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We have studied the degradation of both full-sized modules and minimodules
with PERC and Al-BSF cell variations in fields while considering packaging
strategies. We demonstrate the implementations of data-driven tools to analyze
large numbers of modules and volumes of timeseries data to obtain the
performance loss and degradation pathways. This data analysis pipeline enables
quantitative comparison and ranking of module variations, as well as mapping
and deeper understanding of degradation mechanisms. The best performing
module is a half-cell PERC, which shows a performance loss rate (PLR) of
−0.27 ± 0.12% per annum (%/a) after initial losses have stabilized. Minimodule
studies showed inconsistent performance rankings due to significant power
loss contributions via series resistance, however, recombination losses remained
stable. Overall, PERC cell variations outperform or are not distinguishable from
Al-BSF cell variations.
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1 Introduction

Silicon solar cell technology has undergone a large scale transition in the past few
years. Traditional aluminum back-surface field cells (Al-BSF) have been replaced by a
more modern cell design: the passivated emitter and rear cell (PERC) (Trube, 2022). As
silicon makes up nearly 95% (Philipps, 2023) of the total PV market share, this represents a
significant transition in the industry as a whole.

Al-BSF cells, as the name suggests, feature a continuous layer of aluminum at the back of
the cell in contact with crystalline silicon, which creates a “back-surface field” that hinders
minority carriers from reaching the rear contact up to a certain degree.

The back-surface field increases the performance of the cell, but the aluminum silicon
interface is still an area of high recombination. PERC cells normally have a passivated rear
side with a grid of local aluminum contacts across the rear surface, as opposed to the
continuous aluminum layer in Al-BSF. The limited aluminum-silicon contacts are still able
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to maintain the beneficial back-surface field while the passivated
region significantly reduces the recombination at the rear of the
cell. PERC cells offer a higher conversion efficiency than Al-BSF
and better maintain performance with thinner wafers, allowing
more cells to be produced from a given amount of raw material.
The similar architecture between PERC and Al-BSF allows PERC
to be integrated into industrial Al-BSF workflows without much
disruption. Many efforts have been made to increase the cell
efficiency of PERC (Kashyap et al., 2022a; Kashyap et al., 2022b;
Kashyap et al., 2022c; Kashyap et al., 2022d; Kashyap et al., 2022e).
Also, PERC cells are able to be made bifacial (Deline et al., 2019).
This has led to new types of white rear side encapsulants designed
to scatter light that passes between cells into the rear of the cell,
increasing the energy yield (López-Escalante et al., 2018).

This rapid industry transition leads to a lack of long term
data on PERC cells, especially in comparison with Al-BSF. Initial
testing of PERC has shown that it does have unique degradation
considerations. PERC cells are known to be more susceptible
than Al-BSF to certain light based sources of degradation like
light induced degradation (LID), including boron-oxygen related
light induced degradation (BO-LID) (Jordan et al., 2022; Ino et al.,
2023; Ding et al., 2022; Fokuhl et al., 2021; Lindroos and Savin,
2016) and light and elevated temperature induced degradation
(LeTID) (Karas et al., 2023; Krauss et al., 2015; Kersten et al., 2015;
Fokuhl et al., 2019; Fokuhl et al., 2021). Knowing this, studies of
outdoor exposure of PERC modules in comparison with Al-BSF are
important in understanding reliability concerns as the transition to
PERC cells occurs.

Prior studies on comparing the degradation observed between
PERC and Al-BSF cells have either solely examined full-sized
modules that were exposed to outdoor conditions in the field
(Theristis et al., 2023; Jordan et al., 2022), which were often
commercially manufactured and lacked the capacity for tailoring
cell packaging strategies, or solely conducted accelerated aging tests
on minimodules indoors (Wang et al., 2019; Braid et al., 2018).

This study consists of outdoor exposure of full-sized modules
of PERC and Al-BSF and minimodules of the same cell types with
variants of packaging material and cell type. The (Current-Voltage)
I-V data collected at standard test conditions (STC) or in field were
analyzed using open-source data analysis tools. We demonstrate
that the data analysis pipeline is not only flexible enough
to capture nonlinear performance degradation (Hashemi et al.,
2020; French et al., 2021; Hashemi et al., 2021; Theristis et al., 2021;
Lindig et al., 2022; Livera et al., 2022a), but also capable of extracting
performance loss and changes in electrical features from I-V curves
at outdoor conditions (Li et al., 2023; Meena et al., 2022; Jain et al.,
2020; Livera et al., 2019). Furthermore, our pipeline can construct
data-driven network models of degradation pathways, allowing for
the comparison of degradationmechanism among different variants
(Nalin Venkat et al., 2023). We conducted a comparative analysis of
the degradation of PERC versus Al-BSF, full-sized modules versus
minimodules, and the impact of packaging variations in field.

2 Methods and data sources

2.1 Full-sized modules and
standard-test-condition (STC) I-V

Thefield trial (FT) system usedCanadian Solar Inc. Commercial
PERC and Al-BSF full-sized modules in a string configuration
during outdoor exposure in Suzhou, China, located in a Cfa
Köppen-Geiger climate zone, as shown in Figure 1. The cells were
boron-doped. Arrangements of 9–12 modules were operated in
series with each other, with one of the modules shorted during each
exposure step for around 6 months. Power, current, and voltage
were measured from the string during operation and the modules
were taken down for indoor I-V at standard test conditions (STC)
and electroluminescent (EL) measurements approximately every
6 months. Four different trials were ongoing with each trial being

FIGURE 1
Field trial system using Canadian Solar Inc. Commercial full-sized modules during outdoor exposure in Shouzhu China.
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TABLE 1 Full-sizedmodule variants in the field trial exposure.

Cell Type Model Module Count Exposure Length
(month)

PERC, mono, full-cell 6K-MS 12 44

PERC, mono, half-cell 3V-MS 10 38

Al-BSF, multi, full-cell 6V-P 10 38

dedicated to a certain variant or model of PV module. The FT
included modules with half- and full-cells, Al-BSF and PERC cells,
all summarized in Table 1.

2.2 Minimodules and field I-V

Sixteen 4-cell minimodules fabricated by Canadian Solar,
Inc. were fielded at the SDLE SunFarm in Cleveland, OH.
They were installed in July 2018 for continuous I-V and the
maximum output power (PMP) tracking. These 16 minimodules
include boron-doped Al-BSF and PERC cells, and 4 different
packaging strategies that include ethylene-vinyl acetate (EVA) and
polyolefin (POE) encapsulants, and KPX and PPf backsheets from
Cybrid Technologies. KPX is PVDF (polyvinylidene fluoride) based
composite backsheet with outside layer K indicating Kynar R© PVDF,
P standing for PET (Polyethylene terephthalate) core layer, and X
meaning inner polymer layer with or without fluorine. PPf is PET-
based composite backsheet with outside layer P meaning enhanced
PET, core P standing for PET, and inner f representing fluorine
polymer layer. KPX has a lower vapor transmission rate (VTR)
as compared to PPf. The 4 variations of packaging were selected
from the full set of minimodules (6 total packaging strategies)
because they represent the extremes of the cell environment to be
tested, while allowing for 2 modules of each type to be fielded
for the remainder of the project. Minimodules were connected
via 4-point electrical connection to Daystar Multi-Tracer Load
Units for 10 min I-V curve tracing and 1 min PMP data. This totals
to a combined I-V sum of over 450,000 across all minimodules.
Each minimodule also had continuous temperature data via a
thermocouple located on the backsheet of each module. Two of the
minimodules (the PERC cells with PPf backsheets) were taken down
shortly after installation due to channel errors in the Daystar.

