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For a regional integrated energy system (RIES) composed of an energy supply
network and distributed energy station, the uncertainty of distributed photovoltaic
(PV) output and the fluctuation of various loads pose significant challenges to the
stability of system operation and the accuracy of optimal scheduling. In order to
enhance the operational reliability of regional integrated energy systems and
reduce the impact of photovoltaic and load uncertainties on distributed energy
stations, this study proposes robust optimization method of regional integrated
energy systems that takes into account the uncertainty of the distributed energy
station. First, the regional integrated energy system is divided into an upper
electric-gas energy supply network and a lower distributed energy station. The
upper model mainly realizes energy transmission, while the lower model is a two-
stage robust optimization model of distributed energy stations in the form of
min–max–min, which mainly realizes flexible energy supply of different types of
energy. Then, the lower two-stage robust optimization model is simplified and
solved using a column and constraint generation (CCG) algorithm. After that, an
alternating direction method of multipliers (ADMM) is used to solve the upper and
lower models of the regional integrated energy system, and the solution scale is
reduced while ensuring the correlation between the energy transmission network
and the distributed energy stations. Finally, a test example is provided to illustrate
the effectiveness and usefulness of the proposed method. It follows from
simulation results that the robust optimization method can effectively reduce
the instability of the system operation caused by uncertainty factors and improve
the system’s anti-interference ability, and in addition, systems with high
penetration levels of photovoltaic output will benefit more from robust
optimization.
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1 Introduction

In order to comply with the world’s green and low-carbon development trend, it has
become particularly significant to promote the integration of sources, networks, loads, and
storage and to build a multi-energy-coupled regional integrated energy system (RIES). In
addition to the exploration and research of new energy sources, the improvement of the
energy supply form is also of equal significance (Zhao et al., 2022a). The role of the regional
integrated energy system, as a promising solution of bearing energy for human society in the
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future, is rapidly developing in the field of efficient energy
utilization, energy conservation, renewable energy consumption,
and emission reduction (Balsamo et al., 2020). Followed by the
foundation of the RIES concept, countries worldwide have
responded positively and vigorously by carrying out extensive
research on the RIES (Zhang et al., 2022). Some key issues of the
RIES have already been studied from various perspectives in China
(Zhang et al., 2020; Zhou and Zhang, 2020; Zhao et al., 2022b; Rezaei
et al., 2022; Yang et al., 2022), and many theoretical and practical
results have been obtained.

A RIES can fully exploit the complementary characteristics of
multiple energy sources to achieve multi-layer energy efficiency,
which could also reduce operating costs and carbon emissions
effectively, and further consume renewable energy that cannot be
consumed by traditional single energy systems through the
conversion between different energy sources (Sioshansi et al.,
2021). However, a RIES is much more complex than the
traditional energy system and has various coupling forms,
which need higher requirements on optimization and planning
techniques (Wang et al., 2022). In the study by Li et al. (2021a), a
second-order cone method for a RIES with electricity–gas
interconnection was proposed, by which the non-convex
electricity–gas optimal power flow model was transformed into
a convex optimization model, and the scaling degree was limited
by setting a penalty term, which increases the model convergence.
In the study by Li et al. (2022a), an energy network was modeled
in matrix form, where energy conversion and coupling could be
described by the network graph theory, and the complexity of the
optimization operation could be reduced. In the study by Li et al.
(2021b), a method for the optimal design of RIES partitions was
proposed by combining the K-means and genetic algorithm, by
which the local resource data were clustered to evaluate the
availability of all resources. In the study by Li et al. (2022b),
an improved third-order quantized state system (QSS) method
was proposed for the simulation of a district heating system
(DHS) by combining a quantized state system and time-
discrete integration. In the study by Zhu et al. (2022), a
dynamic programming algorithm was introduced to replace a
multi-stage decision problem with a series of single-stage sub-
problems to obtain the global optimal scheduling solution. It is
pointed out that the aforementioned results investigate the
optimization of the RIES from several aspects. Nevertheless,
few results study the operating characteristics and solution
methods after the distributed energy station (DES) is
connected, where the influences of its uncertainty factors on
the system are not sufficiently considered.

On the other hand, the uncertainties of various loads and
renewable energy sources seriously affect the safe and reliable
operation of the RIES (Wang et al., 2020), which is an important
problem that cannot be ignored in the optimal operation process
of the RIES. In the study by Xu et al. (2022), an efficient wind
speed prediction model based on phase space reconstruction and
BLS was proposed, which could evaluate the regularity of wind
speed effectively without the overfitting issue. In the study by
Xiang et al. (2021), an uncertainty model was proposed for the
integrated demand response (IDR) of energy prices based on
fuzzy and probabilistic variables. In the study by Feng et al.
(2018), based on the imprecise Dirichlet model (IDM), a non-

parametric fuzzy set of wind power output distribution
probabilities was obtained from historical data and used in
the uncertainty optimization of the RIES. In the study by
Wang et al. (2017), chance-constrained objective planning was
structured to model wind power uncertainty, and the developed
results could guarantee the reliability of the system under a
certain probability of satisfaction. Furthermore, based on the
aforementioned probabilistic models (Wang et al., 2017; Feng
et al., 2018), the probabilities were dealt with using the point
estimation method, and the objective function was then set as the
expected value in Li et al.’s (2021a) study. In the study by Li et al.
(2022c), an optimal scheduling strategy of an IDR-enabled RIES
in uncertain environments was proposed to improve the
flexibility of system operation and the comprehensive
satisfaction of users, while battery degradation, electric
vehicles’ interaction, and load uncertainty were ignored. In
the study by Fu et al. (2021), a two-stage stochastic
programming model was proposed to deal with the
uncertainty of PV generation and energy demand in the RIES.
However, the aforementioned models deal with uncertainties
that are all based on probabilities and rely on the distribution
models with uncertain parameters. However, in some cases, the
actual operation results have a certain probability of constraint
violation; therefore, the robust optimization methods are
expected to be used to solve these issues effectively.

Based on the aforementioned discussions, for the RIES
containing a DES, it is necessary and important to take the
uncertainties of the DES into consideration and thoroughly
investigate its optimal and analyzing methods. Hence, in this
paper, the robust optimization of the RIES considering the
uncertainties of the DES will be discussed in detail. First, the
overall model is divided into two layers according to their specific
functions: the energy supply network (ESN) is set as the upper-
layer model, and the DES is set as the lower-layer model. Second,
the lower-layer DES model is formulated as a two-stage robust
optimization model in the form of “min–max–min,” and it is split
into two parts: a main problem and a sub-problem. Then, the
column and constraint generation (CCG) algorithm (Zeng and
Zhao, 2013) is applied to iteratively solve these two problems in
the lower-layer DES model. Finally, considering the correlation
between the upper-layer ESN model and the lower-layer DES
model, the alternating direction method of multipliers (ADMM)
(Sun et al., 2018) is used to solve the overall model. The main
innovative contributions of this paper are summarized as
follows:

(1) A two-layer model of the RIES is constructed innovatively
according to the functions of each section of the model,
where the electricity–gas transmission network model is
taken as the upper-layer model and the multi-energy coupled
distributed energy station is taken as the lower-layer model.

