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Non-linear analysis is of increasing importance in wind energy engineering as a
result of their exposure in extreme conditions and the ever-increasing size and
slenderness of wind turbines. Whilst modern computing capabilities facilitate
execution of complex analyses, certain applications which require multiple
or real-time analyses remain a challenge, motivating adoption of accelerated
computing schemes, such as reduced order modelling (ROM) methods. Soil
structure interaction (SSI) simulations fall in this class of problems, with the
non-linear restoring force significantly affecting the dynamic behaviour of the
turbine. In this work, we propose a ROM approach to the SSI problem using
a recently developed ROM methodology. We exploit a data-driven non-linear
ROM methodology coupling an autoencoder with long short-term memory
(LSTM) neural networks. The ROM is trained to emulate a steel monopile
foundation constrained by non-linear soil and subject to forces and moments
at the top of the foundation, which represent the equivalent loading of an
operating turbine under wind and wave forcing. The ROM well approximates
the time domain and frequency domain response of the Full Order Model (FOM)
over a range of different wind and wave loading regimes, whilst reducing the
computational toll by a factor of 300. We further propose an error metric for
capturing isolated failure instances of the ROM.

KEYWORDS
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1 Introduction

Wind energy plays an increasingly vital role in global power production; however, its
success largely relies in the associated reduction of the levelised cost of energy of wind farms.
These price improvements can be associated with the use of increasingly large turbines and
advanced materials, as well as the extended use of offshore wind resources, which prove
potent and more consistent University of Michigan. (2021); Sadorksy (2021). The complex
nature of wind energy structures and, the adverse operational environments to which these
are exposed, require accurate analysis tools for the simulation of their dynamic behaviour.
Such dynamic models are important both during the design phase, for estimating and
accounting for expected loads and displacements, as well as during operation for the purpose
of health monitoring and remaining life prediction Tatsis et al. (2017); Hu et al. (2015a,b);
Devriendt et al. (2014); Martinez-Luengo et al. (2016). In order to achieve sufficient fidelity,
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the employed dynamic models should further account for presence
of non-linear effects Wagg et al. (2020); Pimenta et al. (2020).

A considerable source of non-linearity in wind turbine
structures stems from the Soil Structure Interaction (SSI) effect
Abdullahi et al. (2020); Zuo et al. (2018); Abhinav and Saha (2018).
In offshore installations the turbines are anchored to the ground
using a monopile foundation driven into soil. The monopile
interaction with the soil is governed by SSI effects. Soils are known
to comprise considerably non-linear behaviour exhibiting softening
and non-linear damping Jardine et al. (1986). SSI phenomena
affect the wind turbine’s dynamic response and, as such, need to
be adequately accounted for Abdullahi et al. (2020); Harte et al.
(2012). The required non-linear analyses imply a severe increase
in computational complexity, which often renders such a task
impractical. This is particularly true for computing tasks which
require repeated or multiple evaluations, such as uncertainty
quantification Sudret et al. (2017), model updating Rogers et al.
(2019); Cao et al. (2020), or digital twinning Solman et al. (2022).
The concept of digital twinning is particularly appealing for offshore
assets, where frequent inspection is costly or infeasible. In the
context of structural monitoring, digital twins imply interaction
with a digital counterpart, i.e., a model of the system which ought to
be computationally efficient, so that data may be assimilated feasibly
on the fly. This motivates the use of Reduced Order Models (ROMs)
for computationally intensive tasks, such as non-linear simulations
related to the SSI problem.

The majority of established ROM techniques are intended
for linear systems, and are largely pertaining to projection-based
methods in which the equations of motion are projected onto
a lower dimensional subspace hence reducing the dimensionality
of the problem and allowing a faster solution Craig and Kurdila
(2006). For dynamic systems, these subspaces usually correspond
to mode shapes of the system, which can be extracted through the
eigendecomposition of the structural matrices. Instances of such
methods, such as theCraig-BamptonCraig andBampton (1968) and
modal superposition methods Craig and Kurdila (2006) are widely
implemented in finite element (FE) software Smith (2009); Ansys-
Inc (2013) and can significantly reduce the computational effort of
linear calculations, whilst maintaining high fidelity. The presence
of non-linearity in a system, however, will cause such methods to
lose efficiency or fail. This motivates the use of non-linear reduction
schemes. Some of these methods retain the philosophy of the
linear methods, for instance by exploiting analytically extracted
mode shape bases and enriching these with higher order terms
of the Taylor approximation (modal derivative vectors), which
can allow for capturing a certain amount of non-linearity Wu
and Tiso (2016); Tatsis et al. (2018). Alternatively, an established
approach to non-linear reduction refers to adoption of Proper
Orthogonal Decomposition (POD) schemes Carlberg and Farhat
(2008); Chinesta et al. (2011); Farhat et al. (2014). POD methods
use ‘snapshots’ of output data from Full Order simulations carried
out on the system of interest. A singular value decomposition
of the response of the system in these snapshots is then carried
out in order to empirically find a suitable linear subspace, which
approximates the solution. These methods are powerful, especially
when combined with hyper-reduction techniques Vlachas et al.
(2021), but can become inefficient with regards to the required size
of the projection basis for systems with strong non-linearities. To

alleviate this issue, PODbases are typically parameterised in terms of
the system characteristics or input (excitation) properties Amsallem
and Farhat (2008); Vlachas K. et al. (2022).

A separate approach pertains to reduction on a lower
dimensional non-linear manifold, which targets a more compressed
(reduced) latent space at similar levels of accuracy Lee and Carlberg
(2020); Cenedese et al. (2022); Jain et al. (2017). In this work, we
make use of a recently developed non-linear ROM framework
Simpson et al. (2021) which employs such a non-linear reduction.
The method makes use of an AutoEncoder (AE) neural network,
which is combined with a Long Short-Term Memory (LSTM)
neural network, which represents the dynamics in the reduced
space. A similar methodology has been developed by Vlachas et al.
Vlachas P. R. et al. (2022) applied to dynamic problems in more
wide ranging scientific disciplines. The AE reduction is purely based
on input and output data from training simulations taken from
the full order model (FOM), while no information from structural
matrices or the nature of non-linearities are required, since the
numerical integration is executed by the LSTM and not a reduced
physics equation. Having trained the ROM, the system response can
be approximated for new forcing input time histories much more
rapidly than carrying out the same simulations using the FOM.

