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It is important to design multi-energy supply systems optimally in consideration
of their operations for variations in energy demands. An approach for efficiently
solving such an optimal design problem with a large number of periods for
variations in energy demands is to derive an approximate optimal design solution
by time series aggregation. However, such an approach does not provide any
information on the accuracy for the optimal value of the objective function. In
this paper, an effective approach for time series aggregation is proposed to derive
an approximate optimal design solution and evaluate a proper gap between
the upper and lower bounds for the optimal value of the objective function
based on a mixed-integer linear model. In accordance with aggregation, energy
demands are relaxed to uncertain parameters and the problem for deriving an
approximate optimal design solution and evaluating it is transformed to a three-
level optimization problem, and it is solved by applying both the robust and
hierarchical optimization methods. A case study is conducted on a cogeneration
systemwith a practical configuration, and it turns out that the proposed approach
enables one to derive much smaller gaps as compared with those obtained by a
conventional approach.
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1 Introduction

Distributed multi-energy supply systems have been widespread in the commercial
sector. These systems have to flexibly cope with satisfying multiple energy demands
whose values and their ratios vary with season and time by activities at target districts
and buildings in the sector. It is also required for the systems to be designed so as to
reduce capital and operation costs, energy consumptions, and environmental impacts.
However, it is a hard task for designers to design the systems rationally and efficiently in
consideration of operations of constituent energy conversion and storage equipment for
variations in energy demands. For the purpose of designing the systems rationally and
efficiently, modeling and optimization are important issues, and some review papers have

Frontiers in Energy Research 01 frontiersin.org

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#editorial-board
https://doi.org/10.3389/fenrg.2023.1128681
https://crossmark.crossref.org/dialog/?doi=10.3389/fenrg.2023.1128681&domain=pdf&date_stamp=2023-07-05
mailto:ryokoyama@omu.ac.jp
mailto:ryokoyama@omu.ac.jp
https://doi.org/10.3389/fenrg.2023.1128681
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fenrg.2023.1128681/full
https://www.frontiersin.org/articles/10.3389/fenrg.2023.1128681/full
https://www.frontiersin.org/articles/10.3389/fenrg.2023.1128681/full
https://www.frontiersin.org/articles/10.3389/fenrg.2023.1128681/full
https://www.frontiersin.org/articles/10.3389/fenrg.2023.1128681/full
https://www.frontiersin.org/articles/10.3389/fenrg.2023.1128681/full
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Yokoyama et al. 10.3389/fenrg.2023.1128681

been published on these issues (Mancarella, 2014; Andiappan,
2017; Frangopoulos, 2018; Ringkjøb et al., 2018; Guepa et al., 2019;
Ganschinietz, 2021). In addition, some papers, which give guidelines
for modeling and optimization, have also been published (Rech,
2019; Kotzer et al., 2021).

One of the ways for the optimization-based design is to use
mathematical programming. Especially, as one of the most effective
approaches, the mixed-integer linear programming (MILP), has
been extensively utilized (Yokoyama and Shinano, 2015). This is
because it can use not only continuous but also integer decision
variables which express the load allocation and the selection,
numbers, and on/off status of operation, respectively, of the
equipment. In addition, it can use piecewise linear equations which
express non-linear performance characteristics of the equipment
approximately, when they are rather simple. However, MILP-based
optimal design problems result in strong NP-hard problems, which
cannot be solved in practical computation times (Goderbauer et al.,
2019).

In early years, when commercial MILP solvers were inefficient,
MILP-based optimal design problems formulated in several forms
were solved by allowing gaps between the upper bounds (UBs) and
lower bounds (LBs) for the optimal value of the objective function
(OF) obtained by MILP solvers to compromise only on deriving
proper feasible design solutions, or by setting limited numbers
of representative days and sampling times a priori in advance to
derive optimal design solutions (Horii et al., 1987; Yokoyama and
Ito, 2006; Lozano et al., 2009; Lozano et al., 2010; Carvalho et al.,
2011; Buoro et al., 2012; Voll et al., 2013a; Buoro et al., 2013;
Voll et al., 2013b; Piacentino et al., 2013; Zhou et al., 2013; Wakui
and Yokoyama, 2014). In addition, efforts have been made to obtain
approximate optimal design solutions in practical computation
times by combining the MILP with other optimization approaches
(Iyer and Grossmann, 1998; Yokoyama et al., 2002), or to derive
optimal design solutions by utilizing a hierarchical structure
of optimal design problems and conducting the optimization
calculation efficiently (Yokoyama et al., 2015). Even in recent
years, when commercial MILP solvers have become efficient
dramatically, it is still very hard to derive optimal design solutions
by setting large numbers of representative days and sampling
times for the purpose of considering variations in energy demands
in detail.

A practical approach of dealing with optimal design problems
in consideration of large numbers of periods for representative
days and sampling times is to reduce the numbers of periods
by aggregating them and derive approximate optimal design
solutions.This time series aggregation approachhas been extensively
utilized (Hoffmann et al., 2020; Teichgraeber and Brandt, 2022),
and the numbers of periods have been especially reduced by
aggregating representative days in many works (Domínguez-
Muñoz et al., 2011; Fazlollahi et al., 2014; Lythcke-Jørgensen et al.,
2016; Nahmmacher et al., 2016; Poncelet et al., 2017; Kotzur et al.,
2018; Schütz et al., 2018; Kannengießer et al., 2019; Scott et al., 2019;
Teichgraeber and Brandt, 2019; Zatti et al., 2019). However, the
validity of time series aggregation has only been investigated based
on the differences between the original and aggregated energy
demands and has not been investigated based on the differences
between the true and approximate optimal design solutions for the
original and aggregated energy demands, respectively.This is natural

because true optimal design solutions cannot be obtained, and thus,
the differences between the true and approximate optimal design
solutions cannot be evaluated. In addition, sensitivity analyses with
respect to the number of clusters for time series aggregation should
be conducted to investigate its effectiveness in terms of the accuracy
of the approximate optimal design solutions. However, comparison
can be made only among the solutions obtained with different
numbers of clusters.

