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This paper proposes a newmethod for assigning distribution system (DS) losses to
consumers and distributed generations in the framework of a liberalized energy
market. The architecture of the proposed method is based on a synthesis of
electrical network analytical theory and cooperative game theory (CGT). Weighted
shapely value (WSV) is a solution idea that is regarded to be efficient in CGT for
n-player games with characteristic function form. By retaining the notion of
electrical networks, the axioms of game theory will be preserved while
employing the WSV in loss allocation theory. To allocate system losses, the
proposed method estimates the average marginal contribution of each
participant to all conceivable coalitions and also determines the weight of the
marginal contribution of each participant based on its power rating. Rather than a
sequential branch-oriented approach, the proposed methodology is node-
oriented. Additionally, a majority rule game is used to constrain the population
of a coalition without jeopardizing the efficacy of the solutions to achieve a fair
allocation of losses. The results of the proposed method are presented and
contrasted with those obtained using the conventional pro-rata method and
the well-known Shapley value solution concept in CGT.
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1 Introduction

Since the introduction of the deregulation and liberalization of the electricity market in
the power system, the traditional operations of generation, transmission, and distribution
networks, as well as their commercial practices, have changed (Raikar and Jagtap, 2018).
Additionally, as a result of technological advancements in small scale generators, referred to
as distributed generators (DGs) and the establishment of competition among retail market
participants, distribution systems (DSs) have garnered significant attention in the energy
market. However, distribution service providers are currently confronted with several
substantial operational challenges, including protection against bidirectional power flow
and identifying the appropriate economic signal for the contributions of participants to
system performance.

Costs associated with DS services must be assigned using suitable technology aspects
capable of distinguishing between economic signals generated by numerous users/
participants (including DGs). Due to the fact that DSs have a higher resistance to
reactance ratio than transmission systems, they are therefore considered to be lossy
networks. Thus, the cost of system losses accounts for a significant portion of service
charges, and in order to preserve economic efficiency, it should be allocated fairly among
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consumers and DGs through a mechanism that takes into account
the interaction of participants and their contributions to system
losses (Amaris et al., 2018).

System losses are also a component of the active and reactive
power flows that are lost in distribution lines during a distribution
event, and thus fall into the same category as unit energy
consumption expenses. Thus, the distribution of losses is entirely
economic in nature. Allocating system losses, on the other hand, is
not as straightforward because of two critical factors: first, system
losses are a non-linear consequence of active and reactive power
flows; and second, there is mutual interaction or interdependency
among participants involved in the distribution activities (Amaris
et al., 2018; Shafeeque Ahmed and Prabhakar Karthikeyan, 2018).
On the other hand, a group of DGs adds complexity by requiring
compensation for their contributions to minimizing system losses
and improving system voltage profiles through optimum power
injection.

Researchers attempt to address the problem of loss allocation in
a variety of ways in the existing scientific literature. However, in
order to reduce volatility and maximize efficiency, techniques must
follow and adhere to the axioms specifically stated for loss allocation
algorithms (Digs and Chen, 2020). Salgado, Moyano and Medeiros.
(2004) discussed a variety of approaches, including the use of
participation factors derived from power flow solutions, the
direct application of sensitivity relationships between
transmission losses and bus power injections, and the integration
of sensitivity relationships between participation factor and bus
power injection. Conejo et al. (2002) provided theoretical and
mathematical overviews of several allocation approaches,
including pro-rata (Savier and Das, 2012), marginal allocation
(Mutale et al., 2000; Galiana et al., 2002), unsubsidized marginal
allocation (Mutale et al., 2000; Galiana et al., 2002), and proportional
sharing (Bialek, 1996). The methods described in (Conejo et al.,
2002) are well-established and often quoted in the literature.
Proportional sharing is based on the idea of proportionality,
marginal allocation is based on the incremental transmission loss
coefficient, and proportional sharing is based on a linear
proportional power tracing algorithm.

Kumar et al. (2019) presented circuit theory-based branch-
oriented approach for active power loss allocation by
decomposing the cross-terms among load points. Hota, Mishra
and Mishra. (2021) discussed various types of DGs technology
and assigned system losses to them along with different load
points using bifurcating the cross-term. Sindi, H. et al. (2021)
presented convolutional neural network architecture uses the
Z-bus matrix as input is 1D for system loss allocation in
distribution systems. With characterization of unbalanced
distribution networks as multilayered radial graphs, Nikolaidis
et al. (2019) proposed a graph-based loss allocation method for
dispersed market settings that harmonizes the physical
characteristics of the distribution grid with the underlying
financial transactions. Moret, F. et al. (2021) studied market
behavior by taking into consideration the various system
operators and retailers. The distribution of operational costs in
those decentralized markets was also discussed. Authors
examined loss allocation rules and their effects on pricing in
order to prevent market outcomes that prejudice agents based on
their locations. Usman, M. et al. (2019) introduced a multi-phase

loss allocation methodology that explicitly disclosed losses allocated
to the neutral as well as fairly separated losses associated with cross-
terms of phase-currents. Branch-oriented approaches are
specifically designed to address the problem of loss allocation in
radial DSs. All branch-oriented approaches developed are classified
into two categories: current-based approaches as described (Savier
and Das, 2012; Kumar et al., 2018; Shafeeque Ahmed and Prabhakar
Karthikeyan, 2018; Usman, Coppo et al., 2019) and power-based
approaches as described in (Atanasovski and Taleski, 2012;
Ghofrani-Jahromi, Mahmoodzadeh and Ehsan, 2014; Jagtap and
Khatod, 2015).