(2) The two-stage robust optimization method is applied to matrix
the lower-layer model, which can dramatically enhance the
stability of the RIES to resist the uncertainty of the
photovoltaic and load. More importantly, it can be easily
solved using the CCG algorithm.

(3) The ADMM algorithm is used to solve the RIES with distributed
energy stations, which can largely reduce the solving difficulty in
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an iterative way, where a connection between the upper- and
lower-layer models is established.

The remaining sections of this paper are arranged as follows:
Sections 2 and Sections 3 present the mathematical models of the
upper-layer ESN and lower-layer DES which include a two-stage
robust optimization equivalent model with its constraints and
objective functions, respectively. Section 4 describes the solving
methods used to solve the proposed model, whereas the simulation
example and obtained results are demonstrated and discussed in
Section 5. Finally, the conclusions are drawn in Section 6.

2 Upper-layer energy supply network
model

The ESN is the upper layer of the RIES, which plays the role of
connecting various energy-using nodes and supplying energy to the
lower-layer DES. Heat is transmitted in the form of water flow, and
the energy loss is serious when the transmission distance is long.
Moreover, the time lag phenomenon of heat is more notable than
that of electricity and gas. Since the heat transmission network has
evident disadvantages compared with electricity and gas
transmission networks, the RIES studied in this paper only
considers electricity and gas transmission networks, while the
heat transmission network is not considered.

2.1 Steady-state model of the power system

The power flow equation of radial distribution networks is
formulated as follows (Farivar and Low, 2013a):

Pt
j � ∑

l∈m j( )
Pt
jl − ∑

l∈n j( )
Pt
ij − Rij Itij( )2[ ]

Qt
j � ∑

l∈m j( )
Qt

jl − ∑
l∈n j( )

Qt
ij −Xij Itij( )2[ ]

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
, (1)

where Pt
j and Q

t
j denote the active and reactive powers, respectively,

injected into node j at time t; Pt
jl and Qt

jl are the active and reactive
powers, respectively, flowing from node j to node l at time t; Rij and
Xij are the resistance and reactance, respectively, of line ij; Itij is the
current flowing through line ij at time t; n(j) is the set of sending
nodes with node j as the end node; and m(j) is the set of the end
nodes with node j as the sending node.

In addition, the relationship between the current Itij flowing
through line ij and the node voltage is given as follows:

Ut
i( )2 − Ut

j( )2 � 2 RijP
t
ij +XijQ

t
ij( ) − Itij( )2 Rij( )2 − Itij( )2 Xij( )2,

(2)
Itij( )2 Ut

i( )2 � Pt
ij( )2 + Qt

ij( )2, (3)

where Ut
i is the voltage of node i at time t.

In the process of transmitting power in the distribution network,
reactive power compensation can effectively improve the power
factor and reduce line losses. Common reactive power compensation
devices include continuous-type Static Var Generators (SVG) and
discrete-type capacitors (CP), where CP satisfies

Qt
CP � QCP,U∑M

m�1
θtCP,m, (4)

θtCP,m > � θtCP,m+1 (5)
θtCP add + θtCP del < � 1 (6)

∑T
t�1

θtCP add + θtCP del( )< � θ max (7)

∑M
m�1

θt+1CP,m − ∑M
m�1

θtCP,m ≤ γθtCP add − θtCP del, (8)

∑M
m�1

θt+1CP,m − ∑M
m�1

θtCP,m ≥ θtCP add − γθtCP del, (9)

where Qt
CP is the compensated reactive power of the CP at time t;

QCP,U is the reactive power output corresponding to each step of the
CP; θtCP,m, θ

t
CP add, and θ

t
CP del denote the 0–1 variables at time t; γ is

the maximum number of steps that can be adjusted; and θ max is the
maximum number of adjustments per day.

It should be pointed out that in Eq. 4, a 0–1 variable is set for
each grade, and the sum of each grade is the current grade. Equation
5 limits the gears to incremental steps, and it is not possible to have a
high gear of 1 and a low gear of 0. Equation 6 ensures that the
increase and decrease of gears cannot occur simultaneously, and Eq.
7 shows that the number of gear adjustments per day is limited.
Equations 8, 9 together restrict the upward or downward adjustment
of gears to the maximum adjustment range of gears.

For the SVG, the model is simpler than the CP and satisfies

QSVG
min ≤Qt

SVG ≤QSVG
max, (10)

where QSVG
min

and QSVG
max

are the lower and upper limits of the
regulation range, respectively, and Qt

SVG is the reactive power of
the SVG at time t.

The input and output energy of a power system should satisfy
the law of energy conservation, so the following relationship should
be ensured:

Qt
j + Qt

L,j � Qt
SVG,j + Qt

CP,j + Qt
G,j,

Pt
j + Pt

L,j � Pt
G,j

{ (11)

whereQt
L,j and P

t
L,j are the reactive and active loads of node j at time

t, respectively. Pt
G,j andQ

t
G,j are the active and reactive powers of the

generator of node j at time t, respectively.

2.2 Steady-state model of the gas system

The gas system is mainly composed of a gas source, gas
transmission pipelines, a compressor, and loads, and the
relationship between its flow and pressure is formulated as follows:

ft
q � Mq]mn

����������������
]mn pt

m( )2 − pt
n( )2[ ]√

(12)

Mq � ς
18.73T0Dq

8
3

p0

���������
GLqTqaZqa

√ (13)

]mn � 1
−1{ pt

m − pt
n ≥ 0

pt
m − pt

n < 0
(14)

where ft
q is the flow of the pipe q at time t, pt

m is the pressure of node
m at time t, ς represents the efficiency factor of the pipe q, T0 is the
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standard temperature, Dq denotes the inner diameter of the pipe q,
p0 is the standard pressure, G is the gas relative density, Lq is the
length of the pipe q, Tqa is the average temperature of the pipe q, and
Zqa is the average compression factor of the pipe q.

There is a pressure loss during gas transmission, which needs to
be replenished by a compressor. The gas flow to be consumed is
formulated as

σtu � αu + βuP
t
com + γu Pt

com( )2 (15)

Pt
com � Gufcom,u (pt

m

pt
n

( )Zu

− 1⎞⎠ (16)

where σtu is the gas flow consumed by the compressor u at time t; αu,
βu, and γu are the energy consumption coefficients of the
compressor u; Pt

com denotes the gas energy consumed by the
compressor u at time t; Gu is the coefficient related to
temperature and efficiency; fcom,u represents the flow through
the compressor u at time t; and Zu is the other compression factor.

Similar to the law of conservation of energy in electric power
systems, the input and output of gas at each node in a gas system
should be equal, which satisfies

A + U( )f + ϖ − Tτ � 0, (17)
where f denotes the branch flow vector, ϖ is the node gas injection
flow vector, τ is the compressor consumption flow vector, A is the
branch node association matrix, U represents the unit node
association matrix, and T is the compressor node association matrix.

