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Aiming at high accuracy of dissolved gas content prediction in transformer oil, a
novel method based on gated recurrent unit and adaptive graph convolution
network (GRU-AGCN) is proposed. For gated recurrent unit (GRU) can selectively
choose the feature of time series, it is used to extract time series information of the
gas content. Correlation among gases are extracted to improve the accuracy. The
original adjacency matrix of the model is constructed according to the grey
relational analysis (GRA), and the dynamic relation information between gases
is extracted by adaptive graph convolution network (AGCN). The experimental
result shows that the GRU-AGCN model can efficiently extract the temporal
features and perceive the dynamic relationship of gases. The predictions error of
the proposedmethod is lower than that of RNN, LSTM network and GRU network.
The proposed method provides a reliable and accurate result for the prediction of
dissolved gas content in transformer oil.
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1 Introduction

Transformer is an important equipment in power system, which is related to the safety
and stability of power system (Wu et al., 2021; Su et al., 2022). During the operation of the
power transformer, several gases are generated in oil by the influence of life cycle, load, oil
temperature and other factors. When the transformer overheats or discharges, there will be
abnormal changes in gases (Gómez et al., 2014). Insulation will be broken down as the
transformer fault develops, affecting the stability of the power system (Huang et al., 2021).
Therefore, the state data of the power transformer can be obtained and its trend can be
predicted by installing monitoring equipment on the transformer, which can provide a
reliable judgment basis for the state maintenance of the transformer (Xie et al., 2020).

In recent years, a lot of research work has been done on the prediction of dissolved gas
content in transformer oil. Chen et al. (2021) constructed an improved grey model for the
time series prediction of gas in oil. K-nearest Neighbor was used to predict the furan level in
transformers in (Shaban et al., 2016). In addition, many machine learning methods such as
artificial neural networks (Ghunem et al., 2012) and support vector machines (Atherfold and
van Zyl, 2020) are used for gas content prediction. The above methods process the data of
each moment synchronously, so the feature significance of different moments cannot be
considered, which means that their prediction accuracy is limited.

OPEN ACCESS

EDITED BY

Jian Zhao,
Shanghai University of Electric Power,
China

REVIEWED BY

Shu Zhang,
Sichuan University, China
Tianguang Lu,
Shandong University, China

*CORRESPONDENCE

Diansheng Luo,
lhx20070322@sina.com

SPECIALTY SECTION

This article was submitted to Process and
Energy Systems Engineering,
a section of the journal
Frontiers in Energy Research

RECEIVED 31 December 2022
ACCEPTED 27 March 2023
PUBLISHED 05 April 2023

CITATION

Luo D, Chen W, Fang J, Liu J, Yang J and
Zhang K (2023), GRU-AGCN model for
the content prediction of gases in power
transformer oil.
Front. Energy Res. 11:1135330.
doi: 10.3389/fenrg.2023.1135330

COPYRIGHT

© 2023 Luo, Chen, Fang, Liu, Yang and
Zhang. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original author(s)
and the copyright owner(s) are credited
and that the original publication in this
journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Energy Research frontiersin.org01

TYPE Brief Research Report
PUBLISHED 05 April 2023
DOI 10.3389/fenrg.2023.1135330

https://www.frontiersin.org/articles/10.3389/fenrg.2023.1135330/full
https://www.frontiersin.org/articles/10.3389/fenrg.2023.1135330/full
https://www.frontiersin.org/articles/10.3389/fenrg.2023.1135330/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fenrg.2023.1135330&domain=pdf&date_stamp=2023-04-05
mailto:lhx20070322@sina.com
mailto:lhx20070322@sina.com
https://doi.org/10.3389/fenrg.2023.1135330
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#editorial-board
https://www.frontiersin.org/journals/energy-research#editorial-board
https://doi.org/10.3389/fenrg.2023.1135330


Recurrent neural network (RNN) extracts current and historical
information by loop structure, which is suitable for processing time
series. However, RNN is weak in learning information at too far
time, which is called as “Long-term dependency problem.” The Long
short-term Memory (LSTM) developed based on RNN introduces
gating mechanism to alleviate the problem of RNN. Therefore, some
prediction methods for gas content based on LSTM have been
proposed (Lin et al., 2018b; Ma et al., 2021). But the complexity
of LSTM leads to long training time. Gated Recurrent Unit (GRU)
network was proposed as another variant of RNN, simplifies the
gating mechanism, which can process long series efficiently and be
trained fast (Minh et al., 2018).