Cooperative game theory (CGT) and artificial intelligence have
also been proposed in the previous decade as strategic and
interactive solution approaches for the non-linear problem of loss
allocation in power DSs. Amaris et al. (2018) introduced a game
theory-based Aumann-Shapley solution idea in which unitary
participation coefficients for each network user were determined
based on the currents demanded/injected by each user and the
network structure. Dev Choudhury and Goswami. (2011) sought to
address the loss allocation problem using an artificial neural network
(ANN) trained using Levenberg–Marquardt back propagation and
Bayesian regularization back propagation. Molina, Prada and
Saavedra. (2010) presented the Aumann-Shapley solution
approach for calculating the contribution of generators and
consumers to overall system losses in CGT. Dev Choudhury and
Goswami. (2012) combined ANNwith Shapley value CGT to solve a
given non-linear issue. Pourahmadi and Dehghanian. (2018)
presented the Shapley Value, a cooperative game-theory concept
for loss allocation in power distribution networks. The proposed
method was a generic strategy that could be applied to both radial
and meshed distribution systems, as well as those networks which
have integration of significant penetration of renewables and DG
units. Shaloudegi et al. (2012) introduced the Shapley value for
allocating reduced system losses gained by adding DGs and
rewarding them using the locational marginal pricing approach.
Yu et al. (2018) provided a strategy for allocating losses and emission
reductions based on the minimal cost-remaining savings and the
Aumann-Shapley value methods.

1.1 Author contribution and novelty of the
work

In light of the preceding research, this paper proposes a new
scheme for allocating DS losses to network participants in the
deregulated energy market. The proposed method is based on a
synthesis of electrical circuit theory and weighted Shapley values - a
new notion in CGT.

To allocate the losses, existing techniques that cited in the
given literature, take into account either the steady-state power
rating of loads and DGs or their in-cooperative contribution
w.r.t. to their location in the network. This led to bias and unfair
solutions to passive participants who are connected away from
the substations. However, on the other hand, in comparison to
techniques cited in the given literature, the key contribution of
this work is that the proposed method considers the average
marginal contribution of each load and DG, as well as their
weights, as a coefficient for sharing system losses. This not only
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benefits the loads but also grant maximum incentives to DGs for
their contribution to loss reduction.

The management and handling of coalitions associated with
CGT are the most tedious and time-consuming tasks. Coalitions can
further grow to be very large in size depending on the number of
participants in the system. To alleviate the stress associated with
coalition computation, the paper proposes an algorithm named as
majority rule game strategy for reducing the population of coalitions
without jeopardizing the CGT axioms or the solution’s effectiveness.
Novelty of this work is stated that proposed method canmanage and
reduce the number of coalitions effectively without compromission
in fairness of loss sharing so that it may apply for any practical
distribution systems which have thousands of nodes and
participants.

The highlight of this paper exhibits that the proposed method
produces efficient results by determining the significant
contributions of consumers and DGs to overall system losses
(including loss saving). The impacts of different market
participants and their mutual contribution on system power
losses are also considered. The proposed method fairly and
rationally assigns system losses, and the allocation results are
unaffected by the reduced number of coalitions constituted.
Based on cooperative game theory, a weighted Shapley value-
based power loss allocation approach is proposed and thoroughly
compared with the Shapley value-based allocation method and the
pro-rata method.

The remainder of the paper is structured as follows: The second
section introduces the terminology and axioms of CGT; it also
discusses the Weighted Shapley value, Shapley value, and majority

rule game in CGT; the third section derives mathematical
expressions for the proposed method; the fourth section discusses
the obtained results; and the fifth section concludes the work.

2 Cooperative game theory

Game theory is a mathematical framework for describing and
analyzing social interactions in which two or more individuals make
decisions that affect the payoff of the other. The formal definition of
CGT is as follows: let N � 1, 2, 3, ..., |N|{ } be a finite set of players,
and S ⊆ N a coalition of players. Any transferable utility game inN is
defined by a pair (N, υ) where the υ is a real-valued function, called
the characteristic function of the game, defined on the set S of all
coalitions (subsets of N), and satisfying υ(ϕ) = 0, where υ(ϕ) is the
characteristic function of the empty set. The underlying game of
CGT is to divide the value of the grand coalition N among the
participants participating. So, let (N, υ) be a transferable game.
Vector x(N, υ) � [x1(N, υ), x2(N, υ), ..., x|N|(N, υ)]T ∈ R|N|, with
each component xi(N, υ) representing the payoff that each player
i ∈ N receives, is called the allocation or payoff rule of the game
(N, υ). It is evident that a payoff rule must ensure some qualities/
axioms that are favorable to all participants in the game (N, υ), and
various solution conceptions will differ in the set of properties met.
In this regard, certain traditional axioms for solution ideas are
treated below (Gilles, 2010a):

Axiom 1: (Monotonicity) Let x be a payoff rule of game (N, υ),
with (N, υ) beingmonotonic increasing. The payoff of all the players
is non-negative, i.e.,

FIGURE 1
Single line diagram of 4-bus radial DS.

TABLE 1 Characteristic function of 4-bus DS.