To overcome the aforementioned defects of time series
aggregation, some works have focused not only on deriving
approximate optimal design solutions but also on evaluating UBs
and LBs for the optimal value of OF. Generally, although UBs can
be evaluated relatively easily corresponding to approximate optimal
design solutions, it is rather difficult to evaluate proper LBs close to
the optimal value of OF. For example, UBs have been evaluated by
solving only the optimal operation problems for the original energy
demands after obtaining the approximate optimal design solutions
for energy supply systems without storage units, but LBs have not
been evaluated (Lin et al., 2016; Bahl et al., 2017). In a revised work,
not only UBs but also LBs have been evaluated simultaneously
in deriving the approximate optimal design solutions (Bahl et al.,
2018). However, the LBs seem to be much smaller than the optimal
value of the OF, and the gaps between UBs and LBs seem to be large.
Thus, the number of clusters for time series aggregation has to be
increased to obtain proper LBs. In extreme cases, unless the LB is
evaluated for the original energy demands, it cannot coincide with
the UB, or the gap between the UB and LB cannot be zero. However,
as the number of clusters increases, the optimization problem for
deriving approximate optimal design solutions and evaluating LBs
approaches to the original optimal design problem, and thus, it
becomes very hard to be solved. Therefore, this approach seems to
include a contradiction. This approach has also been extendedly
applied to the optimal design of energy supply and daily/seasonal
storage systems (Baumgärtner et al., 2019a; Baumgärtner et al.,
2019b). In these works, to cover the drawback of LBs evaluated by a
similar approach, additional LBs have been evaluated by solving
the optimal design problem with the original energy demands
using commercial MILP solvers. However, for a similar reason, this
approach seems to include a contradiction.Therefore, the evaluation
of proper LBs has not been established for the approximate optimal
design based on time series aggregation. One of the reasons why
the gaps between UBs and LBs have been large is that the gaps
have been evaluated using different energy demands: the UBs have
been based on the original energy demands, while the LBs have
been based on the aggregated energy demands. If the same energy
demands are used to evaluate the gaps, it is expected that the gaps
may become much smaller. This has motived the work presented in
this paper.

In this paper, an effective approach for time series aggregation
is proposed to derive an approximate optimal design solution
and evaluate the gap between the UB and LB for the optimal
value of OF in an optimal design problem based on a mixed-
integer linear model. The evaluation of the UB is the same
as that used in the aforementioned approaches. However, an
essential difference is that the LB is not evaluated directly, but
the gap between the UB and LB is evaluated directly. As a
result, the LB is easily calculated by subtracting the gap from
the UB. The important point is that the gap is evaluated using
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the same energy demands. Thus, the gap is expected to become
much smaller, and the LB is expected to become close to the
optimal value of OF. Energy demands for clustered periods are
selected among the original energy demands for the original
periods included in the clustered periods, and the original optimal
design problem is transformed into a robust optimization one by
taking into account the energy demands as uncertain parameters
(Yokoyama et al., 2018). An approximate optimal design solution
is derived as the optimal solution of this robust optimization
problem, and the gap is simultaneously evaluated as the minimum
of the maximum regret in the OF. For systems with complex
configurations, it may be difficult to apply the robust optimization
method directly because it may needs long computation times.
Thus, a hierarchical optimization method is applied to some
optimization calculations necessary in the robust optimization
method (Yokoyama et al., 2021). To show how the proposed
approach is effective, a case study is carried out on the optimal
design of a cogeneration system with a practical configuration using
the robust optimization method combined with the hierarchical
optimization method.

2 Optimal design problem of energy
supply systems

Since a purpose of this paper is to propose a novel approach for
time series aggregation, the optimal design problem of an energy
supply system treated in this paper is conventional. This optimal
design problem is described in brief as follows by taking its original
version from the work of Yokoyama et al. (2019b) and modifying it
slightly for the purpose of this paper.

“A typical year is divided intoM periods to consider the seasonal
and hourly variations in energy demands, and each period is
identified by the subscript or argument m (m = 1,2,⋯,M). Energy
demands Y(m) are estimated certainly at each period. First, a
super structure for an energy supply system, which is composed
of all the units of the equipment considered as candidates for
selection, is created to match the energy demand requirements.
Here, it is assumed that energy storage units are not included in
the system. Then, a real structure is designed by selecting some
units of the equipment from the candidates. Furthermore, some
units of the equipment are operated to satisfy energy demands
at each period. Here, it is assumed that transient characteristics
of the equipment are not considered. The selection, capacities,
and numbers of equipment, as well as the maximum demands of
utilities, such as purchased electricity and city gas, are considered
as integer (including binary) design variables (DVs) x. The number
of equipment at on status of operation and the load allocation of the
equipment and consumptions of utilities are considered as integer
and continuous operation variables (OVs) z(m). The annual total
cost is adopted as the OF to be minimized f. It is evaluated as the
sum of the annual capital cost of the equipment and the annual
operational cost of utilities.”

Here, it should be noted that although a fundamental part
of the approach proposed as follows allows that DVs may be
only integer, only continuous, or both integer and continuous,
the hierarchical optimization method requires that DVs must be
integers.

To clearly show the methodology of the proposed approach as
follows, the aforementioned optimal design problem is expressed as
the following simple form:

min
x

min
z

f (x, Y, z) , (1)

where Y and z are the vectors comprising Y(m) and z(m),
respectively, for the periods, and are defined as

Y = (Y(1)T, Y(2)T, ⋯, Y(M)T)T

z = (z(1)T, z(2)T, ⋯, z(M)T)T
}
}
}
. (2)

3 Conceptual comparison of
approaches for time series
aggregation

Before showing the methodology of the proposed approach
theoretically, it is compared with the conventional approaches
conceptually, which is useful for grasping their features, differences,
and relative advantages/disadvantages.