In this work the ROM is tailored to the SSI problem
characterizing the interaction an offshore wind turbine monopile
with soil. The SSI problem is considered in isolation from the
aeroelastic turbine model; however, the input forces used at the
boundary of the monopile are taken from a coupled SSI-Aeroelastic
simulation and can hence be considered representative for the
purposes of training a ROM. A FOM of the system is created in
collaboration with the Siemens Gamesa partners, using the Abaqus
FE software. The monopile is modelled using linear beam elements,
while the movement of the monopile is constrained by depth-
dependent, non-linear spring and dashpot elements. The non-linear
stiffness and damping relations of these elements is provided by
Siemens Gamesa and aim to reflect a representative North Sea
project. Input forcing andmoments are applied to the top-most node
of the monopile at the “mud line”, and are, as previously mentioned,
extracted from full order coupled simulations. Time histories are
used from 75 different loading conditions at varying wind speed and
wave intensities. Corresponding FOM simulations were carried out
for each of the 75 parametric configurations and 6 of these are used
to train the ROM. The trained ROM is then tested on the remaining
69 FOM simulations that have not been included in the training
dataset and the performance of the ROM is evaluated by comparing
the fidelity to the FOM response and the reduction in computational
time achieved.

The layout of this paper is as follows: Section 2 describes the SSI
phenomenon and its relevance to wind energy structures, as well
as the specific assumptions assumed herein for simulation of the
SSI effect. Section 3 offers background on ROM methodologies as
well as detailing the ROM method used herein and its constituent
algorithms. Section 4 details the data generation from the FOM,
which is then used for training and testing of the ROM. Section 5
then presents the process of training the ROM, as well as the final
architectures of the neural networks used. Section 6 presents the
results of the ROM testing and reports on the precision achieved
with respect to the FOM simulations as well as on the attained
reduction in computational time. Finally, Section 7 concludes the
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FIGURE 1
Left: Sketch of the modelled system, indicating the coupling between the wind turbine and soil through distributed non-linear spring forces. Right:
Normalised non-linear restoring force-displacement (P–Y) curves of the soil at various depths in the y-axis.

paper by summarising the work and results achieved and offering
perspectives on future developments.

2 Soil structure interaction in wind
turbines

Soil structure interaction is a complex area of research at
the intersection of soil mechanics and structural mechanics. The
study of SSI was principally driven from the desire to increase
the seismic performance of structures and for offshore engineering
Matlock and Reese (1960); Wong (1975). SSI has traditionally been
regarded as beneficial to structural response as a result of adding
damping and lengthening the oscillation periods Mylonakis and
Gazetas (2000); Martakis et al. (2017). In the context of earthquake
engineering, it was thus previously recommended to ignore these
effects, considering this as an additional margin for safety. However,
when considering dynamically complex structures, such as wind
turbines, this assumption does not always hold Harte et al. (2012),
implying that if high precision is desired in terms of twinning
applications, such effects must be accounted for.

Available simulation methods for SSI effects span from
simplified schemes, such as use of linear rotational, horizontal and
vertical springs Adhikari and Bhattacharya (2011), to numerically
demanding schemes, where the soil is modelled as a non-linear
continuum via FE methods Cao et al. (2020). The most basic
models may be sufficient to capture SSI-induced shifts in natural
frequencies, however, more refined FE models are necessary

to represent the full non-linear, hysteretic response of the soil.
A commonly used method, which represents a middle ground
amongst available schemes, is the P-Y curve method Wolf et al.
(2013); Pando et al. (2006). The P-Y curve method was originally
developed in the 1970s for treating long piles driven into offshore
soils Matlock (1970). The method substitutes the soil with multiple
non-linear spring elements with depth-dependent behaviour.
The non-linear springs may also be supplemented by non-linear
damping elements, which can be depth-dependent. The P-Y curve
method does not take into account the hysteretic behaviour of
soil as is suggested in some relevant literature Whyte et al. (2020),
but does capture the strong strain-softening non-linear behaviour
observed in most soils. The non-linear springs are usually defined
using empirical relations dependent upon various properties of the
specific soil type considered or by calibration with FE models. The
P-Y curve is broadly adopted in the wind energy domain, both in
research Sajeer et al. (2021) and relevant industry standards DNV
(2014). In this work, motivated by current practice, the P-Y curve
method is implemented within a finite element FOM setting of
which a ROM is to be constructed. Whilst such an implementation
is not as computationally taxing as full continuum FE methods,
it remains a significant computational hurdle in the simulation of
coupled wind turbine/SSI systems.

We consider the SSI problem of an offshore wind turbine
mounted on a monopile foundation in soil; the assumed system is
shown in Figure 1. In this figure, the monopile and surrounding
soil is considered as one sub-system, while everything above the
mudline, namely, the wind turbine and the wave/wind loading as a
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FIGURE 2
Sample input forcing (top) and bending moment (bottom) time histories at the mudline, along the x (left) and y (right) directions; directions are
indicated in 1.

separate sub-system. In our analysis we focus only on the modelling
of the interaction effect between themonopile and surrounding soil,
whilst the presence of the wind turbine is simulated, again following
engineering practice, in the form of interface forces and moments
applied to the monopile at the mudline. This allows to create a ROM
of the SSI problem in isolation, which can be coupled to any existing
model of the structure/system lying above the mudline. Such an
approach necessitates that the force and moment time histories
applied to the monopile at the mudline are representative of those
that would be applied in a coupled simulation. To this end, these
are extracted from coupled simulations which are performed based
on a multi-megawatt turbine, where the FOM of the SSI utilises the
PY curve method. Therefore, in the case where the ROM perfectly
replicates the FOM, these interface forces would lead to an exact
match of displacements and rotations.