Sr. No Coalitions Characteristic function (in pu)

1 υ({2}) 0.030825

2 υ({3}) 0.034049

3 υ({4}) 0.068331

4 υ({2,3}) 0.116096

5 υ({2,4}) 0.164059

6 υ({3,4}) 0.188664

7 υ({2,3,4}) 0.335615

Frontiers in Energy Research frontiersin.org03

Singh et al. 10.3389/fenrg.2023.1129846

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1129846


xi N, υ( )≥ 0, ∀i ∈ N (1)
Axiom 2: (Positivity) Let x be a payoff rule of game (N, υ),

where (N, υ) is almost positive. If the worth of a player is non-
negative then its payoff is non-negative i.e.,

υ i{ }( )≥ 0 → xi N, υ( )≥ 0, ∀i ∈ N (2)
Axiom 3: (Individual rationality) Let x be a payoff rule of game

(N, υ). The payoff of every player has to be at least worthy, i.e.,

xi N, υ( )≥ υ i{ }( ), ∀i ∈ N (3)
Axiom 4: (Coalitional rationality) Let x be a payoff rule of game

(N, υ). The payoff that every coalition obtains has to be at least its
worth, i.e.,

∑
i∈S

xi N, υ( )≥ υ S( ), S ⊆ N (4)

Axiom 5: (Efficiency) Let x be a payoff rule of game (N, υ). The
worth of the grand coalition is completely shared among all players
in N, i.e.,

υ N( ) � ∑
i∈N

xi N, υ( ) (5)

2.1 Weighted shapley value

For any transferable utility game (N, υ), Harsanyi dividend can
be expressed as,

TABLE 2 Comparison of allocated losses (in kW) of 4-bus DS by all three given methods.

Bus. No Proposed method Shapley value method Pro-rata method

1 0.0000 0.0000 0.0000

2 91.7333 84.2875 119.8625

3 95.1629 96.5901 95.8900

4 148.7187 154.7373 119.8625

TABLE 3 Comparison of allocated losses (in kW) and loss saving (in kW) to load and DG, respectively, of 33-bus DS by all three given methods.

Bus No. Proposed
method

Shapley Value
method

Pro-rata
method

Bus
No.

Proposed
Method

Shapley Value
method

Pro-rata
method

Loss allocated to consumer

1 0.0000 0.0000 0.0000 18 4.4222 6.6011 4.3885

2 3.3613 5.2962 5.1964 19 2.9002 5.2936 4.3885

3 3.1130 5.5187 4.3885 20 2.9426 5.3373 4.3885

4 4.8618 5.8360 6.4263 21 2.9496 5.3445 4.3885

5 2.2511 5.6038 2.9891 22 2.9538 5.3488 4.3885

6 2.2394 5.7439 2.8181 23 3.3088 5.5911 4.5876

7 10.2547 7.0997 9.9636 24 17.5095 7.1017 20.7282

8 11.0201 7.2995 9.9636 25 18.2715 7.2319 20.7282

9 2.3725 5.8896 2.8181 26 2.3354 5.7893 2.8963

10 2.4299 5.952 2.8181 27 2.3652 5.8184 2.8963

11 2.0330 5.8763 2.4099 28 2.3587 5.8905 2.8181

12 2.7539 6.0742 3.0951 29 6.2998 6.8867 6.1903

13 2.8087 6.1444 3.0951 30 44.3788 11.0161 28.1814

14 7.1744 7.1075 6.4263 31 8.3276 7.3502 7.3758

15 2.3986 6.0115 2.7104 32 14.2525 8.1938 10.3641

16 2.5411 6.0947 2.8181 33 2.9325 6.2223 3.2132

17 2.5546 6.1117 2.8181 Total 202.6768 202.677 202.6768

Loss saving allocated to DG

DG at bus 7 28.4 28.3658 28.0324

DG at bus 17 47.4 47.4094 46.7207

DG at bus 32 43.7 43.6922 44.7142

Total 119.5 119.4674 119.4673
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λυ S( ) � ∑
τ⊆S

−1( ) S| |− τ| |υ τ( ), ∀S ⊆ N (6)

Let ω � (ωi)i∈N ∈ R|N| be a vector. Allocation rules φω(N, υ) �
[φω

1 ,φ
ω
2 , ...,φ

ω
|N|]T ∈ R|N| are described by

φω
i N, υ( ) � ∑

S⊆N: i∈S

ωi

ωS
λυ S( ), ∀i ∈ N (7)

Such that ωS � ∑
i∈S

ωi, are called Weighted Shapley values (Kalai

and Samet, 1987; Nowak and Radzik, 1995).

2.2 Shapley value

For any transferable utility game (N, υ), Shapley value allocation rules
φ(N, υ) � [φ1,φ2, ...,φ|N|]T ∈ R|N| are described by (Gilles, 2010b)

φi N, υ( ) � ∑
S⊆N: i ∉ S

S| |! N| | − S| | − 1( ) !
N| |! υ S ∪ i{ }( ) − υ S( )[ ] ∀i ∈ N

(8)
Where, the term |S|!(|N|−|S|−1) !

|N|! denotes the probability for player i
to incorporate exactly to S. The term υ(S ∪ i{ }) − υ(S) is known as

TABLE 4 Comparison of allocated losses (in kW) and loss saving (in kW) to load and DG, respectively, of 69-bus DS by all three given methods.

Bus No. Proposed
method

Shapley value
method

Pro-rata
method

Bus
No.