Figure 1 shows how energy demands are treated in these
approaches. Although multiple types of energy demands such as
electricity, cooling, and heating can be treated simultaneously in any
approach, only a type of energy demands is shown in this figure to
avoid complexity. Figures (a) to (d) show the following cases:

• Case I: Optimal design using the original energy demands
• Case II: Approximate optimal design by the conventional
approach for time series aggregation using the average energy
demands
• Case III: Approximate optimal design by the conventional
approach for time series aggregation using the lowest energy
demands
• Case IV:Approximate optimal design by the proposed approach

In addition, Figure 2 shows the values of the OF obtained in these
cases. The numbers 1 to 3 attached in cases III and IV denote the
orders in which the UB, LB, and their gap are evaluated.

Case I corresponds to the original optimal design problem using
the original energy demands described in chapter 2. If this problem
can be solved, the value of the OF will be the true optimal one. Case
II corresponds to an approximate optimal design problem using the
energy demands averaged for aggregated periods. Even if the value
of the OF is obtained by solving this problem, it cannot be compared
with the true optimal one; that is, it cannot be judged whether and
how the value of the OF is larger or smaller than the true optimal
one. Case III corresponds to an approximate optimal design problem
using the lowest energy demands selected for aggregated periods
(Bahl et al., 2018). If the value of the OF is obtained by solving this
problem, it is guaranteed to be smaller than the true optimal one.
This means that it can be an LB for the true optimal value of the OF.
The approximate optimal design solution derived simultaneously is
used to evaluate the value of theOF for the original energy demands,
which becomes a UB for the true optimal value of the OF. However,
since the lowest energy demands are used, it is easily guessed that the
LB can be much smaller than the true optimal value of the OF, and
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FIGURE 1
Treatment of energy demands by time series aggregation: (A) Case I;
(B) Case II; (C) Case III; and (D) Case IV.

FIGURE 2
Change in the value of OF by time series aggregation.

resultantly, the gap between UB and LB can be much large. Thus, it
cannot be judged whether the approximate optimal design solution
is appropriate or not. In addition, to increase the LB for it to be
close to the true optimal value of the OF, the number of clusters for
aggregated periods must be increased. However, the approximate
optimal design solution cannot coincide with the true optimal one,

unless the lowest energy demands coincide with the original energy
demands.

Case IV corresponds to an approximate optimal design problem
by the proposed approach. In comparison with the aforementioned
conventional approaches using the energy demands set in advance,
the proposed approach does not fix the energy demands but can
select them from their candidates for the original energy demands.
In addition, even if anyUB andLB are unknown, a gap between them
can be evaluated and an approximate optimal design solution can
be derived. To realize this, the energy demands are selected so as to
keep the true optimal value of the OF within the UB and LB and
minimize the gap between them. The approximate optimal design
solution is used to evaluate the value of theOF for the original energy
demands, which becomes a UB for the true optimal value of the OF.
This is similar to the conventional approach in case III. Finally, an
LB is obtained from the UB and gap.Thus, since the gap between the
UB and LB is minimized, the LB can be expected to be much larger
and closer to the true optimal value of the OF, even a small number
of clusters for aggregated periods. In addition, there is a possibility
that the approximate optimal design solution may coincide with the
true optimal one even using aggregated energy demands.Therefore,
it is expected that it can be judged whether the approximate optimal
design solution is appropriate or not.

In the next section, the proposed approach is described
theoretically.

4 Derivation and evaluation of
approximate optimal design solutions

It is assumed that the number of periods M is large, and thus,
the numbers of the OVs, especially integer OVs, and constraints are
large in the optimal design problemof Eq. 1. In this case, it is difficult
to derive the optimal design solution and evaluate the optimal value
of the OF even by a commercial MILP solver.

4.1 Evaluation of design solutions

First, a design solution given a priori is evaluated; that is, it is
evaluated how such a design solution is far from or close to the
optimal one in terms of the value of the OF.

Although Eq. 1 may not be solved directly, the value of the OF
for the optimal design solution of Eq. 1 is expressed as follows:

F* =min
x

min
z

f (x, Y, z) . (3)

On the other hand, if the values of the DVs x̃ for a design solution
are given, the corresponding value of the OF is expressed as follows:

̃F =min
̃z
f (x̃, Y, ̃z) . (4)

This optimal operation problem, under the given values of the
DVs x̃, can be divided into the ones for the respective periods in
consideration of the independence of the OVs and constraints, and
they can be solved easily. Then, the difference in the value of the OF
is expressed as follows:

R* = ̃F− F*

=min
̃z
f (x̃, Y, ̃z) −min

x
min
z

f (x, Y, z) . (5)
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However, since the second term on the right side of Eq. 5 cannot be
evaluated, the difference of Eq. 5 can also not be evaluated.

Here, certain energy demands Y used in Eq. 5 are replaced with
relaxed energy demands y which include Y , and the maximum of
Eq. 5 with respect to y is evaluated as follows:

R̃ =max
y
(min
̃z
f (x̃, y, ̃z) −min

x
min
z

f (x, y, z)) . (6)

Since energy demands Y are relaxed to y and the most inconvenient
values are used as y, the following inequality is satisfied between
Eqs. 5, 6:

0 ≤ R* ≤ R̃. (7)

This means that if R̃ is evaluated by Eq. 6 in place of R*, it is certified
that R* cannot be larger than R̃. Thus, R̃ cannot be underestimated
as an approximate difference for Eq. 5. Then, from Eqs. 5, 7, the
following inequalities are satisfied for the optimal value of the OF:

̃F− R̃ ≤ ̃F−R* = F* ≤ ̃F. (8)

These inequalities mean that even if the optimal value of the OF F*
is unknown, its LB ̃F− R̃ can be obtained. From these inequalities,
it may be judged how the given design solution x̃ is far from or
close to the optimal one. For this purpose, Y should be relaxed to
y appropriately to reduce the differences between R̃ and R* as well as
̃F− R̃ and ̃F−R*.