2.3 Data analysis tools

We propose a pipeline method that utilizes open-source data-
driven R packages to not only analyze field Power and I-V outdoor
data for performance loss degradation but also infer degradation
pathways.

2.3.1 PVplr: performance loss rate analysis
The long term performance of PV systems in outdoor

environments is usually quantified performance loss rate (PLR)
(Jordan et al., 2016). The units of this metric are % per annum (%/a)
or loss in power output per year of operation. The sign of this metric
aligns with the direction of power change. A typical PLR calculation
requires data filtering, model selection, outlier analysis, etc.

PVplr (Curran et al., 2020a; Curran et al., 2020b) is anR package
(R Core Team, 2020) that allowed for the calculation of PLR with
several different methods and parameters, as opposed to one
universal method. This package makes it easy to test different
filtering criteria and models to view the impact on a final PLR
calculation. Comparisons between PLR methods showed that
universal temperature corrections (the XbX + UTC model in PVplr)
showed the most consistency and least uncertainty between results
because it did not extrapolate temperature between seasonal periods,
so this is themethod that is used for allPLR calculations in this study.

Another benefit of the PVplr package is the unique ability to
calculate non-linear PLR results using piecewise linear models.
The piecewise linear model splits a model into linear components
with different slopes which are bound by changepoints. While the
number of changepoints must be supplied to the model, their values
are determined automatically by the fitting algorithm and define
where the slope changes occur within the model. This can be used
to capture non-linear trends in PV data while still providing the
interpretability of linear PLR results, which are the most common.
Non-linear PLR is becomingmore commonplace with the transition
to PERC, given the greater susceptibility to LID and LeTID, which
generally create a higher value of loss in a short period at the
beginning of operation. Some module warranties have two rated
PLR values; one for the first year and a different one for the following
years.

2.3.2 ddiv: data-driven I-V feature extraction
The R package name ddiv (Huang et al., 2018a) stands for data

driven I-V. The raw data of an I-V curve are the current and voltage
values measured during the sweep. The number of measurements,
or data points collected per I-V curve, depends on the device and
setting used to take the curve, but higher resolution is generally
better as it makes it easier to define the I-V trend. Typical numbers
of data points include several hundreds to thousands, but can be as
low as 40. The raw I-V curves themselves provide little quantitative
information, but the parameters that can be extracted from them
are desired for characterization. While some values, like the open-
circuit voltage (VOC), short-circuit current (ISC), and maximum
power can be pulled directly from the data given a high enough
resolution, others require more complex analysis to extract. Series
resistances (Rs) and shunt resistances (Rsh) require slope calculations
at the start and end of the curves extrapolated down to, or near, the
end points of the curve. Also, in cases with low resolution I-V curves,
it becomes more likely that the actual maximum power will fall
further between two measurements, leading to a lower than actual
max power.

With indoor methods of I-V, tracing the machine software
will typically provide feature results from measured curves, but
this can be inconsistent between devices with different software.
Additionally, outdoor I-V measurements are unlikely to have their
features auto-reported at all. To account for problems like this, the
ddiv package was developed to automatically extract I-V feature
results from curves. The ddiv package uses spline fitting and moving
regression to interpolate higher resolution curves and extract slopes
from key points. It provides a consistent and automated way to
extract results from curves from any source. It is particularly useful
in outdoor I-V timeseries, having been demonstrated on datasets
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consisting of millions of I-V curves. The Suns-VOC package uses this
package as a dependency in its extraction of I-V features as well.

2.3.3 Suns-VOC: reconstruct pseudo I-V curves
for degradation and loss factors

The Suns-VOC R package (Wang et al., 2020a) takes the concept
of indoor Suns-VOC measurements (Sinton and Cuevas, 2000)
and applies it to outdoor I-V datastreams. Similar to power
timeseries measurements, I-V timeseries collect I-V curves at set
intervals, usually on the order of every 10 min, of modules under
outdoor exposure. Being outdoors, there is much less control over
the environment, with I-V curves being taken with significant
variation in irradiance and temperature. Despite this variance in
weather conditions, they can be corrected with enough data. I-V
curves taken in a controlled indoor setting will typically have
well controlled irradiance and temperature to ensure consistency
between subsequentmeasurements, making comparisons easier and
requiring less data overall.

VOC measurements are taken with every I-V curve and can be
corrected for temperature, leaving a series of VOC measurements
dependent on the outdoor irradiance when the curve wasmeasured.
Thepseudo I-V curves can be built from these temperature corrected
VOC measurements taken over a range of outdoor irradiance. Once
the ideal pseudo I-V curve has been built, the other I-V curves can be
corrected to ideal conditions based on temperature and irradiance
and compared to the ideal. The differences between the measured
and ideal I-V curves provide information about mechanistic
loss factors, just as with indoor Suns-VOC characterization. By
comparing the idealized and real curves, one can quantify specific
loss parameters and directly observe the wattage lost for each
one. The standard loss parameters quantified by this procedure
are the uniform current, current mismatch, series resistance, and

recombination losses. A visual of these loss parameters is given in
Figure 2.

The individual mechanisms are described as follows:

• Uniform current loss—power change due to the ISC difference
from the ideal curve
• Current mismatch—power change due to I-V curve steps

created by ISC differences between cells
• Series resistance—power change due to series resistance
• Recombination loss—power change due to a decrease in VOC

through carrier recombination

2.3.4 netSEM: network modeling of degradation
pathways using Markvonian principle

TheRpackage “netSEM v0.5.0” (Huang et al., 2018b) conducts a
network statistical analysis (network structural equation modeling)
on a dataframe of coincident observations of multiple continuous
variables (Bruckman et al., 2013; French et al., 2015). This analysis
usesMarkvonian Principal and builds a pathwaymodel by exploring
a pool of domain knowledge guided by candidate statistical causal
relationships between each of the variable pairs, and selecting
the “best fit” on the basis of the goodness-of-fit statistic, such
as the adjusted R-squared value, which measures how successful
the fit is in explaining the variation of the data. The netSEM
methodology is motivated by the analysis of systems that are
experiencing degradation of some performance characteristic (or
response) under exposure to particular stressors that are considered
exogenous variables (or predictors). In addition to the direct
relationship between the exogenous variables and the endogenous
variable, netSEM investigates potential connections between them
through other covariates. The resulting relationship diagram can
be used to generate insight into the pathways of the system under

FIGURE 2
Visualization of the mechanisms extracted from the Suns-VOC package by comparing the actual I-V curves to variations of ideal I-V curves extracted
from VOC and irradiance trends. (A) shows the overlay of the I-V curves and (B) shows the flowchart of result extraction. More detailed information can
be found in Wang et al. (2020a, b). Figure is from Wang et al. (2020b).
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observation. These pathways can be good candidates for improving
the performance characteristics by identifying sequences of strong
relationships that match prior domain knowledge well.