Proposed
method

Shapley value
method

Pro-rata
method

Loss allocated to consumer

1 0.0000 0.0000 0.0000 36 0.4368 4.3752 1.5432

2 0.0000 0.0000 0.0000 37 0.4369 4.3754 1.5432

3 0.0000 0.0000 0.0000 38 0.0000 0.0000 0.0000

4 0.0000 0.0000 0.0000 39 0.4035 4.3756 1.4211

5 0.0000 0.0000 0.0000 40 0.4035 4.3756 1.4211

6 0.0481 4.3776 0.1646 41 0.0221 4.3752 0.0755

7 0.7150 4.4480 2.4314 42 0.0000 0.0000 0.0000

8 1.3339 4.5241 4.4654 43 0.1028 4.3756 0.3539

9 0.5320 4.4388 1.7975 44 0.0000 0.0000 0.0000

10 0.4888 4.4477 1.6350 45 0.637 4.3783 2.2816

11 2.8188 4.762 8.6218 46 0.637 4.3783 2.2816

12 2.9042 4.8062 8.6218 47 0.0000 0.0000 0.0000

13 0.1349 4.4014 0.4558 48 1.2418 4.3801 4.6900

14 0.1391 4.4048 0.4691 49 4.1730 4.4468 22.8345

15 0.0000 0.0000 0.0000 50 4.1969 4.4517 22.8345

16 0.8347 4.5548 2.6333 51 0.7066 4.4553 2.3873

17 1.0881 4.6066 3.3562 52 0.0637 4.3824 0.2174

18 1.0881 4.6067 3.3562 53 0.0792 4.3859 0.2698

19 0.0000 0.0000 0.0000 54 0.4700 4.4463 1.5716

20 0.0165 4.3792 0.0563 55 0.4293 4.4503 1.4267

21 2.4025 4.8383 6.7570 56 0.0000 0.0000 0.0000

22 0.5153 4.4615 1.7083 57 0.0000 0.0000 0.0000

23 0.0000 0.0000 0.0000 58 0.0000 0.0000 0.0000

24 0.5153 4.497 1.6626 59 2.5598 5.1468 5.9538

25 0.0000 0.0000 0.0000 60 0.0000 0.0000 0.0000

26 0.2507 4.4369 0.8313 61 179.3363 13.9396 73.8496

27 0.2507 4.437 0.8313 62 0.6635 4.6729 1.9041

28 0.4372 4.3752 1.5446 63 0.0000 0.0000 0.0000

29 0.4372 4.3752 1.5446 64 8.9327 6.4055 13.4747

30 0.0000 0.0000 0.0000 65 1.3907 4.9341 3.4993

31 0.0000 0.0000 0.0000 66 0.3190 4.4251 1.0728

32 0.0000 0.0000 0.0000 67 0.3190 4.4251 1.0728

33 0.2391 4.3757 0.8313 68 0.5023 4.4625 1.6626

34 0.3314 4.3764 1.1599 69 0.5023 4.4625 1.6626

35 0.1013 4.3756 0.3484 Total 226.5886 226.5888 226.589

Loss saving allocated to DGs

DG at 50 20.8432 20.8432 26.8083

DG at 61 118.2247 118.2247 136.2643

DG at 64 52.0993 52.0993 28.0946

Total 191.1672 191.1672 191.1672

Frontiers in Energy Research frontiersin.org05

Singh et al. 10.3389/fenrg.2023.1129846

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1129846


the marginal contribution of player i, when it is incorporated into
coalition S. Therefore, by using the Shapley value, the marginal
contribution of each player is averaged for all possible network
permutations that they can be part of.

2.3 Majority rule game

Any transferable utility game (N, υ) is simple if for every
coalition S ⊂ N, either υ(S) � 1 or υ(S) � 0 Typically, majority
rule game is defined as: υ(S) � 1

if S| | � � N| |
t
�where 1≤ t≤ 2 (9)

or υ(S) � 0 otherwise.

3 Proposed mathematical formulation

The CGT model is used in this paper to tackle a non-linear
problem of loss allocation. As a result, this section first discusses the
generalized model of system power flow that follows the idea of an
electrical network, and the problem of loss allocation in the context
of CGT value is modelled in the next subsection.

3.1 Model of system power flow

Losses in distribution networks are caused by both consumer
and DG. Therefore, responsibility for losses must be allocated
among them based on their contributions.

This paper uses node and branch indexing techniques, as well as
the power flow algorithm described in (Savier and Das, 2012).
Following the execution of the power flow, system losses are
calculated. The phasor value of current drawn by load (consumer
current) at bus i, i.e., load i, may be calculated as follows:

ILi � SLi*

V*
i

� PLi − jQLi

V*
i

(10)

where, SLi* is the conjugate of complex power of the load i; V*
i is the

conjugate of voltage of bus i; and PLi and QLi are the active and
reactive power of the load i, respectively.

Similarly, the generator current phasor value may be
represented as:

IGi � SGi*

V*
i

� PGi − jQGi

V*
i

(11)

Where, SGi* is the conjugate of complex power of DG i; and PGi

and QGi are the active and reactive power of DG i, respectively.
Assumption for power sign convention of participants as

follows: consumers draw power from the network, so their power
and current are both assumed to be positive, whereas DGs inject
power into the network, so their power and current are both
assumed to be negative.

In the case where both the consumer and the DG are connected
to a common bus i the resultant value of current at bus i is given by:

IRi � ILi − IGi (12)
where, IRi is resultant value of current at same bus i.

The sign of IRi is determined by the penetration of DG power at
a common bus i and is stated as:

IRi �
IRi−IRi
0

if ILi > IGi
if ILi < IGi
if ILi � IGi

⎧⎪⎨⎪⎩ (13)

The structural design of the DS is radial, and the resultant power
will flow unidirectional, i.e., from the reference/root node to the end
nodes. Thus, in this paper, current flowing through any branch is
calculated using the bus injection to branch current (BIBC) matrix
and is stated as:

Ib1
Ib2
..
.

Ibn−1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �

E1,2 E1,3 . . . E1,n

E2,2 E2,3 . . . E2,n

..