4.2 Aggregation of periods and energy
demands

Since the operations of maximization and minimization have to
be executed hierarchically in the optimization problem of Eq. 6, it
becomes more complex than the ordinary optimization problem of
Eq. 3, and it cannot be solved easily. Thus, time series aggregation
is applied to Eq. 6; that is, all the periods are categorized into
clusters of periods based on energy demands. In accordance with
this clustering, the energy demands, OVs, and constraints are made
common in each cluster of periods. As a result, the optimization
problem of Eq. 6 is reduced and becomes easier to be solved.

As one of the general clusteringmethods, the k-medoidsmethod
has been applied to time series aggregation in some previous works,
and it is also applied to that in this paper (Vinod, 1969). The
indices m (m = 1,2,⋯,M) for the original periods are categorized
into L sets or clusters of periods Al (l = 1,2,⋯,L). First, the Euclid
distance based on the energy demands for any two different original
periods is calculated. Then, under the number of clusters L given as
a condition, the Euclid distance between a representative period as
the medoid and another period is evaluated in each cluster, and the
clusters are determined tominimize the sum of the Euclid distances.
If it is inappropriate to categorize some periods into a same cluster,
constraints are added to categorize those periods into different
clusters.This optimization problem is formulated as an integer linear
programming one and can be solved using a commercial MILP
solver.

With this time series aggregation of periods, the relaxed energy
demands y are related with the original energy demands Y as
follows:

y (m) ∈ {Y (m′) | ∀m′ ∈ Al} (∀m ∈ Al; l = 1,2,…,L) . (9)

This means that the energy demands are common in each cluster of
periods. Then, the operational strategies can also be made common
by optimizing them. Thus, the energy demands and OVs for each
cluster of periods are expressed as follows:

y′ (l) = y (m)

z′ (l) = z (m)

̃z′ (l) = ̃z (m)

}}}}
}}}}
}

(∀m ∈ Al; l = 1, 2, ⋯, L) , (10)

where ()′ denotes the values of energy demands and OVs after time
series aggregation. From this relation, the energy demands after time
series aggregation are selected only among the values before the time
series aggregation as follows:

y′ (l) ∈ {Y (m) | ∀m ∈ Al} (l = 1, 2, ⋯, L) . (11)

This restraint minimizes the region of the energy demands y, and R̃
of Eq. 6 decreases as much as possible and approaches to R*.

As a result, the optimization problem of Eq. 6 is reduced to the
following equation:

R̃′ =max
y′
(min
̃z′
f (x̃, y′, ̃z′) −min

x
min
z′

f (x, y′, z′)) , (12)

where the vectors y′, z′, and ̃z′ are composed of y′(l), z′(l), and ̃z′(l),
respectively, as follows:

y′ = (y′(1)T, y′(2)T, ⋯, y′(L)T)T

z′ = (z′(1)T, z′(2)T, ⋯, z′(L)T)T

̃z′ = ( ̃z′(1)T, ̃z′(2)T, ⋯, ̃z′(L)T)T

}}}}
}}}}
}

. (13)

y′ is only a concrete example of y. Thus, Eqs. 7, 8 remain valid even
if R̃′ of Eq. 12 is used in place of R̃ of Eq. 6.

4.3 Derivation of approximate optimal
design solutions

Next, an approximate optimal design solution is derived and
evaluated. Based on the aforementioned result, x̃ is treated as DVs,
and R̃′ of Eq. 12 is minimized with respect to x̃ as follows:

R̃″ =min
x̃

max
y′
(min
̃z′
f (x̃, y′, ̃z′) −min

x
min
z′

f (x, y′, z′)) . (14)

Eqs. 7, 8 remain valid even if R̃″ of Eq. 14 is used in place of
R̃ of Eq. 6. Through this optimization, R̃″ can be decreased as
much as possible. According to Eqs. 7, 8, this means that R̃″ and
̃F− R̃″ approach R* and ̃F−R*, respectively, as much as possible. If

R̃″ and ̃F− R̃″ are close to zero and ̃F, respectively, the unknown
optimal value of the OF F* is bounded tightly by their UB and LB,
̃F and ̃F− R̃″, respectively, which are close to each other. Thus, it

is guaranteed that the UB ̃F is a suitable approximate value for F*
and that x̃ is a suitable approximate optimal design solution. In
addition, if R̃″ = 0, it is certified that R* = 0 and F* = ̃F, and thus, the
derived approximate optimal design solution x̃ is certified to be the
optimal one.

4.4 Consideration of flexibility in energy
supply

The flexibility or feasibility in energy supply is not discussed
in Section 4.1, Section 4.2, and Section 4.3. Since the aggregated
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energy demands differ from the original energy demands, design
solutions x̃ and x may not satisfy the original energy demands.
Thus, flexibility has to be considered for both the design solutions
x̃ and x. As stated in the next section, Eqs. 12, 14 are solved by
partly modifying the procedures proposed for the robust optimal
design of energy supply systems under uncertain energy demands
based on amixed-integer linearmodel. In this robust optimal design,
the flexibility is secured for all the possible values of the uncertain
energy demands by introducing another objective function, which
expresses the infeasibility in energy supply as a penalty term, and this
objective function is minimized or made zero prior to the original
objective function (Yokoyama et al., 2018). In this paper, the same
approach is adopted to secure flexibility for the original energy
demands. A concrete formulation is omitted here.