In this study, the endogenous variable is year dy, while
the exogenous variables are uniform current loss uni_I, current
mismatch loss I_mis, series resistance loss rs, recombination
loss rec, and maximum power loss Pmp. Starting with the main
endogenous variable to the last exogenous variable through the
intermediate variables which are considered as exogenous variables,
the nonrecursive relationships usually occur. The package outputs a
flow chart style diagram, detailing the relevant characteristics of the
uncovered relationships between variables. The pathway threshold
cut-offs are defined by the Adj-R2 values of 0.1, 0.4, and 0.7.
Pathways with Adj-R2 values below 0.1 are considered to have no
correlation and are not connected by a line, while pathways with
Adj-R2 values above 0.7 are considered to have strong correlation
and are connected by a thick line.

3 Results

3.1 Full-sized modules and STC I-V

3.1.1 PLR analysis
The variables used in the <Stressor|Response > (<S|R >) are time

and max power. For outdoor systems, this is best quantified as a
performance loss rate (PLR), which gives the percent power loss
per year of operation. It is analogous to degradation rates used to
quantify PV performance, giving a directly comparable metric of
performance between module types. PLR values are determined
from the relationship between power and time of a system by using
the PVplr R package. We are able to capture piecewise linear PLR
values as well, making them an ideal use case for <S|R > modeling.
For clarity, PLR values that are referred to as “high” are further from
zero than PLR values described as “low” in relation to the amount of
power loss observed between them. For example, a PLR of −0.7%/a
is referred to as higher than a PLR value of −0.3%/a, as the first value
is indicative of higher power loss.

The linear and piecewise linear <S|R >models are shown below
in Figure 3 for each module type. The measurements have been
normalized to their initial values to prevent bias from different
power ratings. There is a clear changepoint trend in the Al-BSF
and half-cell PERC modules, with a high initial loss followed by
a more stable period. The full-cell PERC modules display a more
linear trend, with the linear and piecewise linear models being
more similar to each other. There are a number of highly influential
outliers in some of themodules, however, which will bias themodels
and the location of the changepoint.

One of the steps (step 4 for the half-cell PERC and Al-BSF
modules, and step 5 for the full-cell PERC modules) showed
abnormally low data. After consulting with the operators, it was
found that the modules were not properly cleaned before these
exposures, resulting in a large decrease in ISC during measurement.
As this change was not due to degradation within the modules and
they recovered by the next step, these data were removed.

For both the half-cell PERCandAl-BSFmodules, there is a sharp
drop in power between the first and second measurements. This
drop is captured by the piecewise linear models, which shows an

FIGURE 3
Linear and piecewise linear <Stressor|Response > (<S|R >) of PMP vs.
time (annum) for the CSI outdoor MPPT full-sized modules. The
full-sized modules were taken down for indoor I-V measurements at
standard test conditions (STC) every 6 months and the data are
corrected based on their initial performance. Full-szied modules of
each type are grouped and modeled together.

FIGURE 4
Comparison between I-V curves of a full-cell PERC full-sized module
from its initial measurement (module step 0) and its final measurement
(module step 6), with each step of around 6 months outdoor
exposure. The final PMP measurement of this module is an outlier
compared to most of the other modules. Differences between the
curves show that fill factor loss is the contributing mode of power loss.

initial loss of −1.70% for the Al-BSF modules and −3.45% for the
half-cell PERC modules. After the initial loss period, the modules
stabilize and power loss decreases.

It can be observed in Figure 3 that a number of outliers appear
at a lower power than the others with the Al-BSF full-cell and
particularly the full-cell PERC modules. At the final step, the PERC
full-cell modules vary between 99% and 94% of initial power.
Comparing the I-V curves of an example outlier (Figure 4) shows
that the loss in power is primarily due to a decrease in the fill
factor of the module, which suggests that this is a legitimate change
in the performance of the module and not a measurement error.
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TABLE 2 Numeric PLR results of the piecewise linear models shown in
Figure 3. PLR 1 indicates the first linear segment and PLR 2 refers to the
second.

Cell type PLR 1 (%/a) PLR 2 (%/a) CP Adj-R2 83.4% conf.

Multi Al-BSF −3.40 −0.57 0.50 0.71 0.16

Half PERC −6.09 −0.27 0.50 0.91 0.12

Full PERC −0.92 −0.53 0.50 0.61 0.09

As the outliers appear to be legitimate losses, we do not want to
remove them from analysis, and instead incorporate them into the
uncertainty of our results.

This data trend can be directly used to evaluate the PLR for each
of the module groups. For the first calculation, the data are grouped
together for each module type and a single model is built for each
group. These are the models shown in Figure 3. As some of the data
show non-linear trends, non-linear PLR is evaluated using a single
changepoint model through the PVplr package (Curran A. et al.,
2020). PLR results for each segment are listed in Table 2, along
with the Adj-R2, changepoint, and confidence interval for each
model.

The Al-BSF modules showed a fitted PLR value of −3.40%/a for
the first segment and −0.57%/a for the second, matching the result
observed in the piecewise model fit with a trend of a high initial loss
then followed by a stable period. The other module with a similar
trend, PERC half-cell, showed a similar trendwith higher initial PLR
of −6.09%/a followed by −0.27%/a after the changepoint. The PERC
full-cell modules did not show as strong a changepoint trend as the
other modules, seen in both the lower adj-R2 and the similar PLR

values for each segment. The PLR values do follow a trend of the
first being higher than the second, however, the confidence intervals
overlap, so a statistically significant difference between the two PLR
values is not established.

Themodels of the groupedmodules are potentially biased by the
outliers observed after 3 years of exposure. To address the outliers’
influence on the models, we fit our <S|R > models again to the
individual models and compared the results, instead of modeling
them all together. Figure 5 shows the distribution of the piecewise
linear PLR values for both the first and second segment. There are
only two segments, as these are single changepoint models. The
original calculations from modeling all the modules together are
also shown by the diamonds to the right of each boxplot, with their
83.4% confidence intervals. Some of the confidence intervals could
not be shown for the first segment, as there was only one data point
available in that range if the changepoint occurs early on in the
timeseries. It is observed that the values calculated by modeling
the modules together trend very closely with the distributions of
the individual module calculations. The half-cell PERC and Al-BSF
modules show a much stronger changepoint trend given the clear
difference between the first and second PLR values for each segment.
Each of these modules shows a high initial loss followed by a longer
period of stability. The full-cell PERC modules on the other hand
show similar distributions for both segments, again due to the more
linear trend. When modeling individually, the outliers are separate
and more visible compared to the more regular modules.

Information about the fitting and changepoint magnitudes of
the models are given in Figure 6. When modeling by individual
module, the Pred-R2 could not be calculated as there were only 5–6
data points, so the Adj-R2 of each model is shown instead. Though
there is a range of fitting by individual module, all modules show

FIGURE 5
Performance loss rate (PLR) values (% per annum) for the first and second segments of the piecewise linear <Stressor|Response > (<S|R >) for each
individual full-sized module. The results of the models built from combining the modules are shown by the diamonds to the right of each boxplot.
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FIGURE 6
Adj-R2 and changepoint magnitude for the individual <Stressor|Response > (<S|R >) models. Pred-R2 could not be calculated as there was not enough
indoor I-V measurement data at standard test conditions (STC) for each field-exposed full-sized module.

a median Adj-R2 above 0.9. Again, it is made clear that the full-cell
PERC modules show a very inconsistent piecewise linear trend. The
changepoints are very consistently located for the Al-BSF and half-
cell PERC modules, however, the full-cell PERC piecewise models
fit changepoints across the time range of the system, indicating an
inconsistent changepoint trend between modules.

