 4.73 1.20 1.61 0.50

4 4.99 1.68 4.06 0.36

5 4.74 1.39 2.53 0.67

6 4.46 1.38 2.28 0.27

7 4.73 1.98 8.17 0.59

8 4.77 1.60 1.76 0.66

9 4.65 1.44 4.18 0.51

10 4.11 1.30 6.78 0.29

Average 4.59 1.48 4.01 0.48
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In this way, it is a waste of time to relearn all the data. The online
sequential learning neural network (OS-LNN) does not have to learn
the previous data, but only has to add the new data to the learned
network. However, the OS-LNN has to set network weights, and the
training speed is also very slow. Although the training is completed,
the online sequential learning–extreme learning machine (OS-ELM)
can not only learn data one by one but also learn them batch by
batch. The least squares solution of Hβ − T is β̂ � H*T, and we
considered that Rank (H) � ~N is the number of hidden layer units,
and H* is the left pseudo inverse of H, H*H � IN.

H* � H( TH)−1H. (9)

By substituting equation (9) into equation (8), we get

β̂ � (HTH)−1HT. (10)

According to previous studies (Dac and Trung, 2023; Ma et al.,
2023), the least square root is β(0) � K−1

0 H0T, where K0 � HT
0H0.

When adding the new data (k + 1),
Nk+1 � xi, ti{ }∑

k+1
j�0Nj

i�(∑k

j�0Nj)+1
,

k≥ 0, Nk+1 is (k+1)
th

data,
Kk+1 � Kk +HT

k+1Hk+1, and
β k+1( ) � β k( ) + K−1

k+1H
T
k+1 Tk+1 −Hk+1β

k( )( ). (11)

With the help of the Sherman-Morrison-Woodbury (SMW)
equation, β(k+1) can be calculated by

β k+1( ) � β k( ) + Pk+1HT
k+1 Tk+1 −Hk+1β

k( )( ). (12)

where Pk+1 � K−1
k+1 � Pk − PkHT

k+1(I +Hk+1PkHT
k+1)−1 × Hk+1Pk.

FIGURE 3
Comparison between actual values and predictive value.

FIGURE 4
Comparison of experimental values with B1 and B2 data when fault is close to B1 end.
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When the OS-ELM faces the new data, it does not have to relearn
the old data, which makes it faster than the other neural network
methods. When selecting the network parameters, it becomes only
necessary to determine the number of neural units in the hidden layer,
which also reduces the dependence on the network layers.

The whale optimization algorithm is mainly divided into three
steps: surround prey, spiral bubble net attack method, and randomly
search for prey.

Surround prey: because the location of the target prey is
unknown a priori, the WOA algorithm treats the location of the
best candidate in the current whale group as the location of the target
prey, and the other individuals in the whale group update the
location according to the location of the best candidate:

D � C ·X* t( ) −X t( )| |, (13)
X t + 1( ) � X* t( ) − A ·D, (14)

A � 2ar − a, (15)
C � 2r, (16)

where X is the position vector of the current solution; t is the number
of iterations;A and C are coefficient vectors;X* is the position vector
of the optimal solution in the current whale population. a decreases
linearly from 2 to 0 as the number of iterations increases; r is an
arbitrary vector between 0 and 1.

Spiral bubble net attack method: the WOA algorithm first
calculates the distance between the individual whale and the
target prey, and then simulates the spiral movement of
humpback whales for hunting behavior:

D′ � X* t( ) −X t( )| |, (17)
X t + 1( ) � D′ebl cos 2πl( ) +X* t( ), (18)

where b is the constant coefficient defining the spiral shape, and l is a
random number in the interval [−1, 1].

Randomly search for prey: in the process of predation, when A is
greater than 1 or less than −1, the individuals in the whale group
randomly select a prey with reference to each other’s position to
improve the global search ability of the algorithm, namely,

D � CXrand −X| |, (19)
X t + 1( ) � Xrand − AD, (20)

where Xrand is a randomly selected position vector for the current
whale group.