5 Solutions of optimization problems

5.1 Application of the robust optimization
method

The optimization problems of Eqs. 12, 14 are bi-level and three-
level MILP ones, respectively. The former has the hierarchical
maximization and minimization operations with respect to the
energy demands and OVs, respectively. The latter adds the
minimization operation with respect to the DVs. Thus, it is difficult
to solve these problems using the ordinary optimization methods.
Here, they are solved by partly modifying the procedures proposed
for the robust optimal design of energy supply systems under
uncertain energy demands based on a mixed-integer linear model.
Here, only a summary of the solutions is described as follows.
For the details of the robust optimal design, refer to the work
of Yokoyama et al. (2018). A flow diagram for the solutions is
shown in Figure 3, where the inner and outer loops correspond
to the solutions of the optimization problems of Eqs. 12, 14,
respectively.

5.1.1 Evaluation of design solutions
The optimization problem of Eq. 12 is solved as follows. First,

the values of energy demands y′ in Eq. 12 are assumed, and
Eq. 12 is divided into two MILP problems of the first and second
terms in the parentheses, which can be solved independently
using an ordinary commercial MILP solver. An LB for R̃′ of
Eq. 12 and candidate values of the integer OVs in ̃z′ are obtained
by this procedure. Second, minimization with respect to the
integer and continuous OVs in ̃z′ is conducted by selecting the
values of the integer OVs among the ones obtained in evaluating
LBs and by applying the duality theorem, respectively. In the
original robust optimal design based on a mixed-integer linear
model, the Karush–Kuhn–Tucker conditions have been used for
minimization with respect to the continuous OVs. However, binary
variables have to be added to linearize the complementarity
condition by the Fortuny-Amat–McCarl approach (Fortuny-Amat
and McCarl, 1981), which can lead to long computation times.
Here, minimization with respect to the continuous OVs is converted
to maximization with respect to their dual variables based on the
duality theorem. Since the energy demands after the time series
aggregation of Eq. 11 can be expressed by binary variables, the

FIGURE 3
Flow diagram for solutions of optimization problems of Eqs. 12, 14.

products of these dual and binary variables are linearized by adding
linear inequalities by the Glover approach (Glover, 1975). Thus,
this conversion is effective to solve such a type of bi-level MILP
problems (Zare et al., 2019) and has been applied to a bi-level linear
programming problem for the robust optimal design based on a
linear model in consideration of its features (Yokoyama et al., 2014).
The resultant optimization problem is also an MILP one, which can
be solved using an ordinary commercial MILP solver. A UB for R̃′

of Eq. 12 and candidate values of the energy demands y′ for the next
iteration are obtained by this procedure. Through these procedures,
UBs and LBs for R̃′ of Eq. 12 are evaluated alternately and repeatedly
until they coincide with each other.

5.1.2 Derivation of approximate optimal design
solutions

The optimization problem of Eq. 14 is solved as follows. First,
the values of the DVs x̃ in Eq. 14 are assumed, and then, Eq. 14 is
reduced to Eq. 12, which can be solved as mentioned previously. A
UB for R̃″ of Eq. 14 and candidate values of the energy demands y′
are obtained by this procedure. Second, Eq. 14 is relaxed by selecting
the values of y′ among the ones obtained in evaluating UBs. This
optimization problem results in an MILP problem, which can be
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solved using an ordinary commercial MILP solver. An LB for R̃″ of
Eq. 14 and candidate values of the DVs x̃ for the next iteration are
obtained by this procedure. Using these procedures, UBs and LBs
for R̃″ of Eq. 14 are evaluated alternately and repeatedly until they
coincide with each other.

5.2 Application of the hierarchical
optimization method

As mentioned previously, three MILP problems of different
types have to be solved repeatedly to solve the optimization problem
of Eq. 12. Also, another MILP problem of a different type has to be
solved repeatedly to solve the optimization problem of Eq. 14. One
of these four MILP problems has only the OVs, and it can be solved
easily. However, three of them have both the DVs and OVs, and
they cannot be solved easily when the configuration of the energy
supply system is complex and the number of periods is still large,
even after time series aggregation. This is because the OVs for all
the periods are related through the DVs and the problem can be
large scale. A hierarchical MILP method has been proposed to solve
the ordinary optimal design problems efficiently (Yokoyama et al.,
2015). In addition, this method has been applied to the robust
optimal design (Yokoyama et al., 2021). In this paper, the method
is applied to solve the three MILP problems with both the DVs
and OVs. Since the three MILP problems are of different types,
the original hierarchical MILP method is applied to each problem
without and with its modification. For the details of the hierarchical
MILP method and its application to the robust optimal design, refer
to the work of Yokoyama et al. (2015) and Yokoyama et al. (2021).

6 Case study

6.1 Input data

Agas turbine cogeneration systemwith a practical configuration
for district energy supply is dealt with in the case study, and
the proposed approach is applied to its optimal design. The
configuration of this system is shown in Figure 4. Since another
purpose of this paper is to show the effectiveness of the proposed
approach for time series aggregation, the system treated for the case
study is conventional, and not only the optimal but also the 2nd
to 1000th best design solutions have been known by the work of
Yokoyama et al. (2019a). The conditions for the optimal design are
described in brief as follows by taking its original versions from
this reference and modifying them slightly for the purpose of this
paper.

“The super structure for the gas turbine cogeneration
system is composed of gas turbine generators (GTs), waste heat
recovery boilers (BWs), gas-fired auxiliary boilers (BGs), electric
compression refrigerators (REs), steam absorption refrigerators
(RSs), a receiving device for purchasing electricity (EP), and pumps
for supplying cold water (PCs). The capacities for candidates
of the equipment for selection are shown together with their
representative performance characteristic values in Table 1. The
maximum demands of purchased energy are selected among their
discrete values. The annual total cost is adopted as the objective

function.The capital unit costs of the equipment are shown together
with the unit costs for demand and energy charges of purchased
energy in Table 2. Other design conditions are summarized in
Table 3”.

Here, Tables 1–3 are the ones included in the work of Yokoyama
et al. (2019a). A part of the formulation of this optimal design
problem is described in Supplementary Appendix SA1, and a
set of input data for the optimization calculation is shown in
Supplementary Appendix SA2.