3.1.2 I-V features
The Current-Voltage (I-V) features of these modules are

shown below in Figure 7, colored by each of the module groups.
Corresponding with an initial loss in max power, there is a drop
between the first and second steps in ISC for the half-cell PERC and
Al-BSF modules, and a drop in VOC as well for the half-cell PERC
modules. The series resistance and fill factor are more stable for all
module types. The changes in these features are most significant
for the half-cell PERC modules, which also show the highest
power drop. Given the stability of the measurements of the other
modules, this is likely a feature of light induced degradation (LID)
with a mixture of boron-oxygen related light induced degradation
(BO-LID) and light and elevated temperature induced degradation
(LeTID) occurring during the initial 6 months of exposure and
saturating afterwards. The exact time frame of the LID cannot
be assessed, as it occurred between the first two measurements.

3.2 Minimodules and field I-V

3.2.1 PLR analysis
PLR values for the individualminimoduleswere calculated using

the maximum output power (PMP) tracking and the PVplr package.

The first 30 weeks of data were excluded due to a breakdown of the
load units capturing the measurements, and they had to be sent out
for shipment. This led to sparse data in the beginning of the time
series, which strongly influenced themodeling. As there was enough
data to satisfy 2 years of exposure without this initial gap period,
it was removed. Linear and piecewise linear <S|R > models are
represented by the linear and piecewise linear PLR values. Examples
of two of theminimodules are given in Figures 8, 9 for the lowest and
highest observed loss in the piecewise linear models, respectively. It
is observed that in modules with high loss, such as in Figure 9, there
is a strong segmented behavior with high initial losses followed by a
period of stability.

The disparities in piecewise calculated loss make more sense
when we observe all of the PLR values together in Figure 10. Even
among modules of the same type there can be large disparities. The
PERC modules show some of the lowest values of PLR, however,
this is inconsistent, with significantly different PLR being observed
between modules with the same cell or packaging combinations.
This would suggest that performance is highly susceptible to factors
outside of packaging degradation. It is possible that soiling or
differences in wiring are creating different performances between
minimodules.

3.2.2 Suns-VOC power loss features
Suns-VOC loss mechanisms are extracted from the I-V curve

timeseries for each of the minimodules. Two examples of the
resulting trend are given, from the same modules shown with
the highest and lowest PLR results. Figure 11 shows the low PLR
module and Figure 12 is the highest PLR module. In both cases, the
recombination losses and current mismatch losses cluster strongly
around zero, showing no observable trend over time. The other two
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FIGURE 7
Additional I-V features changes over time (annum) of the full-sized modules colored by their cell types. Initial losses can be seen in ISC and VOC for the
half-cell PERC modules, which correlates with an observed initial PMP loss.

FIGURE 8
Piecewise linear performance loss rate (PLR) fit result from the field
I-V data of the minimodule with the lowest loss. Minimodule variant is
Al-BSF with POE/KPX encapsulant and backsheet.

mechanisms, uniform current and series resistance, show significant
deviations from zero, with uniform current being positive and series
resistance being negative. The series resistance loss refers to power
losses due to the existence of any series resistance, so this should
always be less than zero for any real module. Comparing the two
modules, however, shows that the series resistance loss is much
larger overall for the high PLRmodule (Figure 12), decreasing from

FIGURE 9
Piecewise linear performance loss rate (PLR) fit result from the field
I-V data of the minimodule with the highest loss. Minimodule variant is
PERC with EVA/KPX encapsulant and backsheet.

near zero initially. This suggests that series resistance increases are
the cause of the difference in PLR between the modules.

The uniform current loss for the minimodules is unexpected,
being positive. The uniform current relates to differences between
the ISC of the determined ideal curve and the actual curve, so a
positive result indicates that the observed ISC values of the I-V
curves are higher than the curves at the start of the timeseries
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FIGURE 10
Linear performance loss rate (PLR % per annum) from the field I-V data of the outdoor CWRU minimodule. 83.4% confidence intervals are shown,
indicating differences between samples to a p-value of 0.05.

FIGURE 11
Weekly Suns-VOC loss mechanism results for the outdoor minimodule
with the lowest loss, including uniform current loss uni_I, current
mismatch loss I_mis, series resistance loss rs, and recombination loss
rec. Minimodule variant is Al-BSF with POE/KPX encapsulant and
backsheet.

which are used to define the ‘ideal’ curve for the module. This
is consistent across all of the minimodules. In outdoor timeseries
the modules are assumed to be in their most ‘ideal’ operating
conditions in the initial weeks of exposure, and will then go on
to accumulate losses due to various degradation mechanisms over
time. The initial month of data is what is used to calculate the ‘ideal’
module ISC value that all future curves will be compared to. As

FIGURE 12
Weekly Suns-VOC loss mechanism results for the outdoor minimodule
with the highest loss, including uniform current loss uni_I, current
mismatch loss I_mis, series resistance loss rs, and recombination loss
rec. Minimodule variant is PERC with EVA/KPX encapsulant and
backsheet.

such, ISC losses in the initial operation of the modules will create an
observed positive uniform current loss in the rest of the measured
operation. In this specific instance, the modules needed to be re-
wired with shorter and lower gauge wire shortly after installation
due measurement problems caused by their lower VOC values. This
post-installation change increased the ISC of themodules.While this
is not an ideal test condition, results can still be evaluated for these
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FIGURE 13
netSEM model for the low performance loss rate (PLR)minimodule.
The endogenous variable is year dy, while the exogenous variables are
uniform current loss uni_I, current mismatch loss I_mis, series
resistance loss rs, recombination loss rec, and maximum power loss
Pmp. Pathway thresholds are present at Adj-R2 of 0.1, 0.4, and 0.7.

modules. First, the uniform current loss is the only component that
is influenced by the initial ISC deviations; all other components are
evaluated independently. Second, any ISC trend in the performance
of the modules would still be observable and quantifiable, as an
initial ISC deviation only creates a magnitude offset in the trend.
This can be observed in Figures 11, 12 where sharp drops in
uniform current loss can be attributed to shading instances on the
minimodules.

3.2.3 netSEM modeling
netSEM modeling was applied next to build and identify the

relationships between the PMP and Suns-VOC loss mechanisms.
Again, examples are given for the two minimodules with high and
low PLR values. For themodels shown, theAdj-R2 thresholds for the
pathways were 0.1, 0.4, and 0.7. These levels control the thickness of
the pathways between the variables with thicker lines indicating a
better fit and no lines shown for any relationship below an Adj-R2

of 0.1. The stressor and response variables are decimal years (dy)
and predicted power (Pmp), respectively. The Pmp results are the
same as those used in the PLR calculations, so the models show the
relationships between the Suns-VOC loss variables and the PLR of the
modules.