. ..
. ..

. ..
.

En−1,2 En−1,3 / En−1,n

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ×

IR2
IR3
..
.

IRn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (14)

Where, n is the total number of buses in the system; Ib is the column
vector of branch current where its subscript is varying from index 1 to
n-1 and its dimension is n-1 × 1; IR is the column vector of bus resultant
current where its subscript is varying from index 2 to n and its
dimension is n-1 × 1.

Elements in the row matrix are defined as:

Eij=
1
0

{ if IRj ∈ NBi

if IRj ∉ NBi
NBi is set of buses connected

downstream of upstream branch i where, Ei,j is the element

whose value is either 1 or 0, and subscript i belongs to branch
number which is varying from 1 to n-1 whereas j belongs to bus
number which is varying from 2 to n.

Eq. 14 can be expressed in its canonical form as:

Ib[ ] � BIBC[ ] × IR[ ] (15)
where, BIBC is the bus injection to branch current matrix whose
dimension is (n − 1) × (n − 1).

Bus 1 serves as the root node/reference bus, and it is presumed that
no load is connected to it, hence it is excluded from the BIBC matrix.

From (14), the equation for current in any branch i may be
expressed as,

Ibi � ∑
j∈NBi

Ei,jIRj (16)

The real power loss of the system is stated as:

PLS � ∑
i∈Br

Ibi| |2 × Ri( ) (17)

where, PLS is the real power loss of the system; Ri is the
resistance of branch i; and Br is the set of all the branches in
the system.

Using (16) and (17), the real power loss of the system can also be
expressed as,

PLS � ∑
i∈Br

∑
j ∈ NBi

Ei,jIRj

∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣
2⎛⎝ ⎞⎠ × Ri (18)
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3.2 Application of CGT in loss allocation
problem

To yield maximum advantage to DGs in terms of their
contributions in loss saving without affecting the economic
efficiency of the system, or in other words, to eliminate
consumer cross-subsidies, this article uniquely distinguishes the
changes in losses caused by consumers and DGs separately.
Hence, following Subsection 3.2.1 describes the allocation of
system losses to load (i.e., base case or without DG), and thus
(12) can be modified IRi � ILi, while on the other hand; subsection
3.2.2 describes the allocation of loss saving to DG (i.e., system with
DG), and thus (12) remains intact.

3.2.1 Loss allocation to load
The proposed approach tries to ascertain the contribution of

each consumer to the system power losses produced by them all.
Assume N � 2, 3, .., m − 1, m,m + 1, ..., n{ } be the finite set of load
buses in DS that draw power from branches. Bus 1 is not included in
the set N because it is considered a reference bus and also serves as
the point of connection between the transmission grid and the DS;
hence, it has no load attached to it and is thus eliminated from the
game (N, υ). Cardinality of set N, i.e., |N| represents the total
number of participants in the given game.

Characteristic function of a grand coalition, i.e., υ(N) of a game
(N, υ), that represents system active losses when all consumers are
included, is as follows:

υ N( ) � ∑
i∈Br

∑
j ∈ NBi

Ei,jILj

∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣
2⎛⎝ ⎞⎠ × Ri (19)

Coalition S is defined as a subset of N, or in other words, as the
set of all conceivable consumer combinations that do not repeat.
However, the overall number of coalitions in the game (N, υ) is
determined as follows:

Total number of coalitions � 2N| | − 1 (20)
Consider a coalition S where consumers m-1, m, m+1 is

excluded, i.e., S − m − 1, m,m + 1{ }, and the cordiality of coalition
S is equal to |S| − 3. As a consequence, characteristic function of
coalition S is as follows:

υ S( ) � ∑
i∈Br

∑
Si ⊆ S
j ∈ Si

Ei,jILj

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ × Ri for ∀S ⊆ N (21)

Where, Si is a set of specified buses connecting to the downstream
branch i.

In the CGTmodel, the contribution of any consumer i to system
losses may be determined by the marginal contribution of that
customer to all conceivable coalitions. However, this paper uses
majority rule games in which only coalitions with consumers greater
than 50% of total consumers participated; or in other words, due to
the large number of participants, system losses offered by only those
coalitions are clearly greater than 50%–80% of total system losses, as
expressed as:

S| � �Nt � where 1≤ t≤ 2, such that

υ S( ) � ∑
i∈Br

∑
Si ⊆ S
j ∈ Si

Ei,jILj

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ × Ri > 50 to 80% of total system losses for ∀S ⊆ N

(22)

For given game (N, υ), Harsanyi dividend can be expressed in
term of system losses as follows:

λυ S( ) � ∑
τ⊆S

−1( ) S| |− τ| | ∑
i∈Br

∑
τi ⊆ S
j ∈ τi

Ei,jILj

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ × Ri, ∀τ, S ⊆ N (23)

The marginal contribution of the Harsanyi dividend to any
coalition S is determined by its coefficients which are the probability
of apparent power rating of the consumer in that coalition, referred
to as the weight of consumer.