The steps for WOA to optimize the ELM are as follows:

(1) Parameter initialization. Set the WOA parameters, namely, the
number of whales, maximum iterations, variable dimensions,
and upper and lower limits of variables;

(2) Population initialization. Randomly initialize the position
values of each dimension of all whale individuals, and the
position values of each dimension of each whale individual
representing the input weights or thresholds;

(3) Calculate the fitness value. Select the objective function to
calculate the fitness value of each whale individual;

(4) Update the optimal solution. According to the fitness value of
each whale individual, find the position of the optimal
solution in all solutions and update the position of each
whale individual according to the position of the optimal
solution;

(5) The position of each individual whale is updated. When the
probability p < 0.5 and | A |<1, the location is updated according
to Equation 16. If | A | ≥ 1, a location vector Xrand is randomly
selected and the location is updated according to Equation 19.
when the probability p ≥ 0.5, the location is updated through
Equation 20.

3.2 Wavelet packet energy entropy
extraction

The structure of the wind solar storage microgrid system is
shown in Figure 2.

The internal line faults of the microgrid can be divided into
single-phase ground short circuit (AG, BG, and CG), two-phase
short circuit (AB, AC, and BC), two-phase ground short circuit
(ABG, ACG, and BCG), three-phase short circuit (ABC), and three-
phase ground short circuit (ABCG) faults.

When processing the signal, wavelet packet decomposition
can decompose the low-frequency component and high-
frequency component of the signal at the same time; higher
the resolution, more detailed the decomposition and better the
effect. The square-integrable function f(t) can be decomposed
into a scaling function ϕ(t) and wavelet function φ(t); ϕ(t) is low
frequency of f(t), φ(t) is high frequency of f(t), and their
relationship includes

δ2n t( ) � �
2

√ ∑
k∈z

h k( )δn 2t − k( )
δ2n+1 t( ) � �

2
√ ∑

k∈z
g k( )δn 2t − k( )

⎧⎨
⎩ , (21)

where h(k) is low pass filter coefficient, and g(k) is high pass filter
coefficient.

When n � 0, δ0(t) � ϕ(t), δ1(t) � φ(t), the set of functions
defined above {δn(t)} (n = 0,1,2,...) is determined by δ0(t) � ϕ(t)
determined wavelet packet. According to the fast algorithm of
orthogonal wavelet transform, the recursive formula of wavelet
packet coefficients can be obtained as follows:

λ2ii+1 � ∑
k∈z

h k − 2t( )λji k( )
λ2i+1i+1 � ∑

k∈z
g k − 2t( )λji k( )

⎧⎨
⎩ , (22)

TABLE 2 Distance interval testing error through B1 data.

Experiment 0%–33% 33%–66% 66%–100%

1 0.0021 0.0046 0.045

2 0.0027 0.0072 0.039

3 0.0021 0.0173 0.042

4 0.0002 0.0173 0.035

5 0.0006 0.0042 0.039

6 0.0017 0.0144 0.032

7 0.0007 0.0081 0.0344

8 0.0025 0.0088 0.0356

9 0.0017 0.0094 0.0401

10 0.0017 0.0103 0.0395
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where λji (k) is the kth coefficient corresponding to the jth node of
layer i after wavelet packet decomposition.

Wavelet packet energy entropy is a description of signal
uncertainty, which can reflect the degree of random change of
signals. When a fault occurs in the internal lines of the
microgrid, because the voltage signal contains non-stationary
signal components, the wavelet packet voltage reconstruction
signal waveform will immediately fluctuate at the time of the
fault. The wavelet packet decomposition and reconstruction
technology can make accurate and rapid localization analysis of
the voltage signal, which is reflected in the wavelet packet energy
entropy, so the wavelet packet energy entropy can well reflect the
fault characteristics of the voltage signal. According to information
entropy theory, wavelet packet energy entropy can be defined as

WPEE � −∑L

i�1P Xi,j( )log2 P Xi,j( ), (23)

where L is the original signal length; Xi, j is the jth decomposition
signal of layer i; P (Xi, j) is the frequency band energy probability
density, and the mathematical expression is

P Xi,j( ) � Ei,j

∑2i

j�1Ei,j

, (24)

where Ei,j is the energy of the jth decomposed signal of the ith layer,
defined as

Ei,j � ∑N

k�1 λ
j
i k( )∣∣∣∣ ∣∣∣∣2, (25)

where N is the length of the jth frequency band.