The low PLR module (Figure 13) only shows a single pathway
between measured power and time. None of the other pathways
appear in the plot as they all have Adj-R2 values less than 0.1. The
interpretation of this is that there are no observed relationships

between any of the Suns-VOC lossmechanismswith each other, time,
or power. The only trend that is observed is dy to Pmp, which is
analogous to the PLR of themodule.While unusual, this does match
with the PLR result, which overlapped with zero. A module that is
undergoing no observable degradation would not be likely to show
trends between degradation features.

Unlike the low PLR module, the high PLR module netSEM
model (Figure 14) shows much stronger paths between its variables.
The strongest pathway by far is the dy to Pmp path (the PLR pathway),
which shows a changepoint model with an Adj-R2 of 0.921. The
strong changepoint trend was also observed in the PLR analysis
of the modules (Figure 9). The changepoint model is observed
numerous times within the netSEM model, suggesting this trend is
present in many of the mechanisms of the operation of this module.
All of the other trends show fairly low Adj-R2 values with the
exception of a stronger trend observed between the series resistance
and uniform current loss.

4 Discussion

4.1 Non-linear PLR: field I-V preferable to
STC I-V

In this study, full-sized modules were periodically retrieved
from the site every 6 months and subjected to I-V measurement
in a laboratory under Standard Test Conditions (STC). Since the
measurements were taken under the same conditions, the data
processing is straightforward and the PLR results are presented in
Figure 3.

On the other hand, minimodules were continuously monitored
outdoors for field I-V measurements, which were affected by the
changing irradiances and temperatures in the environment. The
drawback of this technique is that it needs thousands of I-V curve
measurements to build the necessary relationships between voltage
and irradiance and to extract significant differences between the
real and ideal curves. This is not a common way to measure
modules, as it is prohibitive to power production, costs more to
maintain, and generates large quantities of data that can be difficult
to analyze without the proper infrastructure. Despite this, previous
studies have found I-V timeseries datastreams to be tremendously
important in the analysis of outdoor power performance and have
had success studying them in the past Wang et al. (2020b, 2018);
Liu et al. (2019) To obtain the minimodule degradation over time,
we utilized the open-source data-driven tool ddiv package to correct
the field I-V data to the reference condition, and the results are
shown in Figures 8, 9. In some cases, particularly for minimodules
with high degradation, such as in Figure 9, we observed a segmented
behavior with high initial losses followed by a period of reduced
loss, i.e., non-linear PLR (Lindig et al., 2022; Livera et al., 2022b;
Curran A. J. et al., 2020).

Comparing the low temporal resolution STC I-V to the
continuous high-resolution field I-V, it is more challenging to
accurately identify the changepoint and the underlying degradation
mechanismbeing studied for the STC I-Vmethod.Hence,we believe
that continuous field I-Vmeasurements are preferable over STC I-V
for PV PLR analysis.
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FIGURE 14
netSEM model for the high performance loss rate (PLR)minimodule. The endogenous variable is year dy, while the exogenous variables are uniform
current loss uni_I, current mismatch loss I_mis, series resistance loss rs, recombination loss rec, and maximum power loss Pmp. Pathway thresholds are

present at Adj-R2 of 0.1, 0.4, and 0.7.

4.2 Field PLR: full-sized module preferable
to minimodule

Overall, we find PLR of full-sized modules lower and more
consistant compared to minimodules. Minimodule studies
showed inconsistent performance due to significant power loss
contributions via series resistance, likely from the wiring between
the load unit and the minimodules (Yu et al., 2023), contributing to
high power loss.

4.2.1 Performance loss
The performance losses of full-sized modules were quite low

and consistent, as shown in Figure 3. There were distributions of
performance within each module group, however, the results from
the combined models were similar to the mean and median of the
individual modules. This shows that the observed trends in the
modules, namely, the changepoint behavior in the half-cell PERC
and Al-BSF, occurred consistently across all of the 10–12 modules
in each group.

Unlike the exposure of full-sized modules, the minimodules
showed both higher PLR values than expected for fielded modules
and did not cluster by module type. There are only a few instances
of modules with the same cell and packaging combinations showing
overlappingPLR results. It is observed that PERCcells tended to have
higher PLR values with the three highest results being PERC cells,
however, the extreme nature of the results suggest influences beyond
degradation. PLR values of −5%/a over 2 years would be nearly an
order of magnitude greater than expected for commercial modules
and it is unlikely that outdoor degradation alone would create such
power loss results.

4.2.2 Degradation mechanism
For full-sized modules, there is a clear initial power loss for

the half-cell PERC and Al-BSF modules, more significantly for the

half-cell PERC module. This was observed both in the power
(Figure 3) and in the ISC (Figure 7) of the modules, with the
half-cell PERC showing an additional loss in VOC initially
(Figure 7). This is typical behavior of boron-oxygen related
light induced degradation (BO-LID), which is expected to be
observed more in PERC modules. The BO-LID effects were
not observed in the full-cell PERC modules, however, these
full-sized modules were from a separate exposure and it is
possible they were preconditioned or any BO-LID effects had
already saturated by the time the first measurements were
taken.

In comparison to full-sized modules, we observed significant
variation in the degradation mechanism of minimodules, both
between different cell/packaging variants and even within the same
module variant. While the PLR results themselves are not very
diagnostic, the Suns-VOC results in Figures 11, 12, and similarly all
the remaining results in the Supplementary Material, give additional
insight into the performance of the minimodules. In all cases, the
current mismatch and recombination values are stable at zero and
show little to no relationship to time of power in the netSEMmodels.
Recombination loss is evaluated from decreases in the open-circuit
voltage and is certainly something that would appear under cases
of LID, as was observed in the half-cell PERC full-sized modules.
Comparing the extremes of the PLR results shows a significant
difference in the amount of loss due to series resistance, which
suggests that the modules experiencing high PLR have much higher
series resistance than the lower PLR modules. While degradation
mechanisms such as metallization corrosion (Iqbal et al., 2022)
can induce series resistance increases, the high degree of power
loss suggests that the problems are external of the modules. As
minimodules havemuch lower voltage than full-sizedmodules, they
are more susceptible to the PV connectors and wiring between
them and the I-V tracer. It is possible that the observed losses in
series resistance are due to changes in the resistance between the
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load unit and the modules, which would explain why there do not
appear to be strong trends between the types ofmodules. Despite the
potential influence from the connections, there are still conclusions
that can be made from the modules. The Suns-VOC results show
clearly that theVOC of themodules are highly stable, and it is unlikely
that any recombination increase has occurred during the outdoor
period.

The example netSEM models, such as Figures 13, 14, and
similarly all the remaining results in the Supplementary Material,
show a clear pattern of signal or lack of signal in the performance
of the modules. Degradation or performance change can be thought
of as a signal over time in the measurements of a module. In a
perfect module, one would not expect any internal changes and
as such there would be no available signal to model and quantify.
Such is the case in the low PLR module. The PLR value for this
module is less than zero, but its confidence interval overlaps with
zero, so it cannot be stated that any loss at all has occurred in
its power production. As such, the netSEM model between the
power, time, and Suns-VOC features shows little signal, with only
the trend between time and power having an Adj-R2 above the low
threshold of 0.1. Conversely, the high PLR module shows much
stronger pathways, particularly between power and time. That the
improved pathway fits is an indication that there is observable
degradation over time occurring within the high PLRmodule.There
is a consistent trend in the netSEM models where the uniform
current and the series resistance show strong paths with each other.
The other Suns-VOC loss mechanisms, recombination and current
mismatch, show weaker trends between the other variables, which
is expected because they are stable over time. This implies that there
is a correlation between the series resistance and the offset between
ideal and measured ISC (Asadpour et al., 2019). Since we observed
inconsistency between the modules and there is an extreme RS loss
in some module variants, we believe that the issue should mainly
be related to the connectors and wiring between the load unit and
minimodules.