In given DS, weight of any consumer i is defined as:

ωi �
��������
P2
Li + Q2

Li

√
(24)

The probability of the customer i having a certain weight in a
coalition S is represented as follows:

Prob ωi( )i∈S( ) � ωi

ωS
�

��������
P2
Li + Q2

Li

√
∑
j∈S

��������
P2
Lj + Q2

Lj

√ �
��������
P2
Li + Q2

Li

√���������
P2
L,S + Q2

L,S

√ ∀i ∈ S (25)

Finally, the contribution of consumers to system losses as
measured by the weighted shapely value φω(N, υ) �
[φω

1 ,φ
ω
2 , ...,φ

ω
|N|]T ∈ R|N| is expresses by,

φω
i N, υ( ) � ∑

S⊆N: i∈S

��������
P2
Li + Q2

Li

√���������
P2
L,S + Q2

L,S

√ ∑
τ⊆S

−1( ) S| |− τ| | ∑
t∈Br

∑
τt ⊆ S
j ∈ τt

Et,jILj

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ × Rt,∀i ∈ N

(26)

3.2.2 Loss saving allocation to DG
The base case for DSs is modified by incorporating DGs

optimally, and as a consequence, system losses are reduced
relative to the base case scenario. As a result of DG
integration, the resultant current at the node where both load
and DG are coupled is denoted by IRi. It is widely established that
optimizing the location and placement of DGs in DS leads to
technical benefits such as improved node voltage and reduced
loss. As a result, the DGs have exclusive responsibility for loss
saving and its economic benefits.

Loss savings are stated as a grand coalition and are defined
as the difference between system losses with and without DG, as
follows:

Loss saving � υ′ N( )

� ∑
i∈Br

∑
j ∈ NBi

Ei,jILj

∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣
2⎛⎝ ⎞⎠ × Ri

⎛⎝ ⎞⎠ − ∑
i∈Br

∑
j ∈ NBi

Ei,jIRj

∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣
2⎛⎝ ⎞⎠ × Ri

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦
(27)

where, υ′(N) is the characteristic function of grand coalition for loss
saving.
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Generators are a component of coalition S. As a result,
the characteristic function of each coalition S is defined as
follows:

υ′(S) � ⎡⎢⎢⎣⎛⎝ ∑
i∈Br

⎛⎝∣∣∣∣∣∣∣∣∣∣ ∑
j ∈ NBi

Ei,jILj

∣∣∣∣∣∣∣∣∣∣
2⎞⎠ × Ri

⎞⎠ −⎛⎝ ∑
i∈Br

(∣∣∣∣∣∣∣ ∑
Si ⊆ S
j ∈ Si

Ei,jIRj

∣∣∣∣∣∣∣2) × Ri
⎞⎠⎤⎥⎥⎦
(28)

In this section, the majority rule game may not be used since the
game involves a smaller number of generators. As a result, the
number of coalitions in the game is likewise lower, which may be
managed without using the majority rule game.

For given game (N, υ), Harsanyi dividend can be expressed for
loss saving of coalition S as follows:

λ′υ S( ) � ∑
i∈Br

∑
j ∈ NBi

Ei,jILj

∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣
2⎛⎝ ⎞⎠ × Ri

⎛⎝ ⎞⎠

− ∑
τ⊆S

−1( ) S| |− τ| | ∑
i∈Br

∑
τi ⊆ S
j ∈ τi

Ei,jIRj

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ × Ri

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ∀τ, S ⊆ N

(29)
Finally, the contribution of DG to loss reduction as shown by the

weighted shapely value φω′(N, υ) � [φω
1 ′,φω

2 ′, ...,φω′
|N|]T ∈ R|N| is

expressed as,

φω
i ′ N, υ( ) � ∑

S⊆N: i∈S

��������
P2
Gi + Q2

Gi

√���������
P2
G,S + Q2

G,S

√ ⎡⎢⎢⎢⎢⎣ ∑
f∈Br

∑
j ∈ NBf

Ef,jILj

∣∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣∣
2⎛⎜⎝ ⎞⎟⎠ × Ri

⎛⎜⎝ ⎞⎟⎠

−∑
τ⊆S

−1( ) S| |− τ| | ∑
t∈Br

∑
τt ⊆ S
j ∈ τt

Et,jIRj

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ × Rt

⎤⎥⎥⎥⎥⎦
∀i ∈ N (30)

Eqs 26–30 denote the weighted Shapley value of the consumer
and DG who contributed to system losses, respectively.

4 Result and discussion

The proposed technique has been evaluated on three
different test systems, namely,: 4-bus, 33-bus, and 69-bus
radial DSs. Two distinct scenarios have been evaluated for
each of the test systems, namely, the system without DGs,
referred to as the base case, and the system with DGs. To
eliminate cross-subsidies and ensure consistency in economic
signals, the proposed technique examines system power flow
individually for each scenario. In the base case, system losses
have been allocated to all consumers, while loss reduction has
been awarded to DGs. To validate the proposed method, the
results have been compared to those obtained using the Shapley
value and pro-rata methods. The Shapley value approach
allocates losses based on the average marginal contribution
of participants, whereas the pro-rata approach allocates
losses based on the proportionality principle.

4.1 Test system 1: 4-Bus distribution system

A hypothetical 4-bus DS is used to illustrate the CGT model
for system loss allocation and to evaluate the proposed method.
The circuit diagram of the test system is depicted in Figure 1, and
its actual line and load data are given in figure. As shown in
Figure 1, bus 1 acts as a substation and it is assumed that no load
is connected on it and voltage is regulated at specified value,
whereas loads are connected to buses 2, 3, and 4. To analyze and
comprehend the proposed mechanism, allocation of system
losses using base case has been considered. The number of
coalitions that participated in establishing a fair allocation of
losses is 7, and they are shown in Table 1. Due to a smaller
number of coalitions, it may be managed without incurring a
computational execution burden. So, for the given network, no
need to use the majority rule game for allocation.