There are complex dynamic relationships in gases in
transformer oil (Fessler et al., 1989). When the hot spot
temperature is low or the fault is slight, the insulating material
produces hydrogen and alkanes through decomposition. When the
fault is severe, the energy will be released by overheating or
discharge, alkenes and alkynes will be produced by further
decomposition. Therefore, the production of dissolved gases in
oil has a certain correlation, and varies according to the fault
type and development. Above methods are based on the
prediction by single gas variable, which ignores the inherent
correlations between gases, and the results are obtained with low
accuracy and reliability. In the study of (Ma et al., 2021),
temperature and seven gas content series were put into LSTM to
predict gas content. Lin et al. (2018a) took the gas content and the
ratios of various gas as the input features of neural network for the
prediction. These methods consider the influence of various factors
in the prediction, but the feature extraction methods of correlation
factors are simple, and the promotion in prediction performance is
limited.

For above problems, a content prediction method of gas in
transformer oil based on gated recurrent unit and adaptive graph
convolution network (GRU-AGCN) is proposed. GRU is used to
extract time series information of gas content. To describe the
correlation among gases, the original adjacency matrix of the
model is constructed based on grey correlation analysis (GRA),
and the adjacency matrix is real-time updated according to the input

to ensure that the correlation obtained is accurate and reliable. The
dynamic relation feature among gases is extracted by adaptive graph
convolution network (AGCN). The accurate prediction of gas
content can is achieved by integrating the historical information
of gas itself and other relevant gas information.

2 Gated recurrent unit network

GRU network is one of the variants of RNN. In GRU, gating
mechanism is introduced to RNN to selectively transmit temporal
features.

The structure of GRU network is shown in Figure 1A. Data [x1,
x2, . . ., xT] with length T are input into corresponding units
chronologically. The structure of GRU is shown in Figure 1B.
Take GRU of time t as an example (1 < t < T), the input of the
unit includes current original data xt and hidden feature ht−1 output
by the last unit. And the output of the unit is the hidden feature at
time t denoted as ht. The workflow of GRU is as follows, Firstly,
input is passed to reset gate and update gate to obtain reset state rt
and update state ut. Secondly, the candidate hidden state ĥt at time t
is calculated by reset state rt. Finally, the hidden feature ht at time t is
updated by combining the updated state ut with the hidden feature
ht−1 at time (t−1) and candidate hidden state ĥt at time t. The
working principle is written as follows:

rt � fsig xtWr1 + ht−1Wr2 + Br( ) (1)
ut � fsig xtWu1 + ht−1Wu2 + Bu( ) (2)

ĥt � ftan h xtWh1
+ rt ⊗ ht−1Wh2

+ Bh( ) (3)
ht � ut ⊗ ht−1 + 1 − ut( ) ⊗ ĥt (4)

In above equations, fsig(.) and ftanh(.) are sigmoid function
and hyperbolic tangent function, Wr1 and Wr2 are the weight of
the reset gate, Br is the bias of the reset gate,Wu1 andWu2 are the
weight of the update gate and Bu is the bias of the update gate.
Wh1 and Wh2 are the weight and Bh is the bias in the candidate
hidden state calculation. Hadamard Product operation is
denoted as.

By above principle, historical information and current
information can be filtered and processed flexibly in GRU network.

3 Adaptive graph convolutional
network

3.1 Grey relational analysis of gases in
transformer oil

GRA is an analysis method based on grey system theory, which
judges the correlation degree among factors according to the
similarity of the shape of the factor curves. Therefore, the
historical data of gas 1~ n with length M are analyzed by GRA.

Historical data for gas i is used as a reference sequence, which is
denoted as Xi

M � [xi
1, x

i
2,/, xi

M], and take the historical data of gas
j as a comparison sequence, which is denoted as
Xj
M � [xj

1, x
j
2,/, xj

M], where i, j∈{1, 2, . . ., n}, and i≠j. Grey
correlation coefficient coeffij and grey relational degree greyij are
calculated as follows,

FIGURE 1
Structure of GRU network, (A) is GRU network overall structure,
(B) is GRU internal structure.

Frontiers in Energy Research frontiersin.org02

Luo et al. 10.3389/fenrg.2023.1135330

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1135330


coeffij m( ) � min X i
M − Xj

M

∣∣∣∣ ∣∣∣∣ + α · max X i
M − Xj

M

∣∣∣∣ ∣∣∣∣
xi
m − xj

m

∣∣∣∣ ∣∣∣∣ + α ·max Xi
M − Xj

M

∣∣∣∣ ∣∣∣∣
greyij � 1

M
∑M

m�1coeffij m( )

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (5)

coeffij(t) is the correlation coefficient of reference sequence and
comparison sequence at time t, the minimum and maximum values
of the absolute difference between the reference sequence and other
comparison sequences are denoted as min|Xi

M − Xj
M|;

max|Xi
M − Xj

M|, α∈(0, 1) is resolution factor, which determines
the distribution of greyij. To avoid the distribution of GRA being
too compact or too sparse, it is appropriate to set α at 0.5.