4.3 Comparable reliability: PERC vs. Al-BSF

Due to the inconsistency performance among minimodules, we
use only results of full-sized modules to compare the reliability
of PERC and Al-BSF. Piecewise PLR was able to quantify the
initial losses, −6.09%/a for half-cell PERC and −3.40%/a for Al-
BSF, however, this trend occurred between low temporal resolution
measurements. The LID losses occurred between the first and
second I-V measurements, which were taken roughly 6 months
apart. As only the start and end of this change was captured, it
is unknown at what point in this 6-month period the drop and
saturation occurred. From a PLR standpoint, the same loss in power
over a shorter period of time would lead to a more negative PLR
result. It is possible that the actual PLR quantification of the LID
would be more negative than what was calculated, however, more
measurements would have to have been taken at the start of the
exposure to capture this.

As is expected, the LID effects quickly saturated and themodules
resumedmore stable trends.The PLR results after the LID saturation
is a better indicator of long term performance, so these are used
when discussing overall performance of the module. The half-cell

PERC modules were the best performers, having a PLR value of
−0.27% ± 0.12%/a, closest to zero.

The full-cell PERC and Al-BSF modules showed PLR values of
−0.53% ± 0.09%/a and −0.57% ± 0.16%/a, respectively. Although
the Al-BSF modules exhibited a lower PLR compared to the full-cell
PERC modules, their confidence intervals overlapped, suggesting
that no statistically significant difference in their performance was
observed. Overall, the PLR values were quite low and well within the
expected results for commercial modules and consistent with what
has been reported (Theristis et al., 2023; Jordan et al., 2022).

5 Conclusion

A series of outdoor exposures were performed with the intent
of observing the performance PERC and Al-BSF modules in a
realistic operating environment. The study was split into two
exposures. One with full-sized modules was exposed outdoors and
taken down periodically for indoor I-V measurements. The other
was an exposure of 4 cell minimodules with timeseries minute
interval max power and 10-min interval I-V tracking. Results from
the full-sized module study shows initial losses attributed to LID,
most significantly in half-cell PERC modules, but not in full-cell
PERC modules, which may have already saturated any LID effects.
Performance loss rate calculation showed significant changepoint
behavior due to LID effects in half-cell PERC and Al-BSF modules.
Once LID had saturated, the half-cell PERC modules showed
the best performance with a PLR value of −0.27% ± 0.12%/a.
The full-cell PERC and Al-BSF modules showed PLR values of
−0.53% ± 0.09%/a and −0.57% ± 0.16%/a, respectively, which have
overlapping confidence intervals and are therefore not statistically
significant.

The minimodule study showed highly variable PLR results,
which did not group by module type. Suns-VOC analysis showed
a strong influence of series resistance, likely from the wiring
between the load unit and the minimodules, contributing to
high power loss. Despite this, it was observed that recombination
loss did not occur within the modules, suggesting resistance to
LID degradation. Network structural equation models show better
correlation betweenmechanistic variables inmoduleswith highPLR
results, indicating mechanistic change.

Data availability statement

The raw data supporting the conclusion of this article will be
made available by the authors, without undue reservation.

Author contributions

JB, LB, and RF oversaw and led the research. AC, LB, JB, and
RF contributed to conception and design of the study. AC, JL, XY,
and J-NJ collected the data and organized the database. AC and JL
performed the statistical analysis and created fit models. BB and J-
NJ provided materials and samples. AC, XY, JB, LB, and RF wrote

Frontiers in Energy Research 12 frontiersin.org

https://doi.org/10.3389/fenrg.2023.1127775
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Curran et al. 10.3389/fenrg.2023.1127775

sections of themanuscript. All authors contributed to the article and
approved the submitted version.

Funding

This material is based upon work supported by the U.S.
Department of Energy’s Office of Energy Efficiency and Renewable
Energy (EERE) under Solar Energy Technologies Office (SETO)
Agreement Number DE-EE-0008172.

Acknowledgments

This work made use of the High Performance Computing
Resource in the Core Facility for Advanced Research Computing at
Case Western Reserve University.

Conflict of interest

Author BB was employed by Cybrid Technologies Inc. Author
J-NJ was employed by CSI Solar Co. Ltd.

The remaining authors declare that the research was
conducted in the absence of any commercial or financial
relationships that could be construed as a potential conflict of
interest.

Publisher’s note

All claims expressed in this article are solely those
of the authors and do not necessarily represent those of
their affiliated organizations, or those of the publisher,
the editors and the reviewers. Any product that may be
evaluated in this article, or claim that may be made by
its manufacturer, is not guaranteed or endorsed by the
publisher.

Supplementary material

The Supplementary Material for this article can be
found online at: https://www.frontiersin.org/articles/10.3389/
fenrg.2023.1127775/full#supplementary-material

References

Asadpour, R., Sun, X., and Alam, M. A. (2019). Electrical signatures of corrosion and
solder bond failure in c-Si solar cells and modules. IEEE J. Photovoltaics 9, 759–767.
doi:10.1109/JPHOTOV.2019.2896898

Braid, J. L., Curran, A. J., Sun, J., Schneller, E. J., Fada, J. S., Liu, J., et al. (2018). “El
and i-v correlation for degradation of perc vs. al-bsf commercial modules in accelerated
exposures,” in 2017 IEEE 44th Photovoltaic Specialist Conference (PVSC), 1261–1266.
doi:10.1109/PVSC.2018.8547420

Bruckman, L. S., Wheeler, N. R., Ma, J., Wang, E., Wang, C. K., Chou, I., et al. (2013).
Statistical and domain analytics applied to PVmodule lifetime and degradation science.
IEEE Access 1, 384–403. doi:10.1109/ACCESS.2013.2267611

Curran, A., Burleyson, T., Lindig, S., Moser, D., and French, R. (2020a). PVplr:
Performance loss rate analysis pipeline. R. package version

Curran, A. J., Burleyson, T. L., Rath, K., Xin, A. S., Lindig, S., Moser, D., et al. (2020b).
“Pvplr: R package implementation of multiple filters and algorithms for time-series
performance loss rate analysis,” in 2020 47th IEEE Photovoltaic Specialists Conference
(PVSC) (IEEE), 2086–2090. doi:10.1109/PVSC45281.2020.9300807

Deline, C. A., Ayala Pelaez, S., Marion, W. F., Sekulic, W. R., Woodhouse, M. A., and
Stein, J. (2019). Bifacial PV system performance: Separating fact from fiction. In Tech.
rep. Golden, CO (United States), Chicago IL: National Renewable Energy Lab NREL

Ding, S., Yang, C., Qin, C., Ai, B., Sun, X., Yang, J., et al. (2022). Comparison of LID
and electrical injection regeneration of PERC and Al-bsf solar cells from a cz-Si ingot.
Energies 15, 7764. doi:10.3390/en15207764

Fokuhl, E., Naeem, T., Schmid, A., Gebhardt, P., Geipel, T., and Philipp, D. (2019).
“Letid—A comparison of test methods on module level,” in 36th European PV Solar
Energy Conference and Exhibition, 816–821.36

Fokuhl, E., Philipp, D., Mülhöfer, G., and Gebhardt, P. (2021). LID and LETID
evolution of PV modules during outdoor operation and indoor tests. EPJ Photovoltaics
12, 9. doi:10.1051/epjpv/2021009

French, R. H., Bruckman, L. S., Moser, D., Lindig, S., van Iseghem, M., Müller, B.,
et al. (2021). “Assessment of performance loss rate of PV power systems,” in Assessment
of performance loss rate of PV power systems (Geneva, Switzerland: IEA-PVPS). T13-
22:2021 in IEA-PVPS 78.