The power flow model and natural gas model is the non-convex
and non-linear. In order to facilitate the subsequent solution,
second-order cone scaling (Farivar and Low, 2013a; Farivar and
Low, 2013b) is used to convert the distribution network and natural
gas system models into the convex model.

2.3 The objective function of the upper-
layer ESN

The operation of the upper-layer ESN is optimized by
minimizing net costs as follows:

Cup�∑T
t�1

a+bPt
G+c(Pt

G( )2+hGt
G)−∑T

t�1
priceteP

t
grid+pricetgGt

gas( )
Pt
G�∑N

k�1
Pt
G,k,G

t
G�∑M

k�1
Gt

G,k

obj�minCup

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
,

(18)
where a, b, and c denote the generators’ cost coefficients; h is the cost
coefficient of gas supply; Gt

G is the gas supply quantity of the gas
source at time t; pricete and pricetg represent the purchase prices of
electricity and gas of the lower-layer DES at time t, respectively; Pt

grid

and Pt
gas are the purchased power and gas power of the lower-layer

DES from the upper-layer ESN at time t, respectively; and T is the
dispatch period. Pt

G,k and Gt
G,k are the k-th generator and air source

supply, respectively. N and M are the total number of generators
and gas sources, respectively.

2.4 Other constraints

In the upper-layer ESN, upper- and lower-limit constraints
should be added to the individual equipment output, voltage
value, gas flow value, node pressure, and gas supply from the gas
source, which are expressed uniformly by

Θ min ≤Θt ≤Θ max, (19)
where Θmin and Θmax are the lower and upper limits of the variable
Θt, respectively. Θt represents the variables such as equipment
output, voltage value, gas flow value, node pressure, and gas
supply from the gas source.

3 Lower-layer distributed energy
station model

The DES can meet multiple energy demands of consumers and
interconnect different types of energy sources through energy
conversion equipment. In this study, the considered DES model
includes two types of energy inputs, electricity and gas, and three
types of energy loads, electricity, heat, and cooling. Moreover, energy
conversion equipment includes gas turbine, gas boiler, absorption
chiller, and electric chiller, while energy storage equipment includes
electricity and heat storage, mainly considering the uncertainty of
photovoltaic inside the DES and the uncertainties of the three loads.

3.1 Energy conversion equipment model

3.1.1 Gas boiler
The gas boiler can be modeled according to the following

equation:

Ht
GB � Gt

GBηGB, (20)
whereHt

GB andG
t
GB are the heat production and gas consumption of

the gas boiler at time t, respectively, and ηGB is the heat production
efficiency.

3.1.2 Gas turbine
The gas turbine is coupling equipment that contains electric, gas,

and thermal devices with the following input–output relationship:

Pt
GT � Gt

GTηGT

λ � Pt
GT

Ht
GT

⎧⎪⎪⎨⎪⎪⎩ , (21)

where Pt
GT denotes the power production of the gas turbine at time t,

Gt
GT is the gas consumption of the gas turbine at time t, Ht

GT

represents the heat production of the gas turbine at time t, ηGT is the
power production efficiency, and λ is the electricity-to-heat ratio.

3.1.3 Electric chiller
The electric chiller is mathematically expressed as

Ct
EC � Pt

ECCOPEC, (22)
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where Ct
EC and Pt

EC are the cooling production and power
consumption of the electric chiller at time t, respectively. COPEC

is the performance coefficient of the electric chiller.

3.1.4 Absorption chiller
The absorption chiller model is presented as follows:

Ct
AC � Ht

ACCOPAC

COPAC � COP0
AC

aAC βAC( )2 + bACβAC + cAC

⎧⎪⎪⎪⎨⎪⎪⎪⎩ , (23)

where Ct
AC and Ht

AC are the cooling production and heat
consumption of the absorption chiller at time t, respectively;
COPAC is the performance coefficient of the absorption chiller;
COP0

AC is the rated conversion efficiency of the absorption chiller;
and aAC, bAC, and cAC denote the conversion factors of the
absorption chiller. βAC is the workload rate of the absorption chiller.

3.2 Energy storage equipment model

Energy storage equipment is modeled as

Et
i � Et−1

i 1 − δi( ) + υiC
t
iηi,char −

1 − υi( )Dt
i

ηi,dis
(24)

where Et
i is the reserves of energy storage at time t; i is the type of

energy storage device, which includes electricity and heat storage; δi
is the self-loss rate of the energy storage device; Ct

i and Dt
i are the

charging and discharging powers of the energy storage device,
respectively; ηi,char and ηi,dis represent the charging and
discharging efficiencies of the energy storage device, respectively;
and υi is a 0–1 variable to represent the storage mode: 0 if
discharging, and 1 if charging.

There are also various constraints on the energy storage device,
for example, charging and discharging cannot be done
simultaneously and the total energy storage remains unchanged
in a scheduling cycle, in addition to upper and lower limits on
variable parameters, which are formulated as

Ct
i ≤ υ

t
iCi

max

Dt
i ≤ 1 − υi( )Di

max

E1
i � E24

i

Et
i ∈ Ei

min, Ei
max[ ]

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (25)

3.3 The model of uncertain parameters

PV and various load data are mainly derived by forecasting;
however, there are always various random factors that affect the
accuracy of forecasting in reality. Random factors cannot be avoided,
and if they are not considered when developing the operation
scheme, they may lead to inaccurate operation schemes and even
cause operational accidents. To equip the system with a certain anti-
interference ability and to ensure the system’s safe and reliable
operation in different environments, it is necessary to deal with
those uncertain parameters. The uncertainty U model of PV output
and load is given by

U �

u � ut
PV, u

t
i,L[ ] ∈ R T( )×4, t � 1, 2,/, T

ut
PV � ût

PV − Bt
PVΔumax ,t

PV +Dt
PVΔumax ,t

PV

∑T
t�1

Bt
PV +Dt

PV( )≤ ΓPV

ut
i,L � ût

i,L − Bt
i,LΔumax ,t

i,L +Dt
i,LΔumax ,t

i,L

∑T
t�1

Bt
i,L +Dt

i,L( )≤ Γi,L

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(26)

where utPV and uti,L are the uncertainty variables of PV output and
load power at time t after introducing uncertainty, respectively. ûtPV
and ûti,L are the expected values of PV output and load power at time
t, respectively. Δumax ,t

PV and Δumax ,t
i,L denote the maximum allowable

deviations of PV output and load power at time t, respectively; i
represents the energy types including electricity, heat, and cooling;
and Bt

PV, D
t
PV, B

t
i,L, and Dt

i,L are 0–1 variables, while ΓPV and Γi,L are
the uncertainty conservativeness adjustment parameters.

3.4 Energy balance constraints

The lower-layer DES also needs to satisfy the energy
conservation law, and the balance between the input and output
quantities of each type of energy should be maintained as

Pt
grid + ut

PV + Pt
GT +Dt

e � ut
e,L + Ct

e + Pt
EC

Ht
GT +Ht

GB +Dt
h � ut

h,L + Ct
h + Pt

AC

Ct
EC + Ct

AC � ut
c,L

Gt
gas � Gt

GT + Gt
GB

⎧⎪⎪⎪⎨⎪⎪⎪⎩ , (27)

where Dt
e, Ct

e, Dt
h, and Ct

h are the variables of charging and
discharging powers corresponding to the electric and thermal
energies, respectively, while ute,L, u

t
h,L, and utc,L are the variables of

load uncertainty corresponding to the electricity, heat, and cooling,
respectively.