The system to be modelled consists of a linear steel monopile
constrained by soil exhibiting non-linear restoring force. The
monopile is excited at the node at the top of the monopile at the
mudline, through applied forces and moments which are extracted
from coupled simulations. The dimensions and material of the
monopile reflect representative values for modern offshore wind
applications: the monopile has an outer diameter of 9.5 m, a wall
thickness of 0.08 m and a length of 30 m with a constant annular
cross section. The monopile is modelled with 31 nodes connected
by 30 linear beam elements, whilst the restoring force of the soil
is represented, as dictated by the P-Y curve method, by non-linear
springs and non-linear dashpots constraining all 31 of the nodes in
the x and y directions. The properties for these depth-dependent
non-linear springs are provided by Siemens Gamesa and aim to
reflect values corresponding to a representative North Sea project,
and aim to reflect values of a representative North Sea project. The
non-linear dashpot curves are approximated proportional to the
stiffness at a ratio of 0.001 to the stiffness.Thedepth-dependent non-
linear restoring force-displacement (P-Y) curves, representing the
soil stiffness, are demonstrated in the right subplot of Figure 1.

75 different time histories of forcing and moments were
extracted fromcoupled simulations.These correspond to parametric
sets of 25 different wind and wave intensity levels varying from
3–28 m/s average wind speed. Each wind speed has a corresponding
turbulence intensity as presented in the Supplementary Material,
the wave loading was generated using a JONSWAP distribution
Hasselmann et al. (1973) wherein the wave amplitude varies almost
linearly from 0.2 to 7 m between 3 and 28 m/s. Three simulations
are carried out at each distinct parametric configuration, with each
simulation corresponding to a different random seed for generating
the corresponding wind turbulence and wave loading. An example
time history corresponding to 14 m/s is shown in Figure 2, which
illustrates the forces (top subplots) and moments (bottom subplots),
along the x (left subplots) and y directions (right subplots), acting
on the monopile node at the mudline. The generated time series
cover a total simulation time of 600 s, at a sampling period of
0.02 s.

3 Reduced order modelling via
AE-LSTM

The AE-LSTM ROM methodology used herein was recently
developed by the authors Simpson et al. (2021) by coupling an
AutoEncoder (AE) with LSTM neural networks. The autoencoder
is employed for dimensionality reduction, while the LSTM reflects
a recurrent neural network (RNN) for learning the underlying,
possibly non-linear, dynamics. The method is a purely data based
modellingmethod and has been shown to have significant capability
for modelling the behaviour of strongly non-linear systems. The
method has also been shown to be agnostic to the non-linearity type
present, showing good performance with both a cubic type non-
linearity and a Bouc-Wen hysteretic non-linearity Simpson et al.
(2021). It is worth mentioning that when a VAE is adopted,
in place of a plain AE, the latent space becomes statistically
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FIGURE 3
Diagram of an autoencoder neural network featuring 4 dimensional
input/output and 2 dimensional hidden layer.

independent, implying that the underlying states resemble Non-
linear Normal Modes (NNMs), as illustrated in Simpson et al.
(2023); Champneys et al. (2022). While useful for decoupling the
feature space in terms of carried spectral content, this approximation
is not necessary for the ROM construction. In this work we extend
the AE-LSTM methodology to deal with a realistic system, which
represents a real issue faced by the industry in offshore wind energy
systems.

3.1 Autoencoder neural networks

An autoencoder neural network is a type of neural network
typically used for dimensionality reduction or de-noising
applications Hinton and Salakhutdinov (2006). They are a type
of Deep Neural Network (DNN) assuming a specific vector input,
which is reproduced (decoded) as output, whilst the architecture of
the network forces (encodes) this vector through a low dimensional
“bottleneck layer”. This requires that the network learn a non-linear
transform to a lower dimensional space which retains maximal
information, such that the vector can be optimally reconstructed
from this lower dimensional representation. The trained AE
then contains both an encoder, which can transform data to
the reduced space, and a decoder, which performs the opposite
operation, returning from the compressed to the physical space. The
architecture of an autoencoder is demonstrated in Figure 3, in this
case we see an autoencoder with a 4 dimensional input vector X
and a 2 dimensional bottleneck layer Z. The autoencoder outputs an
approximation of the input vector X̃.

Autoencoders are very often used in machine learning
applications as an unsupervised learning scheme for efficient feature
extraction Vincent et al. (2008). Feature extraction is a common
operation inmachine learningmethods and involves transformation
of data to render these more efficient for use with downstream
machine learning tasks. Successful feature extraction relies on
reducing the dimensionality of the data Hinton and Salakhutdinov
(2006). Autoencoders are part of a group of methods known as
manifold learning algorithms, which target extraction of structure
from datasets in an unsupervised manner Izenman (2012). The
most widely known and essential of such methods is Principal
Component Analysis (PCA). PCA seeks the optimal orthogonal
projection of a dataset onto a reduced number of dimensions, whilst
preserving the maximum possible variance Wold et al. (1987). An
interesting detail in the domain of structural dynamics is that, for
linear systems, implementation of PCA on the output response of

FIGURE 4
Architecture of the LSTM network cell: the previous output of the
network ht−1 is concatenated with the exogenous input xt, the forget
the update and output gates then define how this vector interacts with
the cell state of the network Ct−1 to then given the new cell state Ct

and network output ht.

a structural system is equivalent to operational modal analysis, and
is equivalent to learning a transformation of the data to the modal
domain Poncelet et al. (2007). Following this logic, when tackling
non-linear systems, the use of a non-linear method can more
efficiently extract such a reduced structure. Autoencoders are one
such non-linear manifold learning method with certain advantages.
Firstly, they efficiently scale to high dimensions. Secondly, they
naturally provide both a forward and inverse transform from the
physical to the reduced space. This is a very important aspect for
ROMs within the context of SHM, as it allows reconstructing the
system’s response in the physical coordinates, which represent the
actually monitored space.