French, R. H., Podgornik, R., Peshek, T. J., Bruckman, L. S., Xu, Y., Wheeler, N.
R., et al. (2015). Degradation science: Mesoscopic evolution and temporal analytics
of photovoltaic energy materials. Curr. Opin. Solid State Mater. Sci. 19, 212–226.
doi:10.1016/j.cossms.2014.12.008

Hashemi, B., Cretu, A.-M., and Taheri, S. (2020). Snow loss prediction for
photovoltaic farms using computational intelligence techniques. IEEE J. Photovoltaics
10, 1044–1052. doi:10.1109/JPHOTOV.2020.2987158

Hashemi, B., Taheri, S., Cretu, A.-M., and Pouresmaeil, E. (2021). Systematic
photovoltaic system power losses calculation and modeling using computational
intelligence techniques. Appl. Energy 284, 116396. doi:10.1016/j.apenergy.2020.116396

Huang, W.-H., Ma, X., and French, R. H. (2018a). ddiv: Data driven I-v feature
extraction. R package version 0.1.0.

Huang, W.-H., Wheeler, N., Klinke, A., Xu, Y., Du, W., Verma, A. K., et al. (2018b).
netSEM: Network structural equation modeling. R package version 0.5.1.

Ino, Y., Heito, S., Itou, N., Niira, K., Shirasawa, K., and Takato, H. (2023).
Investigation of light-induced degradation in B-doped mono-like silicon PERC cells
by a cycling test with light soaking and dark annealing. IEEE J. Photovoltaics 13, 48–55.
doi:10.1109/JPHOTOV.2022.3229484

Iqbal, N., Colvin, D. J., Schneller, E. J., Sakthivel, T. S., Ristau, R., Huey, B. D.,
et al. (2022). Characterization of front contact degradation in monocrystalline and
multicrystalline silicon photovoltaic modules following damp heat exposure. Sol.
Energy Mater. Sol. Cells 235, 111468. doi:10.1016/j.solmat.2021.111468

Jain, P., Poon, J., Singh, J. P., Spanos, C., Sanders, S. R., and Panda, S. K. (2020).
A digital twin approach for fault diagnosis in distributed photovoltaic systems. IEEE
Trans. Power Electron. 35, 940–956. doi:10.1109/TPEL.2019.2911594

Jordan, D. C., Anderson, K., Perry, K., Muller, M., Deceglie, M., White, R., et al.
(2022). Photovoltaic fleet degradation insights. Prog. Photovoltaics Res. Appl. 30,
1166–1175. doi:10.1002/pip.3566

Jordan, D. C., Kurtz, S. R., VanSant, K., and Newmiller, J. (2016). Compendium
of photovoltaic degradation rates. Prog. Photovoltaics Res. Appl. 24, 978–989.
doi:10.1002/pip.2744

Karas, J., Repins, I., Berger, K. A., Kubicek, B., Jiang, F., Zhang, D., et al. (2023).
“Results froman international interlaboratory study on light- and elevated temperature-
induced degradation (LETID) in solar modules,” in Tech. Rep. NREL/PR-5K00-82118
(Golden, CO (United States): National Renewable Energy Lab. NREL).

Kashyap, S., Madan, J., and Pandey, R. (2022a). Design and parametric optimization
of ion-implanted PERC solar cells to achieve 22.8% efficiency: A process and device
simulation study. Sustain. Energy & Fuels 6, 3249–3262. doi:10.1039/D2SE00434H

Kashyap, S., Madan, J., Pandey, R., and Ramanujam, J. (2022b). 22.8% efficient ion
implanted PERC solar cell with a roadmap to achieve 23.5% efficiency: A process and
device simulation study. Opt. Mater. 128, 112399. doi:10.1016/j.optmat.2022.112399

Kashyap, S., Pandey, R., Madan, J., and Sharma, R. (2022c). Design and
simulations of 24.7% efficient silicide on oxide-based electrostatically doped (SILO-
ED) carrier selective contact PERC solar cell. Micro Nanostructures 165, 207200.
doi:10.1016/j.micrna.2022.207200

Kashyap, S., Pandey, R., Madan, J., and Sharma, R. (2022d). “Silicide on
oxide based carrier selective front contact for 24% efficient PERC solar

Frontiers in Energy Research 13 frontiersin.org

https://doi.org/10.3389/fenrg.2023.1127775
https://www.frontiersin.org/articles/10.3389/fenrg.2023.1127775/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fenrg.2023.1127775/full#supplementary-material
https://doi.org/10.1109/JPHOTOV.2019.2896898
https://doi.org/10.1109/PVSC.2018.8547420
https://doi.org/10.1109/ACCESS.2013.2267611
https://doi.org/10.1109/PVSC45281.2020.9300807
https://doi.org/10.3390/en15207764
https://doi.org/10.1051/epjpv/2021009
https://doi.org/10.1016/j.cossms.2014.12.008
https://doi.org/10.1109/JPHOTOV.2020.2987158
https://doi.org/10.1016/j.apenergy.2020.116396
https://doi.org/10.1109/JPHOTOV.2022.3229484
https://doi.org/10.1016/j.solmat.2021.111468
https://doi.org/10.1109/TPEL.2019.2911594
https://doi.org/10.1002/pip.3566
https://doi.org/10.1002/pip.2744
https://doi.org/10.1039/D2SE00434H
https://doi.org/10.1016/j.optmat.2022.112399
https://doi.org/10.1016/j.micrna.2022.207200
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Curran et al. 10.3389/fenrg.2023.1127775

cell,” in 2022 IEEE VLSI Device Circuit and System (VLSI DCS), 234–237.
doi:10.1109/VLSIDCS53788.2022.9811447

Kashyap, S., Shrivastav, N., Pandey, R., Madan, J., and Sharma, R. (2022e). Double
polo carrier selective contact based PERC solar cell for 25.5% conversion efficiency: A
simulation study. ECS Trans. 107, 6365–6370. doi:10.1149/10701.6365ecst

Kersten, F., Engelhart, P., Ploigt, H.-C., Stekolnikov, A., Lindner, T., Stenzel, F., et al.
(2015). “A new mc-si degradation effect called letid,” in 2015 IEEE 42nd Photovoltaic
Specialist Conference (PVSC) (IEEE), 1–5. doi:10.1109/PVSC.2015.7355684