3.5 Upper- and lower-bound constraints

Like the upper layer, there are also some limit constraints on the
output of each device in the lower layer, which are omitted here due
to the length of the paper.

3.6 The objective function of the lower-
layer DES

After presenting the mathematical models of both layers, the
following objective function can be formulated:

Cdn � ∑T
t�1

priceteP
t
grid + pricetgG

t
gas( )

obj � min
x

max
u∈U

min
y∈Ω x,u( )

Cdn

x � υti , C
t
i , D

t
i , E

t
i[ ]

y � Pt
grid, G

t
gas, G

t
GT, P

t
GT, H

t
GT, G

t
GB, H

t
GB, H

t
AC, C

t
AC, P

t
EC, C

t
EC[ ]

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
.

(28)
To facilitate subsequent simplification and solution, the lower-

layer DES model is written in a matrix compact form:
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min
x

max
u∈U

min
y∈Ω x,u( )

CTy

s.t.Dy≥ d
Ly + Tx � 0
Iuy � u
Px � p
Fx≥f

. (29)

The objective function can be split into two stages: the first stage is
to optimize the charging and discharging behavior of the power and
heat storage equipment, called the main problem (MP), and the
second stage is to search for the optimal equipment output and energy
purchased under the worst uncertain parameters, called the sub-
problem (SP). Uncertainty is expressed by the box uncertainty set. The
sub-problem is to solve the worst scenario in the interval according to
the conservatism parameter and complete the two-stage robust
optimization together with the main problem. The main problem
and sub-problem of the objective function are described as follows:

MP:
min

x
σ

s.t.Dy≥ d
Ly + Tx � 0
Iuy � u
Px � p
Fx≥f
σ ≥Cy

, (30)

SP:
Q x( ) � max

u∈U
min

y∈Ω x,u( )
CTy

s.t.Dy≥ d
Ly + Tx � 0
Iuy � u

. (31)

The sub-problem is a max–min type problem, which is not
easy to solve. By the strong dual principle, the inner min problem
can be converted into a max problem and merged with the outer
one to obtain the following form of the sub-problem (Ding et al.,
2016):

SP:
Q x( ) � max

u∈U,ω
dTω1 − Tx( )Tω2 + uTω3

s.t.DTω1 + LTω2 + ITuω3 ≤C
ω1 ≥ 0,ω3 ≥ 0

, (32)

where ω1, ω2, and ω3 are dual variables.
In Eq. 32, uTω3 is a bilinear variable, which is difficult to solve.

Therefore, it is linearized by using the big M method:

SP:
Q x( ) � max

u∈U,ω
dTω1 − Tx( )Tω2 + ûTω3 + ΔuTB′

s.t.DTω1 + LTω2 + ITuω3 ≤C
0≤B′≤MBIGB
ω3 −MBIG 1 − B( )≤B′≤ω3

∑T
t�1

Bt
PV +Dt

PV( )≤ ΓPV
∑T
t�1

Bt
i,L +Dt

i,L( )≤ Γi,L
ω1 ≥ 0,ω3 ≥ 0

, (33)

where û � [ûtPV, ûti,L], Δu � [Δumax ,t
PV ,Δumax ,t

i,L ], B′ is the auxiliary
variable, andMBIG is a large positive real number, which is taken as
109 in this study.

4 The solving method

4.1 The flow of the CCG algorithm

In this study, the RIES is divided into two layers. The upper layer
is a traditional ESN model, while the lower-layer DES is a complex
two-stage robust optimization model. The CCG algorithm is used to
obtain the optimal solution to the lower layer. The process is
described as follows:

1) The initial uncertainty parameter u1*, the iteration convergence
threshold ε, the upper and lower bounds for the iterative solution
as LB � −∞, UB � +∞, and the number of iterations as k � 1
are set.

FIGURE 1
Overall flowchart of the proposed solving method.
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2) The MP is solved as shown in Eq. 30 according to the uncertain
parameters u*k, then the optimal solution (x*

k, σ
*
k, y1

*, y2
*,/, y*

k) is
obtained, and the lower-bound LB � σ*k is updated.

3) The storage charging and discharging energy-related variables x*
k

obtained from the solution of theMP (Step 2) are substituted into
the SP as shown in Eq. 33; then, the objective functionQ(x*

k) and
the corresponding uncertain parameters uk+1* for the worst-case
scenario are obtained, and the upper-bound UB � UB, Q(x*

k){ }
is updated.

4) According to the set threshold, it is determined whether the
iteration converges; if it satisfies UB − LB≤ ε, the iteration is
stopped and the results are output; otherwise, the variable yk is
added with the following constraints:

σ ≥CTyk+1
Dyk+1 ≥ d
Lyk+1 + Tx � 0
Iuyk+1 � uk+1*

⎧⎪⎪⎪⎨⎪⎪⎪⎩ . (34)

5) We assume k � k + 1 and return to step 2.

FIGURE 2
Model of the system used for simulation.

FIGURE 3
Predicted values of various loads and PV.

FIGURE 4
Time-of-use electricity price.
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4.2 The flow of the ADMM algorithm

It is worth pointing out that the sum of the objective functions
for the upper and lower layers is the complete objective function of
RIES optimization, as the two layers are not separate. However, if the
upper and lower layers are structured as one model, its complexity
will greatly increase, and it will be more difficult to solve it. For this
reason, the ADMM algorithm is used to maintain the correlation
between the upper and lower layers while solving the models of the
upper and lower layers independently. The flow of the ADMM
algorithm is described as follows:

Step 1: The augmented Lagrange function is established for the
upper and lower layers, where it is formulated for the upper
layer as

min Lup � Cup + λt1,up Pt
grid,up − Pt

grid( ) + λt2,up Gt
gas,up − Gt

gas( )
+η
2

Pt
grid,up − Pt

grid( )2 + η

2
Gt

gas,up − Gt
gas( )2 .

(35)
For the lower layer, it is

min Ldn � Cdn + λt1,dn Pt
grid,dn − Pt

grid( ) + λt2,dn Gt
gas,dn − Gt

gas( )
+η
2

Pt
grid,dn − Pt

grid( )2 + η

2
Gt

gas,dn − Gt
gas( )2 (36)

where Lup and Ldn are the augmented Lagrange function of the
upper and lower layers, respectively; Pt

grid and Gt
gas are the global

variables; Pt
grid,up, G

t
gas,up, P

t
grid,dn, and Gt

gas,dn represent the local
variables of purchased electricity and gas in the upper and lower
layers; η is the coefficient of penalty term; and λt1,up, λ

t
2,up, λ

t
1,dn, and

λt2,dn are Lagrange multipliers.

FIGURE 5
Convergence curves of the ADMM and CCG algorithms.