Autoencoders have found success in very diverse scientific
fields, such as anomaly detection Sakurada and Yairi (2014), image
processing and drug discovery. With regards to dynamical systems,
autoencoders have been used in a number of cases where reduction
on the basis of a manifold of lower dimension is deemed feasible
Yoo et al. (2017). In Holden et al. Holden et al. (2015) autoencoders
are used to capture a lower dimensional representation of videos
of human motion. Lee and Carlberg Lee and Carlberg (2020)
made use of convolutional autoencoders in conjunction with the
non-linear Galerkin method to construct reduced order models.
Vlachas et al. made use of autoencoders in combination with LSTM
networks for modelling what they term the Learning of Effective
Dynamics (LED) across multiple scales in areas of chemistry and
fluid dynamics Vlachas P. R. et al. (2022). Lopez and Atzberger
examine the use of variational autoencoders for uncovering lower
dimensional dynamics in the Burgers equation Lopez and Atzberger
(2020).

Regarding non-linear structural dynamics systems, a theory
exists justifying the existence of such low dimensional manifolds,
that is the theory of non-linear normal modes (NNMs)
Kerschen et al. (2009). There further exists work connecting
these NNMs with manifold learning techniques operated
on output-only data; these refer to extraction using locally
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FIGURE 5
Upper: AE-LSTM based ROM framework in training mode, the AE is trained to transform the response vector X to the latent vector Z and the inverse
transform of Z to X̃ whilst the LSTM is trained to predict Z̃ from the forcing time series F. Lower: AE-LSTM based ROM framework in testing mode. The
LSTM network directly predicts the response in the latent space Z̃ to a new forcing time series Ftest and the decoder reconstructs the response
prediction in the physical space X̃.

FIGURE 6
Force displacement plot of the ROM simulated response at DOF 30,
corresponding to the x displacement of the topmost node at 0 m
depth, for a simulation carried out at 14 m/s, with clearly evident
non-linear behaviour.

linear embedding Dervilis et al. (2019), generative adversarial
networks Tsialiamanis et al. (2022) and variational autoencoders
Simpson et al. (2023). Through these NNMs, parallels may also be
drawn between autoencoders and structural dynamics, similarly
to the relationship between PCA and linear modes. The connection
comes in that, linear PODmethods have been shown to find the best
linear approximation of NNMs Kerschen et al. (2005) and further,
that an autoencoder with linear activation functions will recreate
the behaviour of POD Baldi and Hornik (1989). Such a connection
to NNMs becomes more clear if we would consider the behaviour of
a VAE Kingma and Welling (2014), in a VAE the latent space, which
we consider to be approximating the NNMs, is encouraged to take
the form of a given variational distribution, in most cases a diagonal
Gaussian. This promotes statistical independence of the latent space
variables and hence fulfils the NNM definition used by Worden and
Green Worden and Green (2016).

3.2 LSTM neural networks

An LSTM neural network is a type of recurrent neural network
(RNN), a neural network designed for modelling sequence data
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FIGURE 7
Left:Reconstruction error of the autoencoder with varying bottleneck layer dimensions during the ROM training, showing that the error plateaus after a
4D latent space. Right: Mean Squared Error of the Trained LSTM Network with Varying Cell State Dimension, showing that the error plateaus after a 20
dimensional cell state.

TABLE 1 Final architecture of the autoencoder used in the ROM.

Layer Type Weights Activation

Encoder Dense (124, 62) tanh

Dense (62,62) tanh

Dense (62, 4) linear

Decoder Dense (4, 62) tanh

Dense (62, 62) tanh

Dense (62, 124) linear

TABLE 2 Final architecture of the LSTM network used in the ROM.

Layer Type Layer Size Activation

Dynamic Model LSTM 20 tanh

Dense 4 linear

Rumelhart and McClelland (1987). RNN’s are conceptually similar
to a non-linear auto-regressive with exogenous variable (NARX)
model, which has been standardly adopted in dynamics and time
series simulations CHEN and BILLINGS (1989). Similarly to NARX
models RNNs deliver a prediction at time point t using predicted
outputs at time point t− 1 and some exogenous variables from time
point t. The key difference of the RNN to a NARX neural network, is
that instead of explicitly using the predicted output of the model at
previous time steps t− n - t− 1, where n is the number of lags in the
NARX model, the internal state of the network at t− 1 is passed as
endogenous input to time t. The passing of the internal state allows
RNNs to achieve good predictive performance on sequence data
whilst not being constrained to a certain pre-prescribed number
of lags. The latter would limit the number of past values, which
are assumed to influence the prediction, as would be the case for
a traditional NARX model.

In practice, long term relations are difficult to learn by means
of RNNs due to disappearing/exploding gradients during training.
The LSTM network is a variation on a traditional RNN designed to
combat this drawback, allowing for learning of long-term sequences.
LSTM cells have been the key architecture formuch of the successful
uses of RNNs in recent years. The gated activation functions,
which are key to LSTM networks, allow for improved capture of
arbitrarily long relationships in sequence data. These have found
applications in extensive fields, such as sequence modelling Bayer
(2015), handwriting recognition Graves et al. (2007) and natural
language translationWu et al. (2016). Considerable success has been
found in modelling dynamical systems of general nature, as well
as structural systems in particular. In this context, Vlachas et al.
Vlachas et al. (2018) consider the use of an LSTM network to model
a chaotic Lorenz dynamic system. The use of LSTM networks has
also been demonstrated for the reduced order modelling of non-
linear aerodynamic simulations Wang and Wu (2020). Very recent
work has also made use of physics informed LSTM networks to
improve performance compared to purely data driven methods
Zhang et al. (2020).