3.3 Data

According to Figure 2, a microgrid model that includes wind
turbine (10 kW), photovoltaic cell (10 kW), and battery (10 Ah) is
built in the MATLAB simulink environment. The filter inductances
L1, L2, and L3 are 3.6e

−3 H; the filter capacitors C1, C2, and C3 are
200e−6 F; the electrical loads Load1, Load2, Load3, and Load4 are
10 kVA, 10 kVA, 5 kVA, and 15 kVA, respectively; the line
resistance r is 0.175Ω/km; and the line reactance x is 0.070Ω/
km. Simulate each type of line fault at 10%, 20%, 30%, 40%, 50%,
60%, 70%, 80%, and 90% of the lines between P1 and P2 on the
microgrid side. The db6 wavelet is selected as the wavelet base, and
the simulated A-phase fault voltage is analyzed by three-layer
wavelet packets to obtain 23 sub signals in different frequency
bands, which are reordered from low frequency to high
frequency. The wavelet packet signal reconstruction is carried out
for each frequency band, and a total of eight wavelet packet
reconstruction signals are obtained. The energy entropy of the
reconstructed signal of each wavelet packet is calculated, and a
set of eigenvectors are constructed from the energy entropy of eight
wavelet packets. By the same processing of phase B and phase C
voltage signals, a eigenvector containing 24 wavelet packet energy
entropy can be obtained X � [x1, x2, . . . , x24]T. Taking X �
[x1, x2, . . . , x24]T as the input sample of the network, and the
output sample of the network is T � [t1, t2, . . . , t4]T, t1, t2 and t3,
respectively, representing the line status of phase A, phase B, and
phase C, and t4 representing whether the fault phase is groundedTA
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when the line fails. When it is 0, it means there is no fault or the fault
phase is not grounded at this time; when the output is 1, it means the
fault phase is grounded.

The data samples at 10%, 20%, 40%, 60%, 80%, and 90% of the
line positions are taken as training samples, and the data samples at
30%, 50%, and 70% are taken as test samples. The number of
neurons in the input layer of ELM is 24, the number of neurons
in the output layer is 4, the number of neurons in the hidden layer is
determined to be 35 according to the trial and error method, the
number of whales inWOA is 30, the maximum number of iterations
is 200, and the variable dimension is 875.

4 Results and discussion

4.1 Fault detection based on original ELM
coupled with distance selection

As shown in Table 1, the method proposed in this article is
nearly twice (mean error is 0.47%) as good as the method using
B2 data only (mean error is 1.48%). The performance based on
B2 only is better than that based on B1 (4.58%), it should be noted
that the performance using combined B1B2 data (4.0%) is the
poorest among the all methods.

FIGURE 5
Data are located by ELM after wavelet transform.

FIGURE 6
Data are located by SVM, RF, and RNN after wavelet transform.
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We compared the results between actual and predictive in
Figure 3, a total of samples of 209 are used for testing. Only
21 samples is not completely positioned accurately, that is, 10%
samples have positioning errors, and the predicted values of the
remaining test samples are identical to the actual values. The
maximum error is that the actual value is 85% of the fault point
that away from B1 and the predicted value is 92% of the fault point,
with 7% error.