FIGURE 6
Voltage distribution diagram.

FIGURE 7
Gas pressure distribution diagram.

FIGURE 8
Electric-power balance.
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The lower layer is a two-stage robust optimization model: MP
and SP. The MP can solve the electricity and gas purchase, so only
the objective function of the MP is changed to the augmented
Lagrange function:

min Ldn � σ + λt1,dn Pt
grid,dn − Pt

grid( ) + λt2,dn Gt
gas,dn − Gt

gas( )
+η
2

Pt
grid,dn − Pt

grid( )2 + η

2
Gt

gas,dn − Gt
gas( )2 (37)

Step 2: Initialization: We assume Pt
grid,up,0 � 0, Gt

gas,up,0 � 0,
λt1,up � λ0, λ

t
2,up � λ0, λ

t
1,dn � λ0, λ

t
2,dn � λ0, and λ0 as the initial

values and the number of iterations as r � 0.

Step 3: Let Pt
grid � Pt

grid,up,r and Gt
gas � Gt

gas,up,r are substituted
into the lower-layer problem to find Pt

grid,dn,r+1 and Gt
gas,dn,r+1.

Step 4: Let Pt
grid � Pt

grid,dn,r+1 and Gt
gas � Gt

gas,dn,r+1 are substituted
into the upper-layer problem to find Pt

grid,up,r+1 and Gt
gas,up,r+1.

Step 5: The Lagrange multipliers are updated according to the
following equations:

λt1,dn,r+1 � λt1,dn,r + η Pt
grid,dn,r+1 − Pt

grid,up,r+1( )
λt2,dn,r+1 � λt2,dn,r + η Gt

gas,dn,r+1 − Gt
gas,up,r+1( )

λt1,up,r+1 � λt1,up,r + η Pt
grid,up,r+1 − Pt

grid,dn,r+1( )
λt2,up,r+1 � λt2,up,r + η Gt

gas,up,r+1 − Gt
gas,dn,r+1( )

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(38)

Step 6: The maximum deviation value is calculated. When the
maximum deviation is less than the convergence threshold, the
iteration is terminated and the results are output; otherwise, we
return to step 3. The maximum deviation is calculated by

φ � max Pt
grid,dn − Pt

grid,up

∣∣∣∣∣ ∣∣∣∣∣, Gt
gas,dn − Gt

gas,up

∣∣∣∣∣ ∣∣∣∣∣{ }, (39)

where φ denotes the maximum deviation.
It should be remarked that as the iteration proceeds, the

Lagrange multipliers gradually become larger. Consequently, the
proportion of the difference between the local and global variables
in the objective function increases. So, the minimum solution will
be made as small as possible until it is close to 0. Because the global
variable is constantly taken from the local variable in the upper and
lower layers, the difference between the corresponding local
variable in the upper and lower layers will become smaller as
the iteration proceeds, until it is close to 0, which is the principle of
the ADMM algorithm. Because the expected value of the predicted
value is not much different from the final solution value, the
expectation of the predicted value is used as the initial value of the
parameter of the CCG algorithm. The flowchart of the proposed
solving method is given in Figure 1 for the overall optimization
process.

5 Simulation example

5.1 Example parameters

The arithmetic model selected as a test example is shown in
Figure 2. The upper-layer ESN includes a modified IEEE 33-node
power system and a Belgian 20-node natural gas system, and the
lower-layer DESmodel is a typical campus energy supply system. It
should be pointed out that the method proposed in this study can
be applied to different test examples, and only the relevant
parameters need to be changed when applying to other test
examples.

The forecast curves for each type of load in the lower-layer DES
and PV are shown in Figure 3. Without loss of generality, the
fluctuation range of the load is 0.1 of the predicted value, and the
fluctuation range of PV is 0.15 of the predicted value. Figure 4 shows
the time-of-use electricity price, and the gas price is set as 0.35 CNY/
kW. The gas turbine’s maximum capacity is 1,400 kW, the
maximum capacity of the gas boiler is 800 kW, the capacity of
the electric chiller is 500 kW, the absorption chiller’s maximum
capacity is 300 kW, the maximum storage capacity of electricity
storage equipment and heat storage equipment is 1,500 kW h, and
the minimum storage capacity is 200 kW h. The maximum value of

FIGURE 9
Heat-power balance.

FIGURE 10
Cold-power balance.
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charging and discharging power is 600 kW. Other parameters are
selected according to references (Ding et al., 2017; Miao et al., 2020).

5.2 Simulation results

5.2.1 Convergence analysis
The convergence of ADMM and CCG algorithms is shown in

Figure 5.
It can be seen from Figure 5 that both CCG and ADMM

algorithms have fast convergence. The CCG algorithm almost
converges to 0 after two iterations, while the ADMM algorithm
needs nine iterations to obtain the optimal solution. This is because
the initial value of the CCG algorithm is the predicted value of
uncertain variables, and those predicted values are not very different
from the final solution’s value. However, the initial value of the
ADMM algorithm is set as 0, and the Lagrange coefficient increases
with every iteration. At the same time, the difference between the
upper and lower layers will become increasingly smaller to obtain
the minimum (optimal) solution, which is the reason why the
ADMM algorithm is slower than the CCG algorithm. It can be
seen from the convergence diagram of the two algorithms that the
ADMM algorithm is difficult to converge, which needs to be iterated
nine times, while the CCG algorithm has already converged after
two iterations. Therefore, the proposed method has high
computational efficiency.

5.2.2 Voltage and air pressure analysis
The voltage and air pressure distribution diagrams of the upper-

layer ESN are shown in Figures 6, 7, respectively.
As shown in Figure 6, the voltage distribution of the power

system of the RIES is between 0.94 and 1.06, which is within the
permissible voltage limits and reflects the system’s high stability.
The time and voltage magnitude relationship at node 1, for
example, satisfies the load variations, with lower voltage
magnitude during low-load layers and higher voltage
magnitude during high-load layers. The voltage distribution
corresponds to the generator access at the first hour. For
example, the node closer to the generator has a higher voltage
value, and the node with a higher distance from the generator has
a lower voltage value.

Figure 7 shows that the air pressure distribution of the gas
system of the RIES is between 8.5 and 9.5 kPa, which is in line with
the engineering air pressure requirements. Therefore, the gas system
has good stability. Similar to the voltage node, the barometric
pressure value also corresponds to the gas source access node,
i.e., the closer to the gas source node, the higher will be the
barometric pressure value.

5.2.3 Equipment output analysis
The power balance diagrams of electricity, heat, and cooling

of the lower-layer DES are shown in Figures 8, 9, 10,
respectively.

FIGURE 11
Uncertain parameters in the worst case for Γ � 24.
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Figure 8 presents the electrical load of the lower-layer DES
which is mainly supplied by the purchased electricity. The gas
turbine works at full load during the high-load period to reduce
the pressure on the grid. Storage equipment charges during the low-
load period and discharges during the high-load period to achieve

peak shaving and valley filling of the electrical load, while
discharging in time during the period when the electrical load
just reaches its peak to avoid self-loss.