Seasonal and hourly variations in electricity, cold water, and
steam demands estimated originally are shown in green lines in
Figures 5A–C, respectively. The number of the clusters for periods
is changed as L = 5 to 50, and the periods and energy demands are
aggregated under each value of L. Since the unit costs for energy
charge of purchased electricity are different in summer and other
seasons, the periods in summer and other seasons are categorized
into different clusters. In addition, the operation of refrigerators
is necessary and unnecessary for non-zero and zero cold water
demands, respectively, and the periods inmid-season with non-zero
and zero cold water demands are categorized into different clusters.

Since the system configuration is rather complex, the
optimization calculation by the proposed approach is conducted
with the aid of the hierarchical optimization method. To show how
the proposed approach is effective, the values of DVs as well as UBs
and LBs for the optimal value of the OF are also derived by the
conventional approach proposed by Bahl et al. (2018) and modified
slightly. In this approach, the energy demands for clustered periods
which minimize the OF are adopted, and the values of DVs x̃ and
an LB F̃ for the unknown optimal value of the OF F* are obtained
by solving the following optimization problem:

F̃ =min
x̃

min
y′

min
z̃′

f (x̃, y′, z̃′) . (15)

Thismethod can increase the LB even slightly as compared with that
obtained by Bahl et al. (2018). Although the optimization problem
of Eq. 15 includes the DVs and OVs, it can be solved easily because
of the aggregated periods and energy demands. The flexibility or
feasibility in the energy supply for the original energy demands is
secured by the approach stated in Section 4.4. In addition, a UB ̃F
for the unknown optimal value of theOF F* is determined by solving
the following optimization problem:

̃F =min
z̃

f (x̃, Y, z̃) . (16)

This is the optimal operation problem under the given values of the
DVs x̃, and it can be solved easily.

IBM ILOGCPLEXOptimization Studio Ver. 12.10.0 is used as a
commercial MILP solver to execute all the optimization calculations
necessary for the proposed and conventional approaches on an
iMac Pro with Intel Xeon W processor (10 cores and 3.0 GHz)
(IBM Corporation, 2019).

6.2 Results and discussion

6.2.1 Aggregation of periods and energy
demands

First, the results obtained by aggregating periods and energy
demands are shown. Figure 6 shows the load duration curves of the
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FIGURE 4
Configuration of the gas turbine cogeneration system.

maxima and minima for the aggregated energy demands in case
of the number of clusters L = 20 as an example. The maxima and
minima for the aggregated energy demands are arranged in the
descending order of the average energy demands. This figure also
includes the original energy demands arranged in their descending
order in each cluster. Figures (A) to (C) correspond to the electricity,
cold water, and steam demands, respectively. As a result, the orders
of the clusters in figures (A) to (C) differ from one another.
Figures 5A–C also include seasonal and hourly variations in the
maxima andminima for the aggregated energy demands. From these
figures, it turns out that although the widths between the maxima
and minima for the aggregated energy demands and the numbers
of periods in clusters depend on clusters, clustering is conducted
appropriately in consideration of the magnitudes of the original
electricity, cold water, and steam demands. Thus, the maxima
and minima for the aggregated energy demands are determined
appropriately.

6.2.2 Evaluation of design solutions
Next, the results obtained by evaluating LBs for the optimal

value of the OF are shown in three cases, namely, A to C, when
the number of clusters is changed as L = 5 to 50. Table 1 shows
the values of the DVs for the design solutions given a priori in
these cases and the optimal design solution. Here, the optimal
design solution has been obtained by Yokoyama et al. (2019a).
In the order of cases, A to C, the design solutions approach
the optimal one. The values of the OF for the design solutions
are evaluated by solving the optimal operation problem of Eq. 4
for the original energy demands, using the given values of the
DVs. The LBs for the optimal value of the OF in the proposed
approach are obtained by Eq. 8 using the gaps between UBs and
LBs obtained by Eq. 12. The LBs for the optimal value of the OF
in the conventional approach are calculated by Eq. 15. The values
of the OF by Eq. 4 for the design solutions in cases A to C are ̃F =
1.5249, 1.4875, and 1.4667× 109 yen/y, respectively. Table 2 shows

the LBs for the optimal value of the OF in cases A to C evaluated
by the proposed approach and those in all the cases evaluated by
the conventional approach. Figures 7A–C also show these values
in cases A to C, respectively. Here, the increase or decrease rate
in the OF is adopted as the longitudinal axis with its reference
value F* = 1.4513× 109 yen/y corresponding to the optimal design
solution.

Since the design solutions are given a priori, the values of the OF
are constant regardless of the number of clusters L in the transverse
axis. The LBs evaluated by the proposed approach are very close to
the optimal value of the OF in most of the design solutions and the
numbers of clusters, and the validity of the proposed approach is
clarified. As the aggregation rate becomes high and the number of
clusters decreases, the LB tends to decrease and becomes far from the
optimal value of the OF. However, as the design solutions approach
the optimal one, this tendency becomes weak. This suggests that
the proposed approach may derive suitable approximate optimal
design solutions with the UBs and LBs, which tightly bound the
optimal value of the OF. On the other hand, the LB evaluated by
the conventional approach increases with the number of clusters and
approaches the optimal value of the OF. However, the LBs evaluated
by the conventional approach are much smaller than those by the
proposed approach in all the numbers of clusters. This feature does
not depend on the design solutions because the LBs are evaluated
independently of the design solutions and dependently only on the
energy demands.

6.2.3 Derivation of approximate optimal design
solutions

Next, the results obtained by deriving the approximate optimal
design solutions and evaluating UBs and LBs for the optimal value
of the OF are shown, when the number of clusters is changed
as L = 5 to 50. Tables 3, 4 show the values of the DVs for the
approximate optimal design solutions obtained by the proposed
and conventional approaches, respectively, and the optimal design
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FIGURE 5
Seasonal and hourly variations in original and aggregated energy
demands (L = 20): (A) electricity; (B) cold water; and (C) steam.