If the grey relational degree greyij∈(0, 1) obtained is close to 1,
it indicates that gas j and gas i have a strong correlation.
Otherwise, the correlation between gas j and gas i is weak.
GRA preliminarily determined the correlation information
among gases in oil.

3.2 Graph convolutional network

Graph convolutional network is designed to realize information
fusion and feature extraction of graph data with complex association
by means of adjacency matrix and graph kernel. Therefore, in this
paper, the gas in oil is taken as the graph node, the result of GRA
constitute edges, and the weighted gas adjacency matrix A0 is
constructed based on the grey relational degree to extract the gas
correlation features.

Traditional adjacency matrix can only describe the connection
between nodes, that is, if there is an edge between node i and node j,
the element aij in adjacency matrix is 1, otherwise, it is 0, which
cannot express the strength of connections. Based on the results of
GRA in the last section, the element aij of gas adjacency matrix is
redefined as follows,

aij � greyij, i ≠ j
0, i � j

{ (6)

The gas original adjacency matrix A0 (dimension n × n) is
obtained by above equation.

To make the gas node introduce its own features in the graph
convolution operation, self-loop is added to the gas node in the
graph, and the graph convolution network is as follows,

fGCN H( ) � fsig D−1/2 I + A0( )D−1/2HWG + BG( ) (7)

Where H (dimension n × Chidden) is the input feature of gas
node 1~n, denoted asH = [h1, h2, . . ., hn],WG (dimension Chidden ×
Cout) is the graph convolution kernel, BG (dimension n × Cout) is
the graph convolution bias, and D (dimension n × n) is degree
matrix, which is the diagonal matrix composed of the number of
edges of gas node 1~ n in the graph with self-loop. The self-loop
refers to the edge where node links to itself, which avoid the
omission of node itself caused by only extracting neighbor node
information in feature update. In gas prediction, the self-loop
enables the model to consider the original features of the gas when
extracting related gas features.

3.3 Reconstruction of adjacency matrix and
adaptive graph convolution networks

To capture real-time dynamic gas state information, the original
graph convolution algorithm is improved. In the improved model,
the original static adjacency matrix A0 is modified to a variable that
changes adaptively according to the input feature H. A learnable
distance measure is introduced into the adjacency matrix. The
distance distij between input feature hi (dimension 1×Chidden) of
gas node i and input feature hj (dimension 1 × Chidden) of gas node j
is proposed as follows,

distij �
��������������
hiWd( ) hjWd( )T√

(8)

Where Wd (dimension Chidden × Chidden) is a learnable weight
matrix.

Gaussian function could improve data differentiation, map
distance distij non-linear to [0,1], and enhance the expression
ability of gas correlation. Here, Gaussian function is used to
process distance measurement, and reconstructed adjacency
matrix elements are obtained. Specific formula is as follows,

fGauss distij( ) � exp −distij
2

2σ2
( ) (9)

In the formula, exp(.) is an exponential function based on the
constant e, σ is a bandwidth, which adjusts the influence range of the
Gaussian.

The reconstructed adjacency matrix Arec (dimension n × n) is
obtained by above steps, which is expressed as:

Arec � fGauss

�����������
HWdWd

THT
√( ) (10)

The reconstructed adjacency matrix Arec is introduced into the
graph convolution formula, which is used as a modification to the
original adjacency matrix A0, and adaptive graph convolution
network formula is shown as follows:

fAGCN H( ) � fsig D−1/2AadaptD
−1/2HWG + BG( ) (11)

Where Aadapt = I + A0 + Arec. It means that the model can learn
the current optimal gas relationship from the gas relationship
information obtained by GRA. For the learning range is small,
the model converges quickly through the training.