The LSTM cell is demonstrated in Figure 4 along with their
defining parameters described in Eq. 1. The values it , ft , ot are the
gates signals, of the forget, input and, output gates respectively. Xt ,
ht−1,Ct−1 are the exogenous input, and the hidden and cell state from
the previous time step whilst Ui, Uf , U0, Wi, Wf , W0 are weight
matrices. The activation function σ is a sigmoid function. The full
description and function of these equations can be found in the
literature Hochreiter and Schmidhuber (1997) but the key element
to the LSTM is the cell state Ct−1, this is the vector which is passed
between time steps akin to the auto-regressive vector in a NARX
model. This cell state acts as the memory of the network and the
key difference is rather than the values in this vector being changed
at every time step, to the previous network output, the values in the
vector default to remaining the same. How this cell state is updated
is controlled by the 3 “gates”: the forget, the update and output gate.
These gates are also learned during the training of the network, as
such if it proves advantageous for values to remain in the cell state
over long sequences then this will be learned, this kind of behaviour
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FIGURE 8
Violin plot how the NMSE error of the ROM simulations compared to
the FOM is distributed, colored by wind speed from blue (lowest) to
yellow (highest). The simulations exhibit very low NMSE values less
than 4e−4 with one outlying simulation with an error of 1e−3.

is muchmore difficult to learn in vanilla RNNmodels. It is as a result
of these gate functions that the LSTM network proves resistant to
vanishing and exploding gradients. Due to the gating functions, the
gradient of the cell is no longer intrinsically driven towards zero as
in standard RNNs preventing vanishing gradients. Furthermore, the
gradient of the cell state is upper bounded by 1 preventing exploding
gradients Bayer (2015).

it = σ(xtUi + ht−1Wi) , ft = σ(xtU
f + ht−1W f)

ot = σ(xtU
o + ht−1W

o) , Ĉt = tanh(xtU
c + ht−1W

c)

Ct = σ( ft ∗Ct−1 + it ∗ Ĉt) , ht = tanh(Ct) ∗ ot

(1)

3.3 AE-LSTM ROM

The overall process of the ROM framework is illustrated in
Figure 5. The ROM framework has two stages; the training stage,
on the basis of input/output data from FOM simulations, and the
testing stage, in which new (previously unseen) input time series are
used by the ROM to generate predicted outputs. The upper subplot
of Figure 5 demonstrates the training step of the ROM. Given that
input, output data have already been generated from the FOM of
the system of concern. The first step adopts output-only data from
the FOM simulations, e.g., time-series of the displacement response
at all monitored DOFs, and uses this to train an autoencoder to
reduce the dimensionality of the data. The x and y displacement
and Rx and Ry rotation time histories at each of the 31 nodes of
the FE model, is aggregated in matrix [X]. The autoencoder then
determines a non-linear transform, which reduces the 124 DOFs
to a reduced space of dimension n, of latent variables represented
in vector [Z]. The reduced dimension is considerably smaller than
the original 124 DOFs and is selected so as to balance the amount
of dimensionality reduction against the decrease in fidelity of
said reduction. Simultaneously, the autoencoder learns the inverse
operation; a non-linear transform, which returns from the reduced
latent space [Z] to the approximated physical DOFs [X̃].

Upon training of the autoencoder, the LSTM network must
then be trained to learn the system dynamics. The LSTM network
is trained using the force/moment time series as inputs and
outputs the time series of the response in the reduced (latent)
space of the n dimensions of the autoencoder bottleneck layer.
As indicated in the upper subplot of Figure 5, the LSTM network
learns to predict the latent space response of the system [Z̃],
taking as exogenous input the forcing time series collected in
matrix [F] as well as the predicted output from the previous time
step Z̃t−1.

Having trained both the autoencoder and LSTM networks, the
AE-LSTM ROM can then be used in prediction mode for predicting
the response of the system to new forcing time histories. The testing
stage of the ROM is shown in the lower subplot of Figure 5. The
LSTM network admits a new set of forcing/moment time histories
as inputs [Ftest], and outputs the predicted response of the system
in the reduced dimensional latent space [Z̃]. The predicted response
in the original physical coordinates is then recreated by passing [Z̃]
through the decoder portion of the autoencoder to find the predicted
response [X̃]. Prediction takes place in the reduced coordinate
space which results in a lightweight and easily trainable model.
The full methodology is more deeply examined and described in
Simpson et al. (2021).

4 Data generation

In order to train and test the ROM, FOM simulations are
executed for the 75 input time series, 6 of which will be used to
train the ROMand the remaining 69 for testing its performance.The
FOM as previously described in section 2, was created in Abaqus FE
software Smith (2009); the Abaqus implicit solver was then used to
simulate the dynamic response of the monopile SSI problem, with
each simulation lasting 600 s with amaximum step size of 0.02 s.The
response vectors were interpolated onto a constant sampling time
of 0.02 s, as the Abaqus solver uses a varying time step integration
scheme. Following the FOM simulations, the data was prepared for
training the ROM. Firstly, the DOFs to be captured by the ROM
were selected, the chosen DOFs were those normally of interest to
Siemens Gamesa in their simulations. The DOFs of interest were
defined as the x and y displacements and rx and ry rotations at each
of the 31 nodes of the monopile. This results in 124 DOFs to be
monitored.

Figure 6 plots the restoring force against displacement for one
of the simulations carried out at 14 m/s wind speed. The response
curve reveals significant non-linear behaviour. It is noteworthy
that the restoring force plot is not symmetrical; this is due to
non-zero mean forcing being applied to the system during the
simulations.

5 ROM training

In order to fairly test the performance of the ROM, the data
must be separated into suitable training and testing sets.The training
data should cover the expected range of parameters/conditions
within which the ROM is intended to perform. Simultaneously,
however, we wish to minimise the number of expensive FOM runs
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FIGURE 9
Upper: The time series response of the ROM (orange) compared against the reference FOM simulation (blue) for the x and y displacements in metres
(1st and 2nd columns) and Rx and Ry rotations in rad (3rd and 4th columns) at depths of 0, 15 and 30 m (1st, 2nd and 3rd row) along the monopile.