FIGURE 6
Load duration curves for the original and aggregated energy demands
(L = 20): (A) electricity; (B) cold water; and (C) steam.

TABLE 1 Values of DVs for design solutions.

Candidate, number, and capacity of equipment Utility maximum demand

Case GT and BW BG RE RS EP Electricity City gas

MW MW ×103 Nm3/h

A #10× 2 #3× 2 #4× 1 #3× 3 11.0 11.0 3.5

B #10× 3 #1× 1 #4× 1 #4× 3 5.0 5.0 4.5

C #10× 3 #1× 1 #2× 1 #3× 4 4.0 4.0 4.5

Optimal #10× 3 #1× 1 #1× 1 #3× 4 4.0 4.0 4.5
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TABLE 2 LBs for the optimal value of OF for design solutions.

×109 yen/y

Number of Proposed approach Conventional

clusters for LB by Eq. 8 Approach

periods ̃F− R̃′ LB by Eq. 15

Case A Case B Case C F̃

5 1.4110 1.4402 1.4504 1.2744

10 1.4424 1.4465 1.4509 1.3539

15 1.4424 1.4465 1.4509 1.3824

20 1.4496 1.4486 1.4512 1.3978

25 1.4501 1.4496 1.4512 1.4144

30 1.4501 1.4499 1.4512 1.4256

35 1.4501 1.4502 1.4512 1.4344

40 1.4503 1.4502 1.4512 1.4411

45 1.4503 1.4502 1.4513 1.4442

50 1.4512 1.4512 1.4513 1.4469

solution. The UBs for the optimal value of the OF in the proposed
and conventional approaches are evaluated by solving the optimal
operation problems of Eqs. 4, 16 for the original energy demands,
using the values of the DVs for the approximate optimal design
solutions obtained by Eqs. 14, 15, respectively. The LBs for the
optimal value of the OF in the proposed approach are calculated by
Eq. 8 using the gaps between UBs and LBs obtained simultaneously
in deriving the approximate optimal design solutions. The LBs
for the optimal value of the OF in the conventional approach are
calculated by Eq. 15. Table 5 shows the UBs and LBs for the optimal
value of the OF corresponding to the approximate optimal design
solutions obtained by the proposed and conventional approaches.
Figure 8 shows these values. Here, the increase or decrease rate
in the OF is adopted as the longitudinal axis with its reference
value F* = 1.4513× 109 yen/y corresponding to the optimal design
solution.

The optimal design solutions are obtained as the approximate
ones in cases of L = 10 to 50 by both the proposed and conventional
approaches, and thus, the UBs coincide with the optimal value of
the OF. In case of L = 5, the approximate optimal design solutions,
different from the optimal one, are derived by both the proposed
and conventional approaches. Although the UB obtained by the
conventional approach is much larger than the optimal value of the
OF, the one obtained by the proposed approach is only slightly larger.
According to Yokoyama et al. (2019a), the approximate optimal
solution obtained by the conventional approach is inferior to the
1000th best solution, while the one obtained by the proposed
approach is the 2nd best solution. On the other hand, the LBs
obtained by the proposed approach differ significantly from those by
the conventional approach, which are the same as those in Figure 7.
In the proposed approach, the LBs coincide with the UBs in cases of
L = 10 to 50, and thus, the optimality of the approximate optimal
design solutions is guaranteed. In addition, the gap between the
UB and LB is very small, even in the case of L = 5, and thus,

FIGURE 7
Values of OF and LBs for the optimal value of OF evaluated using
design solutions: (A) Case A; (B) Case B; and (C) Case C.

it is guaranteed that the approximate optimal design solution is
very close to the optimal one. This is because the gaps between
UBs and LBs are evaluated directly using the aggregated energy
demands. In the conventional approach, however, the gap decreases
with an increase in the number of clusters, but the UBs and LBs
never coincide with each other. This is because the UBs and LBs are
evaluated using different energy demands. As a result, if time series
aggregation is applied, the UBs and LBs cannot coincide with each
other. For example, the LB in case of L = 50 by the conventional
approach is smaller than that in case of L = 5 by the proposed
approach.Therefore, to guarantee a samedegree of gap, the proposed
approach can heighten the aggregation rate as compared with the
conventional approach.
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TABLE 3 Values of DVs for the approximate optimal design solutions by the proposed approach.

Number of Candidate, number, and capacity of equipment Utility maximum demand

clusters for GT and BW BG RE RS EP Electricity City gas

periods MW MW ×103 Nm3/h

5 #10× 3 #2× 1 #1× 1 #3× 3 4.0 4.0 4.5

10–50 #10× 3 #1× 1 #1× 1 #3× 4 4.0 4.0 4.5

Optimal #10× 3 #1× 1 #1× 1 #3× 4 4.0 4.0 4.5

TABLE 4 Values of DVs for the approximate optimal design solutions by the conventional approach.

Number of Candidate, number, and capacity of equipment Utility maximum demand

clusters for GT and BW BG RE RS EP Electricity City gas

periods MW MW ×103 Nm3/h

5 #10× 3 #1× 2 #4× 1 #4× 3 6.0 6.0 4.5

10–50 #10× 3 #1× 1 #1× 1 #3× 4 4.0 4.0 4.5

Optimal #10× 3 #1× 1 #1× 1 #3× 4 4.0 4.0 4.5

TABLE 5 UBs and LBs for the optimal value of OF for the approximate
optimal design solutions.