Figure 9 shows that the heat load mainly relies on the gas turbine,
and the gas boiler is relied on only during the time when the gas turbine

FIGURE 12
Uncertain parameters in the worst case for Γ � 12.

TABLE 1 Simulation results of scenario 1.

Conservativeness parameter Energy purchase cost/Yuan Under supply/kW

Γ � 0 34,424.88 10,245.56

Γ � 12 39,474.01 3,401.95

Γ � 24 40,655.09 0

TABLE 2 Simulation results of scenario 2.

Conservativeness parameter Energy purchase cost/Yuan Under supply/kW

Γ � 0 31,877.26 10,619.17

Γ � 12 37,303.66 3,405.57

Γ � 24 38,486.48 0
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is out of service, which is because the gas turbine produces electricity
and heat at the same time. Furthermore, charging and releasing the
waste heat from electricity production can effectively reduce costs. Heat
storage equipment is not operated because the heat load is small
compared to other loads, and the peak-to-valley difference is not so
evident. So, there is no high demand for heat storage, and at the same
time, the process of charging, releasing, and storing heat will produce
losses and increase the costs.

Figure 10 shows that the cooling load is mostly dependent on
electric chillers to achieve the supply. This is due to the higher
cooling factor of electric chillers, as electric chillers can directly
convert electricity purchased from the grid to cooling energy, while
heat is converted from gas and then converted again to cooling
energy which will lead to higher losses.

5.2.4 Robustness analysis
Figures 11, 12 show the worst-case uncertainty parameters for

the conservative adjustment parameters Γ � 24 and Γ � 12,
respectively.

The sub-problem of the lower-layer DES is used to search for
the worst-case scenario with uncertain parameters. Figures 11, 12
show that the worst-case scenarios are all those where the PV
output is as small as possible and the load is as large as possible. For
Γ � 24, the most conservative time occurs, where the worst-case
scenario is that the PV output equals to the lower limit of the
uncertainty interval, and the load equals the upper limit of the
uncertainty interval in 24 h. For Γ � 12, the worst case for PV is
reached only during 12 h because PV output is only in the daytime
and the total output time is less than 12 h, so PV output is the
minimum value in the uncertainty interval. For the load, the more
output in the peak-energy consumption period, the greater the
cost, so the worst case of load when its value reaches the maximum
limit in the uncertainty interval appears only during 12 h, while the
predicted value is maintained during the remaining hours.

In order to explore the influence of PV’s permeability on the
results of this study, the following three scenarios are set. Scenario 1:
all parameters are the same as the aforementioned example; scenario
2: the penetration level of PV is increased by 30%, and other
parameters remain unchanged; and Scenario 3: the penetration
level of PV is reduced by 30%, and the other parameters remain
unchanged. Table 1 shows the simulation results of the scenarios
obtained at Γ � 0, Γ � 12, and Γ � 24 when the worst-case scenario is
applied. It can be seen that as the conservativeness parameter
increases, the energy purchase cost gradually increases.
Meanwhile, the supply deficit gradually decreases, which is due

to the fact that the sub-problem of the lower-layer DES can search
for the worst scenario and protect it in advance so that the supply
deficit gradually decreases. However, this protection also comes at a
cost, i.e., the energy purchase cost increases as well. The change in
the conservativeness parameter from Γ � 0 to Γ � 12 increases the
cost of energy purchase more and reduces the undersupply less than
the change from Γ � 12 to Γ � 24. This is because the system
prioritizes the protection of the worst scenarios (uncertain
parameters at maximum load and maximum PV), followed by
the protection of the less severe ones. Hence, the increase in the
cost of energy purchase slows down with the increase in
conservativeness, and the reduction in the undersupply slows
down with the increase of conservativeness. It can be seen from
Tables 1–3 that the penetration level of PV does not affect the
aforementioned results. However, the greater the penetration level of
PV, the lower the energy purchase cost of the system. Therefore, the
greater the penetration level of PV in the system, the more robustly
the system should be optimized.

7 Conclusion

For reducing the negative impact of uncertainties brought by the
DES on the system’s safe and reliable operation, a robust
optimization model of the RIES considering uncertainties of the
DES was developed in this study. First, the RIES with the DES was
divided into an upper-layer ESN model and a lower-layer DES
model according to their functions. The two layers were iteratively
solved using the ADMM algorithm. Second, for the lower-layer DES,
a two-stage robust optimization model was presented with the
objective function of minimizing the energy purchase cost. In the
first stage, the charging and discharging behaviors of storage
equipment were explored, and in the second state, the optimal
equipment output under the worst case could be developed. Then,
for the sub-problem in the second stage, the bilinear terms were
reduced to linear constraints using the big M method and solved
using the CCG algorithm. Finally, the effectiveness of the proposed
solving method was demonstrated by several simulation cases,
which showed that the developed results could effectively
suppress the uncertainty effects.

In future work, more focus will be given to the contradiction
between the conservativeness of the robust optimization model and
the optimization results. The robust optimization model based on the
probability distribution function of uncertain variables can combine
the possible probability distribution function of uncertain parameters

TABLE 3 Simulation results of scenario 3.

Conservativeness parameters Energy purchase cost/yuan Under supply/kW

Γ � 0 36,976.20 9,871.95

Γ � 12 41,644.36 3,398.34

Γ � 24 42,823.71 0
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to propose more targeted protection measures and reduce the
conservativeness of the system. The robust optimization model
based on the probability distribution function of uncertain
variables will become an important direction for future research
work. In addition, when considering larger-scale models and long-
distance transmission models, losses should be taken into account,
which are also the future research directions.

Data availability statement

The original contributions presented in the study are included in
the article/Supplementary Material; further inquiries can be directed
to the corresponding author.

Author contributions

XZ: methodology, software, writing—original draft, and data
curation. YY: conceptualization of the study, supervision, and review
and editing.

Funding

This work was supported by the National Natural Science
Foundation of China (No. 51477041).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors, and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

Balsamo, F., Falco, D. P., Mottola, F., and Pagano, M. (2020). Power flow approach for
modeling shipboard power system in presence of energy storage and energy
management systems. IEEE Trans. Energy Convers. 35, 1944–1953. doi:10.1109/tec.
2020.2997307

Ding, T., Li, C., Yang, Y., Jiang, J., Bie, Z., and Blaabjerg, F. (2017). A two-stage robust
optimization for centralized-optimal dispatch of photovoltaic inverters in active
distribution networks. IEEE Trans. Sustain. Energy 8, 744–754. doi:10.1109/tste.
2016.2605926

Ding, T., Liu, S., Yuan, W., Bie, Z., and Zeng, B. (2016). A two-stage robust reactive
power optimization considering uncertain wind power integration in active
distribution networks. IEEE Trans. Sustain. Energy 7, 301–311. doi:10.1109/tste.
2015.2494587

Farivar, M., and Low, S. H. (2013). Branch flow model: Relaxations and
convexification—Part I. IEEE Trans. Power Syst. 28 (3), 2554–2564. doi:10.1109/
TPWRS.2013.2255317