These results are taken from a simulation with NMSE of 1.56× 10−4 carried out at a wind speed of 10 m/s and show excellent fidelity in the steady state
response. Lower: A zoomed view of the upper plot highlighting the behaviour.

required to train themodel, tominimize the amount of training data.
Furthermore, we would like to check the extrapolation performance
of the ROM, i.e., wewant to test the performance of the ROMatwind
speeds higher or lower than those contained in the training set. To
this end, the training set is selected to contain 6 of the original 75
input time series, at wind speeds of 7, 10, 13, 16, 22, 25 m/s. The
testing set spans wind speeds from 3–28 m/s, allowing to test the
extrapolation qualities of the ROM for wind speeds below 7 and
above 25 m/s.

5.1 Autoencoder training

The autoencoder is then trained to as closely as possible recreate
the displacement/rotation time series, which serves as both input
and output. To this end, amean squared error cost function between
the input and output vectors is used, as defined in Eq. 2.

ℓ(X̂) = 1
MN

M

∑
j=1

N

∑
i=1
(Xi,j − ̂Xi,j)

2 (2)
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FIGURE 10
Comparison of frequency content of response of the ROM (orange) compared against the reference FOM simulation (blue) for the x and y
displacements in m2 (1st and 2nd columns) and Rx and Ry rotations in rad2 (3rd and 4th columns) at depths of 0, 15 and 30 m (1st, 2nd and 3rd row)

along the monopile. These results are taken from a simulation with NMSE of 1.56× 10−4 carried out at a wind speed of 10 m/s and show excellent
fidelity.

where M denotes the number of DOFs in the system, N
stands for the number of data points or time steps, Xi is the
M dimensional true response vector at step i and ̂Xi is the
approximated M dimensional response vector outputted by the
autoencoder for the sample at step i. By reducing this cost function
we teach the autoencoder to learn a non-linear transform to a
low dimensional space, whilst optimally reconstructing the original
vector from the reduced space. The autoencoder is trained using
the ADAM optimisation algorithm Kingma and Ba (2015) using
the 6 training data series. Each of these datasets consists of 600 s of
simulation at 0.02 s sampling rate giving a total of 30,000 data points,
corresponding to the standard coupled simulations currently carried
out by SiemensGamesa.As such, for training the autoencoder, a total
of 180,000 data points were used.

A critical step in the reduction process pertains to selection
of a suitable dimension of the bottleneck layer. In order to do
this, autoencoders were trained with consistent architectures but
for a varying dimension of the bottleneck layer. The left hand
sub figure of Figure 7 shows the reconstruction error of these
autoencoders plotted against the dimension of the latent space.
The error initially decreases significantly with increasing dimension,
however, it plateaus for a dimension size larger than 4. Since
we want to achieve maximum reduction whilst maintaining good
fidelity, a latent space of 4 dimensions is used for the finally trained
autoencoder.

The architecture of the final autoencoder used is shown
in Table 1. Both the encoder and decoder consist of 3-layer
networks each with a single hidden layer. Non-linear tanh activation
functions are used on all layers, with the exception of the layer

prior to the bottleneck layer and the final output layer, where
linear activations are used. Linear activations are generally used
before outputs which are to be interpreted since a non-linear
activation function limits the possible values to be output by the
layer.

5.2 LSTM training

The training of the LSTM network comprises the most
challenging aspect of the ROM procedure, due to the large number
of hyperparameters which must be tuned. To increase efficiency, a
Nvidia Tesla P100 GPU was used for training, as provided through
Google Colab hosted notebooks. The LSTM network considered
consists of a single LSTM cell with a dense layer stacked on top of it.
This network is trained to predict the response in the reduced space
given the 4 input time series: the forces and moments in the x and y
directions. As such the dense output layer has a fixed size of 4, since
this layer corresponds to the dimensionality of the predicted output.
Furthermore, the output layer is chosen to have a linear activation
function per the standard for regression problems. This leaves the
hidden state size of the LSTM cell as the key hyperparameter of
the employed architecture, which dictates expressive power of the
network. Generally, a higher hidden state size results in a more
powerful network, albeit at a corollary increase in the number of
parameters.

Further to the network architecture, some further important
hyperparameters exist in the context of training, which severely
affect performance. RNNs are trained using back propagation
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FIGURE 11
Upper: The time series response of the ROM (orange) compared against the reference FOM simulation (blue) for the x and y displacements inm (1st and
2nd columns) and Rx and Ry rotations in rad (3rd and 4th columns) at depths of 0, 15 and 30 m (1st, 2nd and 3rd row) along the monopile. These results

are taken from the worst performing simulation with NMSE of 9.37× 10−4 carried out at a wind speed of 28 m/s and show reasonable performance but
with clear errors especially in the y displacements and Rx rotations. Lower: A zoomed view of the upper plot highlighting the behaviour.

through time (BPTT)Goodfellow et al. (2016), similarly to standard
back propagation, this involves a forward pass through the network
to determine the error of prediction with the current parameters,
followed by a backward pass in which the errors are propagated
backwards through the network and the gradient of this error with
respect to the parameters is found. Theoretically, we may pass the
entire sequence to the network. Each training step then involves
stepping through the entire time series of 600s in a forward pass,

then propagating the error backwards through all time steps. Whilst
the network may be trained by using the full length of the time
series, this can become highly inefficient and memory intensive
when considering long time histories Aicher et al. (2020). As such,
it is common practice to make use of truncated BPTT. In truncated
BPTT, each training step involves chunks of the total sequence
of a given length. This increases efficiency in network training at
the expense of having to choose the length of these chunks as
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FIGURE 12
Comparison of the frequency content of the response of the ROM (orange) compared against the reference FOM simulation (blue) for the x and y
displacements in m2 (1st and 2nd columns) and Rx and Ry rotations in rad2 (3rd and 4th columns) at depths of 0, 15 and 30 m (1st, 2nd and 3rd row)

along the monopile. These results are taken from the worst performing simulation with NMSE of 9.37× 10−4 carried out at a wind speed of 28 m/s and
show reasonable performance but with clear spurious peaks in the spectra of the y displacements and Rx rotations.

another hyperparameter, which can significantly effect the rate of
convergence Aicher et al. (2020).