×109 yen/y

Number of Proposed approach Conventional approach

clusters for UB by Eq. 4 LB by Eq. 8 UB by Eq. 16 LB by Eq. 15

periods ̃F ̃F− R̃″ ̃F F̃

5 1.4518 1.4509 1.5168 1.2744

10 1.4513 1.4513 1.4513 1.3539

15 1.4513 1.4513 1.4513 1.3824

20 1.4513 1.4513 1.4513 1.3978

25 1.4513 1.4513 1.4513 1.4144

30 1.4513 1.4513 1.4513 1.4256

35 1.4513 1.4513 1.4513 1.4344

40 1.4513 1.4513 1.4513 1.4411

45 1.4513 1.4513 1.4513 1.4442

50 1.4513 1.4513 1.4513 1.4469

6.2.4 Computation times for optimization
calculations

Finally, the computation times for the optimization calculations
in the proposed approach are investigated, and their examples
are shown here. The numbers of clusters for periods L = 10,
30, and 50 are selected as examples. In addition, the values of
the DVs for the design solutions given a priori in case B are
selected as the initial values of the DVs to derive the approximate
optimal design solutions. Tables 6a–c show the total and breakdown
of the computation times for L = 10, 30, and 50, respectively.

FIGURE 8
UBs and LBs for the optimal value of OF evaluated using the
approximate optimal design solutions.

Since the optimization problems of Eqs. 12, 14 are solved as
shown in Figure 3, the breakdown of the computation times
is shown according to the flow of the solutions. Only the 1st
outer iteration corresponds to the solution of Eq. 12 to evaluate
the design solutions, and the whole corresponds to the solution
of Eq. 14 to derive the approximate optimal design solutions.
The computation times to evaluate LB for R̃′ and LB for R̃″

are relatively short and decrease with a decrease in L. This is
because the number of periods decreases. On the other hand, the
computation times to evaluate UB for R̃′ are relatively long and
tend to increase with a decrease in L. This is because although the
number of periods decreases, the number of candidate values of
the energy demands in each period increases, which complicates
the corresponding MILP problem. In addition, the numbers of
the inner and outer iterations tend to increase with a decrease in
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TABLE 6 Computation times for optimization calculations in the proposed approach: (a) L = 10; (b) L = 30; and (c) L = 50.

Table 6a. L = 10

s

Outer iteration Inner iteration UB for R̃″ LB for R̃″ Total

LB for R̃′ UB for R̃′ Sub-total

1st 1st 11.06 108.78 506.87 11.89 518.76

2nd 11.52 174.08

3rd 9.55 191.88

2nd 1st 8.98 73.60 639.23 18.26 657.49

2nd 10.61 249.75

3rd 9.31 286.98

Total 61.03 1,085.07 1,146.10 30.15 1,176.25

Table 6b. L = 30

s

Outer iteration Inner iteration UB for R̃″ LB for R̃″ Total

LB for R̃′ UB for R̃′ Sub-total

1st 1st 21.17 36.56 199.91 30.57 230.48

2nd 28.91 33.59

3rd 42.77 36.91

2nd 1st 20.00 37.44 57.44 55.37 112.81

Total 112.85 144.50 257.35 85.94 343.29

Table 6c. L = 50

s

Outer iteration Inner iteration UB for R̃″ LB for R̃″ Total

LB for R̃′ UB for R̃′ Sub-total

1st 1st 38.64 44.89 83.53 50.37 133.90

2nd 1st 35.19 41.14 76.33 95.89 172.22

Total 73.83 86.03 159.86 146.26 306.12

L. For comparison, the optimal design problem with the original
energy demands for 72 periods is solved by the commercial MILP
solver only. The UBs and LBs do not coincide even in a long
computation time. For example, the UBs and LBs are 1.4513 and
1.4481× 109 yen/y, respectively, and their gap 0.22% remains in
1,200 s, which is longer than the total computation times shown
in Table 6. The comparison of this LB and the ones shown in
Tables 2, 5 indicates the effectiveness of the proposed approach.
This is because the hierarchical optimization method makes the
optimization calculation in the proposed approach possible in
practical computation times.

7 Conclusions

An effective approach for time series aggregation has been
proposed to derive an approximate optimal design solution and

evaluate the gap between the UB and LB for the optimal value of OF
in an optimal design problem of the energy supply systems based
on a mixed-integer linear model. First, an approach for evaluating a
design solution has been presented, and it has been followed by an
approach for deriving an approximate optimal design solution and
evaluating it. The optimization problems for these purposes have
been treated as bi-level and three-level MILP problems, and they
have been solved by the aid of the robust optimization method. In
addition, the hierarchical optimization method has been applied for
them to be solved in practical computation times.

A case study has been carried out on the optimal design of a
cogeneration system with a practical configuration to show how the
proposed approach is effective in comparison with a conventional
approach. The study has led to the following main results:

• Inmost of the cases for design solutions and numbers of clusters
for aggregated periods, the proposed approach can evaluate
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LBs close to the optimal value of the OF, and thus, it can be
evaluated suitably how design solutions are far from or close
to the optimal one.
• In most of the numbers of clusters for aggregated periods, the
proposed approach can evaluate UBs and LBs equal to the
optimal value of the OF, and thus, can derive the approximate
optimal design solutions which are certified to be the optimal
one. Even in other cases, the proposed approach can evaluate
UBs and LBs close to the optimal value of the OF, and thus,
derive suitable approximate optimal design solutions close to
the optimal one.
• In most of the numbers of clusters for aggregated
periods, the conventional approach can also evaluate UBs
equal to the optimal value of the OF, but it evaluates
much smaller LBs as compared with the proposed
approach. In other cases, the conventional approach evaluates
much larger UBs and much smaller LBs as compared with the
proposed approach.
• Form these results, the proposed approach surpasses the
conventional one in evaluating small gaps between UBs and
LBs, and thus, it can reduce the number of clusters for
aggregated periods significantly for time series aggregation.

In this paper, it has been assumed that the energy supply systems
do not include any energy storage units. However, the proposed
method will be extended for systems with energy storage units
for their short-term cyclic operation by modifying the time series
aggregation. This work will be conducted in the future.
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