Farivar, M., and Low, S. H. (2013). Branch flow model: Relaxations and
convexification—Part II. IEEE Trans. Power Syst. 28 (3), 2565–2572. doi:10.1109/
TPWRS.2013.2255318

Feng, D., Lin, S., He, Z., Sun, X., and Wang, Z. (2018). Failure risk interval estimation
of traction power supply equipment considering the impact of multiple factors. IEEE
Trans. Transp. Electrification 4, 389–398. doi:10.1109/tte.2017.2784959

Fu, Y., Lin, H., Ma, C., Sun, B., Li, H., Sun, Q., et al. (2021). Effects of uncertainties on
the capacity and operation of an integrated energy system. Sustain. Energy Technol.
Assessments 48, 101625. doi:10.1016/j.seta.2021.101625

Li, J., Li, D., Zheng, Y., Yao, Y., and Tang, Y. (2022). Unified modeling of regionally
integrated energy system and application to optimization. Int. J. Electr. Power & Energy
Syst. 134, 107377. doi:10.1016/j.ijepes.2021.107377

Li, P., Li, S., Yu, H., Yan, J., Ji, H., Wu, J., et al. (2022). Quantized event-driven
simulation for integrated energy systems with hybrid continuous-discrete dynamics.
Appl. Energy 307, 118268. doi:10.1016/j.apenergy.2021.118268

Li, Q., Wang, S., Zhou, X., Zhang, A., and Zaman, R. (2021). Modeling and
optimization of RIES based on composite energy pipeline energy supply. IEEE
Trans. Appl. Supercond. 31, 1–5. doi:10.1109/tasc.2021.3090340

Li, Y., Liu, C., Zhang, L., and Sun, B. (2021). A partition optimization design method
for a regional integrated energy system based on a clustering algorithm. Energy 219,
119562. doi:10.1016/j.energy.2020.119562

Li, Y., Wang, B., Yang, Z., Li, J., and Li, G. (2022). Optimal scheduling of integrated
demand response-enabled community-integrated energy systems in uncertain

environments. IEEE Trans. Industry Appl. 58, 2640–2651. doi:10.1109/TIA.2021.
3106573

Miao, B., Lin, J., Li, H., Liu, C., Li, B., Zhu, X., et al. (2020). Day-ahead energy trading
strategy of regional integrated energy system considering energy cascade utilization.
IEEE Access 8, 138021–138035. doi:10.1109/access.2020.3007224

Rezaei, N., Pezhmani, Y., and Khazali, A. (2022). Economic-environmental risk-
averse optimal heat and power energy management of a grid-connected multi microgrid
system considering demand response and bidding strategy. Energy 240, 122844. doi:10.
1016/j.energy.2021.122844

Sioshansi, R., Denholm, P., Arteaga, J., Awara, S., Bhattacharjee, S., Botterud, A., et al.
(2021). Energy-storage modeling: State-of-the-art and future research directions. IEEE
Trans. Power Syst. 37, 860–875. doi:10.1109/tpwrs.2021.3104768

Sun, T., Jiang, H., Cheng, L., and Zhu, W. (2018). Iteratively linearized reweighted
alternating direction method of multipliers for a class of nonconvex problems. IEEE
Trans. Signal Process. 66, 5380–5391. doi:10.1109/tsp.2018.2868269

Wang, C., Yan, C., Li, G., Liu, S., and Bie, Z. (2020). Risk assessment of integrated
electricity and heat system with independent energy operators based on Stackelberg
game. Energy 198, 117349. doi:10.1016/j.energy.2020.117349

Wang, Y., Huang, F., Tao, S., Ma, Y., Ma, Y., Liu, L., et al. (2022). Multi-objective
planning of regional integrated energy system aiming at exergy efficiency and economy.
Appl. Energy 306, 118120. doi:10.1016/j.apenergy.2021.118120

Wang, Y., Zhao, S., Zhou, Z., Botterud, A., Xu, Y., and Chen, R. (2017). Risk
adjustable day-ahead unit commitment with wind power based on chance
constrained goal programming. IEEE Trans. Sustain. Energy 8, 530–541. doi:10.
1109/tste.2016.2608841

Xiang, Y., Cai, H., Liu, J., and Zhang, X. (2021). Techno-economic design of energy
systems for airport electrification: A hydrogen-solar-storage integrated microgrid
solution. Appl. Energy 283, 116374. doi:10.1016/j.apenergy.2020.116374

Xu, X., Hu, S., Shi, P., Shao, H., Li, R., and Li, Z. (2022). Natural phase space
reconstruction-based broad learning system for short-term wind speed prediction: Case
studies of an offshore wind farm. Energy 2023, 125342. doi:10.1016/j.energy.2022.125342

Yang, H., Liang, R., Yuan, Y., Chen, B., Xiang, S., Liu, J., et al. (2022). Distributionally
robust optimal dispatch in the power system with high penetration of wind power based
on net load fluctuation data. Appl. Energy 313, 118813. doi:10.1016/j.apenergy.2022.
118813

Zeng, B., and Zhao, L. (2013). Solving two-stage robust optimization problems using a
column-and-constraint generation method. Operations Res. Lett. 41, 457–461. doi:10.
1016/j.orl.2013.05.003

Frontiers in Energy Research frontiersin.org13

Zong and Yuan 10.3389/fenrg.2023.1135056

https://doi.org/10.1109/tec.2020.2997307
https://doi.org/10.1109/tec.2020.2997307
https://doi.org/10.1109/tste.2016.2605926
https://doi.org/10.1109/tste.2016.2605926
https://doi.org/10.1109/tste.2015.2494587
https://doi.org/10.1109/tste.2015.2494587
https://doi.org/10.1109/TPWRS.2013.2255317
https://doi.org/10.1109/TPWRS.2013.2255317
https://doi.org/10.1109/TPWRS.2013.2255318
https://doi.org/10.1109/TPWRS.2013.2255318
https://doi.org/10.1109/tte.2017.2784959
https://doi.org/10.1016/j.seta.2021.101625
https://doi.org/10.1016/j.ijepes.2021.107377
https://doi.org/10.1016/j.apenergy.2021.118268
https://doi.org/10.1109/tasc.2021.3090340
https://doi.org/10.1016/j.energy.2020.119562
https://doi.org/10.1109/TIA.2021.3106573
https://doi.org/10.1109/TIA.2021.3106573
https://doi.org/10.1109/access.2020.3007224
https://doi.org/10.1016/j.energy.2021.122844
https://doi.org/10.1016/j.energy.2021.122844
https://doi.org/10.1109/tpwrs.2021.3104768
https://doi.org/10.1109/tsp.2018.2868269
https://doi.org/10.1016/j.energy.2020.117349
https://doi.org/10.1016/j.apenergy.2021.118120
https://doi.org/10.1109/tste.2016.2608841
https://doi.org/10.1109/tste.2016.2608841
https://doi.org/10.1016/j.apenergy.2020.116374
https://doi.org/10.1016/j.energy.2022.125342
https://doi.org/10.1016/j.apenergy.2022.118813
https://doi.org/10.1016/j.apenergy.2022.118813
https://doi.org/10.1016/j.orl.2013.05.003
https://doi.org/10.1016/j.orl.2013.05.003
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1135056