4 Realization of GRU-AGCN model for
gas content prediction

4.1 GRU-AGCN model design

Traditional methods focus on the single gas sequence but
concerns little on the correlation information among gases, and
their ability to perceive transformer operation status is limited. In
addition, some prediction models with multiple gases also lack
effective ways to analyze and extract correlation information of
input features. The above problems lead to low stability and
reliability of gas content prediction in transformer oil.
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Therefore, a GRU-AGCN model for gas content prediction is
designed in this paper. The model structure is shown in Figure 2.
The model takes the content series of T time points of gas 1~n as input,
the temporal features of each gas are extracted through several parallel
GRUnetworks. And temporal features of gases fromGRUnetworks are
input into AGCN to extract the gas dynamic correlation features.
AGCN firstly calculates the distance measure between gases
according to the time series features, and updates the adaptive
adjacency matrix based on the original adjacency matrix obtained by
GRA. Then, the updated graph adjacency matrix and temporal features
are passed into the graph convolution for feature fusion and feature
transformation. Finally, the predicted values of gas contents at time (T +
1) are output by linear layer and activation function.

4.2 Prediction process based on GRU-AGCN
model

Content prediction process of gases in transformer oil based on
GRU-AGCN model are as follows,

1) Obtain historical data of gas content in transformer oil.
2) Remove the outliers in the gas content data and fill in the gaps by

interpolation.
3) Normalize the content data of each gas.
4) The normalized data are rolled and intercepted into multiple

groups of samples based on the time length T, and sample set is
separated into training set and test set.

5) Based on the training set, the relational degrees of gases are
obtained by GRA, and original gas topology and adjacency
matrix A0 are constructed.

6) The smoothed mean absolute error is set to be loss function. And
Adam optimization algorithm is used to make the model learn
training samples. After several iterations of training and
parameters adjusting, the prediction requirement could be
satisfied by the model.

7) The test set samples are input to model obtained in Step (6) for
prediction test, and the predicted results are analyzed.

5 Analysis of experimental examples

To verify the superiority of the proposed model, a GRU-AGCN
model is built by Python language based on Spyder platform and
PyTorch library.

Mean absolute error (MAE) and mean absolute percentage error
(MAPE) are used to evaluate the prediction performance of the
model. Suppose that gas content series in time 1~t is used for
prediction, denoted as X = [x1, x2, . . ., xt], the corresponding
predicted value series is denoted as Y = [y1, y2, . . ., yt]. The MAE
and MAPE are calculated as follows:

fMAE X,Y( ) � 1
t
∑t

i�1 xi − yi

∣∣∣∣ ∣∣∣∣ (12)

fMAPE X,Y( ) � 1
t
∑t

i�1
xi − yi

∣∣∣∣ ∣∣∣∣
yi

(13)

A converter transformer in Henan Province is taken as the
research object. It was put into operation in 2014 and has been

operating normally ever since. Dissolved gases monitored include
hydrogen (H2), methane (CH4), ethane (C2H6), ethylene (C2H4),
acetylene (C2H2), carbon monoxide (CO) and carbon dioxide
(CO2), and their content is within the normal range stipulated by
IEC. Eight hundred and twenty sets of data of the transformer from
May to October 2019 were selected for the experiment. The time
period is 4 h. The content of C2H2 is always 0 in the monitoring
interval, which is not used as model input. The input of the model is
set as the content series of six gases in 20 consecutive time points,
and the output is set as the predicted value of gases at the next time
point. The original gas content data are processed according to the
above steps and 800 groups of samples were obtained. The size of
training set and test set are divided by 3:1. The first 600 groups are
set as the training set, and the last 200 groups are the test set.

The grey relational degree table of six gas content is obtained by
GRA. As shown in Table 1, the correlations rang is distributed in
[0.634, 1.000], which indicates that there are clearly exists
correlations among six gases, but their intensity are different.
Regardless of the self-correlation, CO and CO2 are the most
correlated, while the correlation between H2 and CO2 is the weakest.

FIGURE 2
Structure of GRU-AGCN model for gas content prediction.
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Based on Table 1, the correlation degrees are introduced into
AGCN of the model as original adjacency matrix. And parameter σ2

in the AGCN is set to 0.5, because it achieves the best result in model
training.

Then, GRU-AGCN model is trained for 200 times, and the
initial learning rate is set to 0.0005. The sample loss curve in Figure 3
is obtained. As shown in Figure 3, the model parameters converge to
the global optimum quickly and smoothly during training.

To verify the accuracy and reliability of the proposed model in
gas content prediction task, the GRU-AGCN model and other

traditional models are used for single-step prediction experiment.
The models used for comparison include RNN and its variants GRU
Net and LSTM Net. In addition, original GCN is introduced into
GRU Net and LSTM Net to form new models, denoted as GRU-
GCN and LSTM-GCN respectively. Specific parameter settings of
models are shown in Table 2.

Except for the model proposed in this paper and models
introduced GCN, all other models are designed for univariate
prediction. The input time scale, prediction range and training
conditions of all models remained consistent. Hidden features of
models are output through a linear layer and ReLU activation
function. All models were trained 200 times.