We did a comparative experiment, and the results are presented
in Figure 4, when the B1 fault occurs, the data of B1 and B2 are used
to locate the fault location. Through comparison, it can be found
that the data on the B1 side should be accurate to the data on the
B2 side. Table 2 divides the fault distance into three sections: 0%–
33%, 33%–66%, and 66%–100%, respectively. Then, only the data of
B1 is used to locate the fault, and it is found that the farther away
from B1, the greater the test error. We demonstrated that it is more
effective to use data close to the fault point. From the experimental
results, it is shown that using the data points at the near end has
better results. The farther the signal is transmitted, the greater is the
resistance affected by various electrical components.

The experiment in Table 3 uses the SVM classifier, random
forest (RF), and recurrent neural network (RNN) to test the
method proposed in this article. Moreover, we choose to use
libsvm and genetic the algorithm to optimize C and gamma

parameters. The range of C is 0–1,000, the range of gamma is
0–1,000, the maximum evolutionary algebra is 200, and the
maximum data of the population is 20. We can see that, in
our methods, the selection of data based on the fault distance
coupled with SVM can improve the accuracy of detection of fault
in smart grids, with an average error of 0.86%, followed by RF
with a mean error of 0.91% and B1B2-SVM with a mean error of
0.98%. Keeping the results of Figure 4 in mind when coupling
with the SVM algorithm, the B1B2 method can obtain substantial
accuracy with an average error of 0.98%, B1+SVM has the poorest
performance with a mean error of 3.87%, B2+SVM has a
moderate performance with a mean error of 1.61% (ranking of
performance in Figure 4 is B2 > B1B2 > B1), which means that the
artificial intelligence algorithm (SVM here) can substantially
improve the detection of fault in the smart grid. the SVM can
improve accuracy of fault detection more robustly than RF and
RNN, for example, B1+RF has an error of 4.3%, followed by
B1+RNN with 3.8%, and 1.9% and 2.0% for B2+RF and B2+RNN,
respectively; 1.4% and 1.1% for B1B2+RF and B1B2+RNN,
respectively. Fault distance–based data selection can
substantially improve accuracy of fault detection on the basis
of not only SVM but also RF and RNN, for example, 0.8%, 0.9%,
and 1.2% for SVM, RF, and RNN, respectively, which means the
fault distance–based data selection is useful for fault diagnoses.

FIGURE 7
Comparative results of WOA-ELM, PSO-ELM, and traditional ELM models.

TABLE 4 Error between ELM and WOA-ELM methods in training and testing data sets.

Training set Testing set

Error ELM WOA-ELM PSO-ELM ELM WOA-ELM PSO-ELM

MSE 6.374 × 10−6 7.615 × 10−9 8.96 × 10−8 4.215 × 10−5 8.759 × 10−8 9.65 × 10−7

RMSE 0.0052 0.00210 0.0039 0.0079 0.0035 0.0045

MAE 0.0096 0.0017 0.0041 0.017 0.021 0.036
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After processing the data with Daubechies wavelet, the data
output of the first layer is selected as the feature of the input
classifier. The results obtained after positioning with ELM and
with SVM, RF, and RNN are shown in Figures 5, 6, respectively.
It can be seen that the method proposed in this article still has a good
effect, with an average error of 0.66%. The method of B1+ELM after
wavelet transform is the poorest with a mean error of 5.12%,
followed by B1B2+ELM with of mean error of 4.93% and
B2+ELM with a mean error of 3.72. Performance of the SVM,
RF, and RNN methods after wavelet transform is better than that of
the ELMmethod, and the SVM has the best performance. As we can
see in Figure 6, B1+SVM, B2+SVM, or B1B2+SVM has smaller
errors in fault detection, specifically, B1+SVM has the poorest
performance with a mean error of 4.7%, followed by B2+SVM
(1.98%), B1B2+SVM (1.14%), and our method, i.e., fault
distance–based data selection + SVM (0.96%), which means that
our fault distance–based method to detect faults is robust. The
methods of both RF and RNN are poorer than SVM; B1+RF and
B1+RNN are the poorest with a mean 5.04% and 3.9%, respectively.
However, RF and RNN substantially improve the accuracy of fault
detection, which is still poorer than SVM, for example, a mean error
of 1.099% and 1.26% for the fault distance–based data selection +
RNN and fault distance–based data selection + RF, respectively,
while the mean error was 0.959% for our method, which means that
improvement of SVM is robust.