In order to identify the optimal dimension of the hidden cell
state, LSTM networks with varying cell state dimensions were
trained and compared in terms of their predictive, one step ahead,
performance on a validation set. The right hand subplot of Figure 7
plots the error of the different architectures of the LSTM network. A
hidden cell state dimension of 20 was finally chosen, as the error
decreased significantly up until a 20 dimensional state and then
plateaued.

The final architecture used for the LSTM neural network is
shown inTable 2. A single LSTMcell was usedwith a 20 dimensional
hidden state vector and a tanh non-linear activation function.
Stacked on the LSTM cell is a Dense layer with a 4 dimensional
output and a linear activation function. In this case, 150 time
steps were included for the BPTT algorithm Sutskever (2013), this
corresponds to 3 s of response.

6 ROM results

To test the accuracy of the trained ROM, the 69 input time series
not used in the training stage are then fed as inputs to the ROM.
The simulations are carried out using the ROM and compared to
the results obtained from the FOM for the same input time series,
using the normalised mean squared error (NMSE). This is the mean
squared error normalised by the standard deviation of its DOF
response. This is shown in Equation 3 wherein M is the number of

DOFs and N the number of time steps, X the true response, X̂ the
predicted response and σmeaning the standard deviation as defined
inEquation 4.TheNMSEas such, takes finds themean squared error
for each DOF individually and then normalises this mean squared
error of each DOF by the standard deviation of the true response at
this DOF. The NMSE is then the mean across all the DOFs of these
normalised MSEs.

NMSE = 1
MN

M

∑
j=1

∑N
i=1
(Xi,j − X̂i,j)

2

σ(Xj)
(3)

σ (X) = √
∑N

i=1
(Xi − μX)

2

N
(4)

Figure 8 shows a violin plot of the NMSE values found for all
69 tested input time series with the wind speed represented by the
color of each marker, from dark blue at 4 m/s to yellow at 28 m/s.
The errors are distributed in two main lobes, with simulations in
the first lobe comprising an extremely low NMSE error of less than
10–4, while the second lobe is clustered between 2− 4e-4. A single
outlying simulation is caught with considerably larger NMSE error
of 9.37× 10−4. It is noteworthy that this highest error occurs from a
simulation taken at the highest wind speed, which is outside of the
range of speeds in the training set. Aside from this isolated outlier,
no strong trend is noted between the wind speed and the error.

In order to in practice understand what these NMSE values
reveal in terms of discrepancy, the time series response of the FOM
and ROM are further visually compared. Since it is unfeasible to
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FIGURE 13
Comparison of the maximum (1st row), minimum (2nd row) and standard deviation (3rd row) of the displacement values during all 75 simulations as
output by the ROM (orange) and FOM (blue). These measurements are for the x and y displacements in m2 (1st and 2nd columns) and Rx and Ry

rotations in rad (3rd and 4th columns) at a depth of 0 m on the monopile.

visualise all DOFs of the system, few DOFs at the most critical
locations on the monopile are monitored. The illustrated DOFs
reflect the x, y, Rx and Ry response at the mud line, and at depths
of 15m and 30 m. The upper subplot of Figure 9 shows such a
visualisation for one of the tested time series with an NMSE of
1.56× 10−4 hence locating it in the middle of the two main lobes
of the violin plot. The ROM offers a good approximation of the
reference FOM simulation in all of the monitored DOFs, once the
steady state has been achieved. However, in the y displacement
and Rx rotation, that the transient initial response is not perfectly
captured by the ROM. The lack of fidelity in the transient regime is
explainable in that the relevant dynamics in the transient response
are significantly different to those in the stead-state regime. The
transient dynamics usually contain much more in higher frequency
ranges, however, since the majority of the data used for training
the model is from the steady-state domain, the transient dynamics
are less well approximated. If an application required that the
transient response be better captured, this would be possible by
increasing the amount of transient behaviour in the training data,
or by weighting the cost function such that this data has more
importance. Further, a more complex network may be required in
order to capture both the transient and steady-state behaviour. In
this use case, however, the lack of fidelity in the transient region is
not considered a significant issue.This is because this initial transient
response is anyway considered to be unrealistic, as it is a result of the
immediate application of wind and wave loading from zero initial
condition. Such a sudden loading example is not realistic during
normal operation. The lower subplot of Figure 9 makes this more
clear by displaying a zoomed view of the ROM prediction compared
to the FOM prediction.

TABLE 3 Computational time of the ROM vs Abaqus for 600 s of simulation.

Full Order Abaqus Model (s) AE-LSTM ROM

2272 6.99 s

Figure 10 compares the frequency content of the response
of the ROM and FOM predictions. The frequency content
of the response is also captured with very high fidelity by
the ROM.

It is also worth illustrating the worst-case (outlier) performance
of themodel for the simulationwhich yielded aNMSEof 9.37× 10−4,
which corresponds to a wind speed of 28 m/s. The upper subplot
of Figure 11 compares the time series response of the ROM and
FOM for this worst performing simulation. The DOFs presented
comprise of the x, y, Rx and Ry response at the mud line, at a depth
of 15m, and at a depth of 30 m. For the x displacements and Ry
rotations, the ROMperformance is of good fidelity.However, in the y
displacements and Rx rotations the ROM fails to adequately capture
the reference behaviour, both missing certain peaks and displaying
spurious peaks.This behaviour can be seenmore closely in the lower
subplot of Figure 11.

Furthermore, from Figure 12 the spectrum of the ROM
response is compared to the FOM response. It is clearly seen that
the ROM inadequately captures the response of the y displacements
and Rx rotations and suffers several spurious resonant peaks.