Limited by space, this section mainly analyzes the result of CO2

content prediction experiment. Table 3 records the training time and
prediction effect of CO2 content prediction by above models.

Firstly, RNN and its variants GRU Net and LSTM Net are
compared. Obviously, RNN has the fastest training, but its
prediction accuracy is far lower than other networks. Both GRU
Net and LSTM Net introduce gating mechanism, which selectively
extract features at different moments. Compared with RNN, MAE
percentage of the two models decreased by 1.12 and
0.87 respectively. However, the training time of LSTM Net is
much longer than that of GRU Net. It is proved that GRU Net
can extract temporal features of gas content efficiently and is easier
to train than LSTM Net.

Then, GRU Net and LSTM Net are compared with GRU-GCN
and LSTM-GCN respectively. The prediction accuracy of model
introduced GCN is significantly higher than the original model. The
reason lies in that the information of the related gases has been used
for the prediction by GRU in GRU-GCN model and LSTM-GCN
model.

TABLE 1 Grey relational degree of gases in transformer oil (α = 0.5).

References Comparison

H2 CH4 C2H6 C2H4 CO CO2

H2 1.000 0.675 0.713 0.694 0.646 0.634

CH4 0.675 1.000 0.763 0.727 0.815 0.807

C2H6 0.713 0.763 1.000 0.767 0.749 0.733

C2H4 0.694 0.727 0.767 1.000 0.665 0.661

CO 0.646 0.815 0.749 0.665 1.000 0.854

CO2 0.634 0.807 0.733 0.661 0.854 1.000

FIGURE 3
Loss curve in training.

TABLE 2 Parameters of prediction models.

Model type Input dimension Output dimension Number of layers Hidden dimension

GRU-AGCN 6 × 20 6 × 1 GRU:1 AGCN:1 [20, 10]

GRU-GCN 6 × 20 6 × 1 GRU:1 GCN:1 [20, 10]

LSTM-GCN 6 × 20 6 × 1 GRU:1 GCN:1 [20, 10]

GRU Net 20 1 1 20

LSTM Net 20 1 1 20

RNN 20 1 2 [20, 10]

TABLE 3 Effects of models on CO2 content prediction.

Model type MAE (%) MAPE (%) Training time (s)

GRU-AGCN 1.95 3.18 289.9

GRU-GCN 3.17 4.50 275.8

LSTM-GCN 3.32 4.59 1188.8

GRU Net 3.31 4.67 269.3

LSTM Net 3.56 4.99 1149.6

RNN 4.43 6.04 221.3
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Finally, GRU-AGCNmodel is compared with GRUNet and GRU-
GCN model. The prediction result by above models are shown in
Figure 4. Based on the analysis of Figure 4 and Table 3, it can be found
that GRU Net model only accurately predict the stable development of
CO2, as shown in 1st~125th point of Figure 4, which shows a poor
prediction effect on series with large fluctuation. The GRU- GCN
utilized the correlations between the gases. But the model cannot obtain
satisfactory prediction effect in long time span, because the real-time
changes in gas relationships cannot be represented by static adjacency
matrices. The proposed GRU-AGCNmodel has the smallest MAE and
MAPE in prediction, which is only 20.6 s slower than GRU Net during
the training. The proposed method obtains the best effect with an
acceptable time cost. The reason is that GRU part of the proposed
model can efficiently extract the temporal features of gas series, while
the AGCN part adaptively adjust the graph adjacency matrix and
dynamically acquire the gas relationship from learning samples, which
makes the prediction result more accurate and reasonable than other
models. The proposed model keeps high accuracy and reliability for
series in stable situation or large fluctuations.

6 Conclusion

The change of gas content in transformer oil reflects the health
status of transformer, which needs to consider both the temporal
information from gas itself and the dynamic correlation information
from related gases. Base on above two aspects, a prediction method
based on GRU-AGCN model is proposed. From the experiment
comparison and analysis, it can be concluded that:

1) GRU Net can extract key information of important moments
from gas series, and its prediction is more accurate than RNN.
Compared with LSTM Net, GRU Net is simpler, training faster,
and extraction efficiency for the temporal features is higher.

2) Compared with the single gas variable prediction model, the
multi-gas variable combined prediction model with GCN
consider the correlation between gases, which significantly
improves the prediction accuracy.

3) The AGCN proposed in this paper extracts the gas relations
dynamically, which makes the prediction result more accurate
and reasonable. The proposed model can maintain high accuracy
for different time period.
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FIGURE 4
The effect of three models on CO2 content prediction.
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