4.2 Fault detection based on WOA-ELM
method

In order to verify the superiority of the WOA-ELM diagnostic
model and improve the recognition accuracy, the WOA-ELM
diagnostic model is compared with the traditional ELM diagnostic
model and optimized ELM by Quantum PSO, i.e., PSO-ELM. The
results are shown in Figure 7. The error ofWOA-ELM andWOA-ELM
diagnostic faults are nearly 8.5% and 8.9%; separately, they are higher
than the traditional ELM model with an error of 11%. We further
compared the results of the three models using the mean square error
(MSE), root mean square error (RMSE), and mean absolute error
(MAE) (Table 4). TheWOA-ELMmodel is largely better than the PSO-
ELM and ELMmodels both in the training and testing data sets in fault
detection. TheWOA-ELMmodel usesWOA algorithm to optimize the
input weight and hidden layer node threshold of the ELM, overcomes
the shortcomings of random initialization of the input weight and
hidden layer node threshold of the ELM, improves the global search
ability of the network, and makes the network have better recognition
accuracy.

Compared with the research results of others, the literature (Ji
et al., 2022) proposes a basic network architecture design, using a
simplified residual connection technology, using focal loss as the
objective function for supervised training, adding a
BatchNormalization layer to the network for optimization,
reducing parameters based on ShuffleNet network, and
improving accuracy on the basis of the attention mechanism, a
process that can automatically determine the appropriate CNN
architecture for fault diagnosis problems. Wang et al. (2011)
proposed a new method for fault identification on the basis of
parameter optimized variational mode decomposition (VMD) and
convolutional neural network (CNN). Luo et al. (2014) proposed a
real-time deep learning algorithm to classify and localize the faults
that occurred in the system based on measured data. Luo et al.
(2017) presented a method on the basis of gated graph neural
network for automatic fault localization on distribution networks.
The method aggregates problem data in a graph where the feeder
topology is represented by the graph links and nodes attributes that
can encapsulate any selected information such as operated devices,
electrical characteristics, and measurements at the point. Kasun et al.
(2013), Zhibin et al. (2019), and Xue and Dola (2022) proposed a
multi-fault diagnosis model of distribution network on the basis of
the fuzzy optimal convolutional neural network. In order to
compare their results with ours, we used the RBF neural network
and BP neural network to detect fault location in the smart grid and
used indicators of MSE, RMSE, and MAE to evaluate accuracy; the
results are provided in Table 5.

The three training errors of theWOA-ELMmodel are about one
order of magnitude smaller than those of the BP neural network
model and ELM model, while the three training errors of the RBF
neural network model are 6–13 orders of magnitude smaller than
those of the WOA-ELM model. The training effect of RBF neural
network is the best. However, it can be seen from Table 6 that the
three test errors of the WOA-ELM model are significantly smaller
than those of the RBF neural network model. It shows that the RBF
neural network model has a phenomenon of over-fitting, and its
generalization ability is weak and cannot accurately identify the
untrained fault types.

4.3 WOA-ELM performance in microgrid
fault diagnoses

In substituting the data samples into the WOA-ELM fault
diagnosis model for training and testing, the line fault diagnosis
results of the test samples at 50% of the line position are shown in
Table 6.

It can be seen from Table 6 that the absolute value of the error
between the expected output and the actual output of the WOA-
ELM fault diagnosis model does not exceed 0.015 at the most. The
error is small, the accuracy is high, and the approximation ability is
strong. It can accurately identify the fault types of microgrid lines.

In order to verify that WOA-ELM diagnostic model has better
performance and higher recognition accuracy than the other
models, the BP neural network, RBF neural network, and ELM
were selected to establish the diagnostic models for comparative
analysis. The expected output and actual output results of all
training samples (72) are shown in Figure 8A. It can be seen

TABLE 5 Error between BP and RBF methods in training and testing data sets.