Zhang, F., Wang, Y., Huang, D., Lu, N., Jiang, M., Wang, Q., et al. (2022). Integrated
energy system region model with renewable energy and optimal control method. Front.
Energy Res. 10, 1067202. doi:10.3389/fenrg.2022.1067202

Zhang, J., Zhu, X., Chen, T., Yu, Y., and Xue, W. (2020). Improved MOEA/D
approach to many-objective day-ahead scheduling with consideration of adjustable
outputs of renewable units and load reduction in active distribution networks. Energy
210, 118524. doi:10.1016/j.energy.2020.118524

Zhao, H., Wang, B., Pan, Z., Sun, H., Guo, Q., and Xue, Y. (2022). Aggregating
additional flexibility from quick-start devices for multi-energy virtual power plants.
IEEE Trans. Sustain. Energy 12, 646–658. doi:10.1109/tste.2020.3014959

Zhao, Z., Wang, Y., Jiang, M., and Liu, X. (2022). Research on reliability assessment
and multi-time scale improvement strategy of electricity-gas integrated energy system
under cyber attack. Front. Energy Res. 10, 1049920. doi:10.3389/fenrg.2022.1049920

Zhou, Y., and Zhang, J. (2020). Three-layer day-ahead scheduling for active
distribution network by considering multiple stakeholders. Energy 207, 118263.
doi:10.1016/j.energy.2020.118263

Zhu, J., Mo, X., Xia, Y., Guo, Y., Chen, J., and Liu, M. (2022). Fully-decentralized
optimal power flow of multi-area power systems based on parallel dual dynamic
programming. IEEE Trans. Power Syst. 37, 927–941. doi:10.1109/tpwrs.2021.
3098812

Frontiers in Energy Research frontiersin.org14

Zong and Yuan 10.3389/fenrg.2023.1135056

https://doi.org/10.3389/fenrg.2022.1067202
https://doi.org/10.1016/j.energy.2020.118524
https://doi.org/10.1109/tste.2020.3014959
https://doi.org/10.3389/fenrg.2022.1049920
https://doi.org/10.1016/j.energy.2020.118263
https://doi.org/10.1109/tpwrs.2021.3098812
https://doi.org/10.1109/tpwrs.2021.3098812
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1135056


Nomenclature

Parameters

Rij, Xij Resistance/reactance of line ij

n(j) Set of the sending nodes with node j as the end node

m(j) Set of the end nodes with node j as the sending node

γ Maximum number of steps that can be adjusted

θ max Maximum number of adjustments per day

QSVG
min, QSVG

max Lower/upper limits of the regulation range

ς Efficiency factor of the pipe q

T0 Standard temperature

Dq Inner diameter of the pipe q

p0 Standard pressure

G Gas relative density

Lq Length of the pipe q

Tqa Average temperature of the pipe q

Zqa Average compression factor of the pipe q

Gu Coefficient related to temperature and efficiency

Zu Other compression factor

a, b, c Generators’ cost coefficients

h Cost coefficient of gas supply

N, M Total number of generators and gas sources

Θmin, Θmax Lower/upper limits of the variable Θt

ηGB Heat production efficiency

ηGT Power production efficiency

λ Electricity-to-heat ratio

COPEC Performance coefficient of the electric chiller

COPAC Performance coefficient of the absorption chiller

COP0
AC Rated conversion efficiency of the absorption chiller

aAC, bAC, cAC Conversion factors of the absorption chiller

βAC Workload rate of the absorption chiller

δi Self-loss rate of the energy storage device

ηi,char, ηi,dis Charging and discharging efficiencies of the energy
storage device

Γ, Γpv, Γi,L Uncertainty conservativeness adjustment parameters

MBIG Large positive real number, which is taken as 109 in this study

ε Iteration convergence threshold of the CCG algorithm

Variables

Pt
jl,Q

t
jl Active/reactive powers flowing from node j to node l at time t

Itij Current flowing through line ij at time t

Ut
i Voltage of node i at time t

Qt
CP Compensated reactive power of the CP at time t

QCP,U Reactive power output corresponding to each step of the CP

θtCP,m, θ
t
CP add, θ

t
CP del A 0–1 variable

Qt
SVG Reactive power of the SVG at time t

Pt
L,j, Q

t
L,j Active/reactive loads of node j at time t

Pt
G,j,Q

t
G,j Active/reactive powers of the generator of node j at time t

ft
q Flow of the pipe q at time t

pt
m Pressure of node m at time t

σtu Gas flow consumed by the compressor u at time t

αu, βu, γu Energy consumption coefficients of the compressor u

Pt
com Gas energy consumed by the compressor u at time t

fcom,u Flow through compressor u at time t

f Branch flow vector

τ Compressor consumption flow vector

A Branch node association matrix

ϖ Node gas injection flow vector

U Unit node association matrix

T Compressor node association matrix

Gt
G Gas supply quantity of the gas source at time t

pricete, price
t
g Purchase prices of electricity and gas of the lower-

layer DES at time t

Pt
grid, P

t
gas Purchased power and gas power of the lower-layer DES

from the upper-layer ESN at time t

Pt
G,k, G

t
G,k The k-th generator and air source supply

Θt Other variables such as equipment output, voltage value, gas flow
value, and node pressure

Ht
GB, G

t
GB Heat production and gas consumption of the gas boiler at

time t

Pt
GT Power production of the gas turbine at time t

Gt
GT Gas consumption of the gas turbine at time t

Ht
GT Heat production of the gas turbine at time t

Ct
EC, P

t
EC Cooling production and power consumption of the electric

chiller at time t

Ct
AC, H

t
AC Cooling production and heat consumption of the

absorption chiller at time t

Et
i Reserves of energy storage at time t

Ct
i ,D

t
i Charging and discharging powers of the energy storage device

υi, Bt
i,L, D

t
i,L, B

t
PV, D

t
PV 0–1 variables

U Uncertainty set

utPV, u
t
i,L Uncertainty variables of PV output and load power at time t

after introducing uncertainty

ûtPV, û
t
i,L Expected values of PV output and load power at time t
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Δumax ,t
PV , Δumax ,t

i,L Maximum allowable deviations of PV output and
load power at time t

Dt
e, C

t
e, D

t
h, C

t
h Variables of charging and discharging powers

corresponding to electric or thermal energies

ute,L, u
t
h,L, u

t
c,L Variables of load uncertainty corresponding to

electricity, heat, and cooling

ω1, ω2, ω3 Dual variables in the lower-layer model

B9 Auxiliary variable in the lower-layer model

Lup, Ldn Augmented Lagrange function of the upper and lower
layers

Pt
grid, G

t
gas Global variables of purchased electricity and gas

Pt
grid,up, G

t
gas,up, P

t
grid,dn, G

t
gas,dn Local variables of purchased

electricity and gas in the upper and lower layers

η Coefficient of the penalty term

λt1,up, λ
t
2,up, λ

t
1,dn, λ

t
2,dn Lagrange multipliers

φ Maximum deviation of the ADMM algorithm
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