Base values of test system are 11 kV and 1 MVA. After
execution of power flow, voltages on system buses are V1=(1 +
j0) pu; V2=(0.91533-j0.00572) pu; V3=(0.88127-j0.0096) pu; and
V4=(0.86939-j0.00947) pu. The total real losses in the system
are 0.335621 pu. The first stage in determining the
participation of consumer to system losses is to ascertain the
coalitions and their worth. Table 1 illustrates the coalitions
that have been formed, and worth corresponding to each
coalition.

Similarly, for each coalition, compute the Harsanyi dividend
based on the worth of the characteristic function.
Thus, λυ( 2{ }) � (−1)0 × 0.030825 � 0.030825;

λυ 3{ }( ) � −1( )0 × 0.034049 � 0.034049; λυ 4{ }( )
� −1( )0 × 0.068331 � 0.068331;

λυ 2, 3{ }( ) � −1( )2−1 × 0.030825 + −1( )2−1 × 0.034049

+ −1( )2−2 × 0.116096

� 0.051222;

λυ 2, 4{ }( ) � −1( )2−1 × 0.030825 + −1( )2−1 × 0.068331

+ −1( )2−2 × 0.164059

� 0.064903;

λυ 3, 4{ }( ) � −1( )2−1 × 0.034049 + −1( )2−1 × 0.068331

+ −1( )2−2 × 0.188664

� 0.086284;

λυ 2, 3, 4{ }( ) � −1( )3−1 × 0.0308245 + −1( )3−1 × 0.0340485

+ −1( )3−1 × 0.068331 + −1( )3−2 × 0.116096

+ −1( )3−2 × 0.164059 + −1( )3−2 × 0.188664

+ −1( )3−3 × 0.335615

� 0

Now, the share of losses of consumers connected to bus 2

is determined as xω2 �
�����
12+0.52√�����
12+0.52√ × 0.030825+�����

12+0.52√�����
12+0.52√ + ������

0.82+0.42√ × 0.051222 +
�����
12+0.52√�����

12+0.52√ + �����
12+0.52√ × 0.064903 + ���

12+√
0.52�����

12+0.52√ + ������
0.82+0.42√ + �����

12+0.52√
× 0�0.091734; the share of losses of consumers

connected to bus 3 is determined as xω3 �
������
0.82+0.42√������
0.82+0.42√ × 0.068331 +������

0.82+0.42√�����
12+0.52√ + ������

0.82+0.42√ × 0.051222 +
������
0.82+0.42√������

0.82+0.42√ + �����
12+0.52√ × 0.086284 +
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������
0.82+0.42√�����

12+0.52√ + ������
0.82+0.42√ +

�������
12 + 0.52

√
× 0 � 0.095163; and the share of losses

of consumers connected to bus 4 is determined as xω4 �
�����
12+0.52√�����
12+0.52√ ×

0.068331+
�����
12+0.52√�����

12+0.52√ + �����
12+0.52√ ×0.064903+

�����
12+0.52√�����

12+0.52√ + ������
0.82+0.42√ × 0.086284+�����

12+0.52√�����
12+0.52√ + ������

0.82+0.42√ +
�������
12 + 0.52

√
× 0 � 0.148724.

After estimating the shares of consumers in system losses, it is
required to determine whether or not they are fairly allocated by
establishing axioms.

The losses shared by the proposed method fulfil all of the key
axioms for fair game as specified in Section 2, as follows: By following
axiom 1, the proposed method has penalized the consumers for the
cause of system losses of a given DS in the game (N, υ)
i.e., xω2 � 0.091734> 0; xω3 � 0.095163> 0; and xω4 � 0.148724> 0.
By following axiom 2, the proposed method assigns individual
worth of losses such that the shared losses of consumers are non-
negative in the game (N, υ) as given in Table 1. By following axiom 3,
the proposed method obeys individual rationality in which the shared
losses of each consumer are greater than the losses created by the
individual consumers, i.e., xω2 � 0.091734≥ υ( 2{ }) � 0.030825; xω3 �
0.095163≥υ( 3{ })� 0.034049; and xω4 � 0.148724≥ υ( 4{ })� 0.068331.
Also, the proposed method follows the coalition rationality, described
by axiom 4, in which the sum of shared losses of consumers in a
coalition is greater than the loss when only those consumers are
presented in the same coalition, i.e., xω2 + xω3 � 0.186897≥ υ( 2, 3{ }) �
0.116096; xω2 + xω4 � 0.240458≥ υ( 2, 4{ }) � 0.164059; and xω3 + xω4 �
0.243887≥ υ( 3, 4{ }) � 0.188664. By following axiom 5, the proposed
method shares system losses calculated by the power flow algorithm
among consumers who participated in the game (N, υ) efficiently,
i.e., xω2 + xω3 + xω4 � 0.335615.

From the preceding results, it is clear that no consumer is
expected to agree to receive less than the consumer obtained
acting alone, as indicated by individual rationality, and
additionally, the payoff vector of the total system losses received
by the consumer, with the understanding that consumer i must
receive xωi , as indicated by efficiency. Imputation occurs when a
game fulfils both individual and coalitional rationalities. The stable
imputation is referred to as the core, or in other words, the core of
the game will remain stable if no coalition has the motivation or
ability to undermine the agreement on equitable distribution among
players. In given DS, imputation of the payoff vector xωi has been
stable through coalition S because shared losses have satisfied
coalition rationality. Moreover, this is an essential game because∑n

i�1υ( i{ })< υ(N) has been satisfied.
Because coalitional rationality is not a criterion for defining the

weighted Shapley value, the solution produced using the proposed
method does not necessarily belong to the core. However, depending
on the network architecture, the number of consumers, and the
manner in which power is distributed, the solution of the proposed
method may belong to the core.