In industrial settings, the full time series output by a simulation
are often not used, rather certain features from them are taken
and considered as the quantities of interest. Commonly used
features are the maximum, minimum and standard deviation of
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FIGURE 14
Spectral response of all 75 of the ROM simulations a the 92nd DOF, corresponding to the Rx rotation at a depth of 0 m. The 74th simulation may be
seen to be an outlier exhibiting spurious peaks between 0.25 and 0.75 Hz.

FIGURE 15
Plot of the first 2 principal components extracted from the spectral
amplitudes between 0.25 and 0.75 Hz for all the 75 ROM simulations.
One simulation represents a clear outlier, which corresponds to the
simulation judged to have failed based on NMSE against the FOM.

the response. Figure 13 compares the maximum, minimum and
standard deviation of the response in the x, y, Rx and Ry DOFs at
the uppermost node of the monopile at a depth of 0 m as predicted
by the FOM and ROM. The ROM can be seen to also very accurately
recreate these values of interest across all 75 simulations. Notably,
even the failed simulation observed in the full time series is not
shown to have a great impact on the fidelity with respect to these
quantities of interest.

An important aspect of any ROM lies in reduction in the
computational time required against the FOM. In this case, a
comparison was made between the prediction time of the ROM
and Abaqus simulations on the same computing hardware, Intel R©

Core™ i7-6700 CPU, 3.40 GHz 8 core Processor. In both cases a 600 s

simulation was carried out. As Table 3 reports, the ROM provides a
large benefit in terms of computational savings, delivering over 300
times of speed up. The ROM further allows for the simulation to be
carried out significantly faster than real time, contrary to the FOM
which is approximately four times slower than real time.

6.1 Recognising a failed simulation

Since the proposed framework describes a data-driven
approach, it is expected that outliers will occur, particularly in an
extrapolation setting. It is important that such outliers be detectable
without having to run FOM simulations for comparison as this
somewhat defeats the purpose of creating a ROM. With regards
to the simulations carried out in this work, a single simulation is
considered to have failed, comprising an error of roughly 10 times
the mean error. Having observed the spectra of the response of
this simulation in Figure 12, spurious peaks could be observed
which do not appear in the FOM simulations. To try to identify this
failed simulation, we can look at the spectra of all ROM simulations
carried out in an attempt to check for anomalies. Importantly, the
FOM simulations are not required in this error check.

In Figure 14, the spectra of the response for all 75 ROM
simulations at the 92nd DOF (corresponding to the y displacement
at the top of the monopile) is plotted. This figure shows that the
spurious peaks in the spectra can be identified when com, paring
against the further ROM simulations. The 74th simulation, which
is indeed the simulation which failed, can easily be identified as
differing from the remaining simulations. It can clearly be seen
that the 74th simulation exhibits several peaks around 0.25–0.75 Hz
unlike the remaining simulations.These spurious peaks further form
a main difference between the spectra of the failed simulation when
compared against the equivalent FOM simulation. These peaks can
thus serve as a means to identifying failed ROM simulations.

To demonstrate how detecting such a failed simulation may be
carried out practically, we demonstrate one such method. Firstly,
from examining the Spectra as shown in Figure 14 we identify that
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the frequency range between 0.25 and 0.75 Hz seems to demonstrate
some anomalous behaviour and sowe focus our analysis on this area.
We wish to do anomaly detection using this region of the spectra
as such we take as features, the amplitude of the spectra at each
of the frequency bins between 0.25 and 0.75Hz, this corresponds
to 40 amplitude values. This gives us 40 dimensional features for
each of the 75 simulation runs, such high dimensional features are
cumbersome and probably redundant, as such, a PCA reduction
is applied to these features and the dimensionality reduced to 2.
These features are visualised in Figure 15 in which the 2 principal
components are plotted against one another for each of the 75
simulations. In this plot there is again one obvious outlier which is
indeed the 74th simulation which we had previously identified as
failing. To fully formalise this novelty detection methodology, we
would then introduce a distance metric such as the Mahalanobis
squared distance Mahalanobis (1936), then a training dataset would
be created for which the simulations are known to be good,
outliers would then be detectable based on their Mahalanobis
distance from the centroid of such a training set. A similar process
is shown in much more detail by Worden et al. Worden et al.
(2000).

7 Conclusion

Thiswork demonstrates application of a recently developed non-
linear ROM methodology, the AE-LSTM ROM, for treating the SSI
problem in offshore wind turbine structures. The method reflects a
data-driven approach requiring no assumptions on the type of non-
linearity present and can be flexibly applied across a broad range
of non-linear dynamical systems. The method is trained, using data
extracted from FE simulations on the non-linear SSI problem of an
offshore wind turbine monopile.

The following conclusions are drawn.

• The AE-LSTM methodology can capture the behaviour of the
modelled non-linear SSI problem, with training conducted on
only 6 time series, and accurately recreate the response for
unseen input forcings.

• The ROM was successful in very significantly reducing the
simulation time requiredwhen compared to the FOM, reducing
the computational time by a factor of over 300 times.

• A single simulation was considered to have failed, yielding
significantly higher error than the others. However, it is shown
that an error metric can be adopted to identify such a failure
without requiring the FOM response as comparison.

A limitation of the method is that the input dimensionality is
currently not reduced at all. This is not an issue in the presented
example where the forcing occurs only at the boundary, however,
were the input high dimensional, e.g., for a distributed load, then
this would likely scale badly and require dimensionality reduction of
the input. One method to rectify this could be to add an additional
layer to the network between the inputs and the LSTM layer. Such
a layer would then reduce the dimension of the input data before
passing it to the LSTM cell. Further development with regards to the
ROM of the SSI problem would involve coupling it to the existing

aeroelastic simulation of the wind turbine above the mudline. To
achieve this, it would be necessary to additionally generate tangent
structural matrices for each time step of the ROM in order to
successfully couple the ROM to the existing simulation framework
Arramounet et al. (2019).
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