Training set Testing set

Error BP RBF BP RBF

MSE 9.110 × 10−4 4.392 × 10−17 7.889 × 10−4 0.0321

RMSE 0.0302 2.001 × 10−9 0.0285 0.0512

MAE 0.0181 1.401 × 10−9 0.0190 0.021
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from Figure 8A that the training error of the BP neural network
model is large; the training results of the other three models can well
approximate the expected output; the error between the actual value
and expected value is small; and the training accuracy is high.

The expected output and actual output results of all test samples
(36) are shown in Figure 8B. It can be seen from Figure 8B that the
test results of the BP neural network model, RBF neural network
model, and the non-optimized ELM model have large errors, while
the test accuracy of the WOA-ELM model is the highest.

5 Conclusion

In this article, a microgrid fault diagnosis method based on the
whale algorithm optimization limit learning machine was proposed.
The whale algorithm has the characteristics of fast convergence
speed and strong global optimization ability. It optimizes the input

weights and hidden layer neuron threshold of the ELM, effectively
avoids the shortage of random initialization of network input
weights and hidden layer threshold, enhances the approximation
ability of the model, and significantly improves the recognition
accuracy of the network. The results show that the selection of data
based on the fault distance is twice as effective as the useless real
data. The ELMmethod was proved to have a good location result by
using the support vector machine classifier and wavelet transform to
process the signal. After the ELM is improved by the WOA
algorithm, the accuracy of fault detection is improved by nearly
22.5%. The simulation results show that theWOA-ELMmodel has a
higher recognition accuracy than the BP neural network model, RBF
neural network model, and ELM model and can more accurately
identify the fault types of internal lines in the microgrid, which
verifies the effectiveness and reliability of the WOA-ELM model.

The power system simulated in this article may be different from
the complex power grid in reality. The actual power system wires are

TABLE 6 Fault diagnosis results of test samples at 50% of line.

Types of faults Expected output Actual output

Normal (0,0,0,0) (−0.001 1, 0.008 6, −0.000 5, 0.001 1)

AG (1,0,0,1) (0.995 6, −0.002 5, 0.002 0, 0.987 4)

BG (0,1,0,1) (−0.001 0, 0.997 5, −0.002 6, 0.998 0)

CG (0,0,1,1) (−0.002 1, 0.001 5, 0.998 3, 0.996 5)

AB (1,1,0,0) (1.004 2, 0.995 7, 0.002 3, 0.009 1)

AC (1,0,1,0) (1.002 5, −0.007 9, 0.995 7, 0.002 3)

BC (0,1,1,0) (0.001 7, 0.988 4, 0.993 8, −0.003 6)

ABG (1,1,0,1) (1.000 2, 0.995 9, −0.010 7, 0.989 4)

ACG (1,0,1,1) (1.004 6, 0.000 4, 0.992 4, 1.001 3)

BCG (0,1,1,1) (−0.006 6, 0.994 9, 1.010 3, 1.004 8)

ABC (1,1,1,0) (1.004 8, 1.004 5, 0.999 1, 0.000 1)

ABCG (1,1,1,1) (1.014 8, 1.012 5, 0.994 2, 1.004 4)

FIGURE 8
Desired output and actual output of 72 training samples (A) and testing samples (B).
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more complex, and the accuracy of the detection data may not be as
high. Now, the method proposed in this article is to choose which
end of the data to use on the basis of the distance. In fact, in the
power system model, the information of the power components on
both sides is not equal, which leads to a worse situation when using
only the B1 end data than when using only the B2 end data. In this
article, we use distance 1:1 to select data. Next, we can select data at
B1 or B2 on the basis of a certain proportion, such that the effect of
adding distance to power components is equivalent to 1:1. In fault
location, many articles use wavelet transform to analyze because
when a fault just occurs, the power system will produce transient
signals, which is also one of the directions of future research. How to
select data for fault location? Is it a half cycle or one cycle after fault?
How long to choose is also something that can be further studied in
the future.
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