Table 2 depicts the allocated losses (in kW) by the proposed
method compared to those of the other two methods. Because the
power consumption of buses 2 and 4 is identical, the pro-rata
method assigns identical losses. However, the proposed method
and the Shapley value method differentiate consumers based on
their marginal contributions to coalitions and thus assign different
losses than the pro-rata method does. However, in addition to
marginal contribution, the proposed method takes the weight of

the consumer into account, and hence the resulting value differs
from the Shapley value. Thus, as shown in Table 2, neither a
consumer located far from the substation nor a consumer located
close to the substation experiences economic overload as a result of
the proposed method.

As a result of the aforementioned analysis, it is clear that the
proposed method fulfils the agreement on unbiased system loss
allocation. Additionally, while the proposed method satisfies all of
the axioms necessary for equitable allocation, it may not fulfil
coalition rationality for specific networks. Apart from this, the
proposed method has an advantage over the Shapley value method
in that it bases loss allocation on the marginal contribution of
consumers to system losses as well as the probability of the
consumer drawing power in coalitions of their marginal contributions.

4.2 Test systems 2: 33-Bus and 69-bus
distribution systems

In this test system, 33-bus and 69-bus DSs have been
considered. Line and load data of 33-bus and 69-bus DSs were
obtained from (Atanasovski and Taleski, 2012) and (Savier and
Das, 2012), respectively. To reduce the system losses and improve
the voltage profile, DGs are optimally located and sized in a 33-bus
test system at bus numbers 7,17 and 32 with power injection of
(240 + j96)kVA, (400 + j160)kVA, and (400 + j100)kVA,
respectively. Base values for the test system are taken as
12.66 kV and 1 MVA. System real losses with the base case are
202.6768 kW whereas loss saving achieved is 119.4674 kW.
Similarly, for the 69-bus test system, DGs are optimally located
and sized at bus numbers 50, 61 and 64 with power injection of
(180 + j160)kVA, (990 + j720)kVA, and (210 + j140)kVA,
respectively. Base values for the test system are taken as
12.66 kV and 1 MVA. System real losses with the base case are
226.5886 kW whereas loss saving achieved is 191.1672 kW.

Table 3 depicts the loss allocated to consumers and the loss
saving to DGs of a 33-bus DS using all three methods. In the CGT
model, the total number of coalitions required for a 33-bus
(excluding bus-1) DS is 4.295 × 109. It is self-evident that a
computer system will take a long time to execute and will require
significantly more memory space in order to deal with this massive
number of coalitions for loss allocation. This paper has proposed a
way of resolving these intractable problems by employing a majority
rule game. By employing a majority rule game, the proposed method
includes only coalitions with 88% of all players, which indicates that
system losses associated with each coalition exceed 50% of system
losses associated with all participants. The results obtained by the
proposed method in Table 3 have accounted for 41,449 coalitions
with a value of ‘t’ (in the majority rule game) is 1.14. While it is true
that the proposed method requires some computing time to process
41,449 coalitions, this time will undoubtedly be far less than the time
required to execute 4.295 × 109 coalitions. Apart from the time
savings associated with computing, the proposed method
incorporates the principles of both the Shapley value and pro-
rata methods.

As shown in Table 3, the proposed method did not assign the
higher losses to the consumers with the large power rating nor did it
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assign equal losses to consumers with the same power rating in various
buses. Additionally, Table 3 details the allocation of loss savings to DGs.
Loss savings are used to reward DGs for their contributions to system
performance improvement. Each of the three techniques assigned
nearly identical loss savings to all connected DGs.

Table 4 shows the loss allocated to consumers and loss saving
allocated to DGs of a 69-bus DS using all three methods. The total
number of coalitions required for 69-bus DS is 2.951 × 1020, while
the proposed method requires 52,463 coalitions with a value of ‘t’ is
1.04. Using the majority rule game, the proposed method accounted
for only coalitions with at least 96% of total participants. The
remainder of the observations made about the 33-bus DS have
been followed by those about the 69-bus DS.

As a result of the foregoing test systems and discussion, it is
concluded that the proposed method may be used to any size of
realistic DSs without jeopardizing the consistency and fairness of
loss allocation.

5 Conclusion

This paper has proposed a new, simple, and effective
technique for allocating losses in radial DSs with DGs. The
proposed method has allocated system losses using a node-
oriented approach. It has employed weighted shapely value in
CGT for the allocation of system losses. It has developed by
integrating the fundamental principles of the electrical network
with the CGT model. The results obtained using the proposed
method satisfy the axioms of fairness in the sharing of system
losses. It combines the characteristics of both the Shapley value
and pro-rata methods. Hence, it distributes system losses more
fairly to consumers and DGs than either of these two methods.
From results of 33 and 69 bus test systems, it is observed that
when the number of participants increases, the proposed method
has offered a great deal of flexibility and adaptability through the
majority rule game. Therefore, the proposed method is applicable
and produce efficient results for practical DSs which contain
thousands of nodes and participants. The proposed technique has
the advantage of being applicable to modern DSs without
imposing an undue economic burden on consumers

irrespective of their power ratings. Additionally, it has
prompted DGs to infuse power into local DSs by giving a
desirable economic gain in exchange for their system
performance improvements.

Distribution system gets modernized by incorporating non-
linear loads and green energy technology which adversely affects
the system power flow and therefore losses. Furthermore, majority
of the time, DS is in imbalanced mode. In such environment,
allocation of system losses to various participants is challenged
and offer future scope for this work.
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