Krauss, K., Fertig, F., Menzel, D., and Rein, S. (2015). Light-induced degradation
of silicon solar cells with aluminiumoxide passivated rear side. Energy Procedia 77,
599–606. doi:10.1016/j.egypro.2015.07.086

Li, B., Karin, T., Meyers, B. E., Chen, X., Jordan, D. C., Hansen, C. W., et al. (2023).
Determining circuit model parameters from operation data for PV system degradation
analysis: Pvpro. Sol. Energy 254, 168–181. doi:10.1016/j.solener.2023.03.011

Lindig, S., Theristis, M., and Moser, D. (2022). Best practices for photovoltaic
performance loss rate calculations. Prog. Energy 4, 022003. doi:10.1088/2516-
1083/ac655f

Lindroos, J., and Savin, H. (2016). Review of light-induced degradation
in crystalline silicon solar cells. Sol. Energy Mater. Sol. Cells 147, 115–126.
doi:10.1016/j.solmat.2015.11.047

Liu, J., Wang, M., Curran, A. J., Maroof Karimi, A., Huang, W.-h., Schnabel, E.,
et al. (2019). “Real-world PV module degradation across climate zones determined
from suns-voc, loss factors and I-V steps analysis of eight years of I-V, Pmp time-
series datastreams,” in 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC),
0680–0686. doi:10.1109/PVSC40753.2019.8980541

Livera, A., Theristis, M., Makrides, G., and Georghiou, G. E. (2019). Recent advances
in failure diagnosis techniques based on performance data analysis for grid-connected
photovoltaic systems. Renew. Energy 133, 126–143. doi:10.1016/j.renene.2018.09.101

Livera, A., Theristis, M., Micheli, L., Stein, J. S., and Georghiou, G. E. (2022a).
Failure diagnosis and trend-based performance losses routines for the detection and
classification of incidents in large-scale photovoltaic systems. Prog. Photovoltaics Res.
Appl. 30, 921–937. doi:10.1002/pip.3578

Livera, A., Tziolis, G., Theristis, M., Stein, J. S., and Georghiou, G. E. (2022b).
“Performance loss rate estimation of fielded photovoltaic systems based on statistical
change-point techniques,” in 2022 2nd International Conference on Energy
Transition in the Mediterranean Area (Thessaloniki, Greece: SyNERGY MED), 1–6.
doi:10.1109/SyNERGYMED55767.2022.9941390

López-Escalante, M., Fernández-Rodríguez, M., Caballero, L., Martín, F., Gabás,
M., and Ramos-Barrado, J. (2018). Novel encapsulant architecture on the road
to photovoltaic module power output increase. Appl. Energy 228, 1901–1910.
doi:10.1016/j.apenergy.2018.07.073

Meena, R., Kumar, M., and Gupta, R. (2022). Investigation of dominant degradation
mode in field-aged photovoltaic modules using novel differential current-voltage
analysis approach. Prog. Photovoltaics Res. Appl. 30, 1312–1324. doi:10.1002/pip.3580

Nalin Venkat, S., Yu, X., Liu, J., Wegmueller, J., Jimenez, J. C., Barcelos,
E. I., et al. (2023). Statistical analysis and degradation pathway modeling of
photovoltaic minimodules with varied packaging strategies. Front. Energy Res. 11.
doi:10.3389/fenrg.2023.1127796

Philipps, S. (2023).Photovoltaics report. Tech. Rep., fraunhofer institute for solar energy
systems, ISE. Freiburg, German.

R Core Team (2020).R: A language and environment for statistical computing. Vienna,
Austria: R Foundation for Statistical Computing.

Sinton, R. A., and Cuevas, A. (2000). “A quasi-steady-state open-circuit voltage
method for solar cell characterization,” in 16th European Photovoltaic Solar Energy
Conference, Glasgow, UK, 1–4.

Theristis, M., Livera, A., Micheli, L., Ascencio-Vásquez, J., Makrides, G., Georghiou,
G. E., et al. (2021). Comparative analysis of change-point techniques for nonlinear
photovoltaic performance degradation rate estimations. IEEE J. Photovoltaics 11,
1511–1518. doi:10.1109/JPHOTOV.2021.3112037

Theristis,M., Stein, J. S., Deline, C., Jordan, D., Robinson, C., Sekulic,W., et al. (2023).
Onymous early-life performance degradation analysis of recent photovoltaic module
technologies. Prog. Photovoltaics Res. Appl. 31, 149–160. doi:10.1002/pip.3615

Trube, J. (2022). International technology roadmap for photovoltaic 2022. Tech. Rep.
ITRPV-VDMA.

Wang, M., Burleyson, T. J., Liu, J., Curran, A. J., Gok, A., Schneller, E. J., et al.
(2020a). SunsVoc: Constructing suns-voc from outdoor time-series I-V curves. R
package version 0.1.1.

Wang, M., Curran, A. J., Schneller, E. J., Dai, J., Pradhan, A., Qin, S., et al.
(2019). “Degradation of PERC and Al-bsf photovoltaic cells with differentiated
mini-module packaging under damp heat exposure,” in 2019 IEEE 46th
Photovoltaic Specialists Conference (PVSC), Chicago, IL, USA (IEEE), 1–7.
doi:10.1109/PVSC40753.2019.9198980

Wang, M., Liu, J., Burleyson, T. J., Schneller, E. J., Davis, K. O., French, R. H., et al.
(2020b). Analytic Isc–Vocmethod and power lossmodes from outdoor time-series I–V
curves. IEEE J. Photovoltaics10, 1379–1388. doi:10.1109/JPHOTOV.2020.2993100

Wang, M., Ma, X., Huang, W., Liu, J., Curran, A. J., Schnabel, E., et al. (2018).
Evaluation of photovoltaic module performance using novel data-driven i-v feature
extraction and suns-voc determined from outdoor time-series i-v curves. In 2018
IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A
Joint Conference of 45th IEEE PVSC, 28th PVSEC 34th EU PVSEC). 0778–0783.
doi:10.1109/PVSC.2018.8547772

Yu, X., Huang, B., Lv, R., Jaubert, J.-N., Xu, T., and Zhang, G. (2023). “Pv connectors,
bottleneck of 40 years lifetime modules?,” in PV reliability workshop (Lakewood,
Colorado, 1–5.

Frontiers in Energy Research 14 frontiersin.org

https://doi.org/10.3389/fenrg.2023.1127775
https://doi.org/10.1109/VLSIDCS53788.2022.9811447
https://doi.org/10.1149/10701.6365ecst
https://doi.org/10.1109/PVSC.2015.7355684
https://doi.org/10.1016/j.egypro.2015.07.086
https://doi.org/10.1016/j.solener.2023.03.011
https://doi.org/10.1088/2516-1083/ac655f
https://doi.org/10.1088/2516-1083/ac655f
https://doi.org/10.1016/j.solmat.2015.11.047
https://doi.org/10.1109/PVSC40753.2019.8980541
https://doi.org/10.1016/j.renene.2018.09.101
https://doi.org/10.1002/pip.3578
https://doi.org/10.1109/SyNERGYMED55767.2022.9941390
https://doi.org/10.1016/j.apenergy.2018.07.073
https://doi.org/10.1002/pip.3580
https://doi.org/10.3389/fenrg.2023.1127796
https://doi.org/10.1109/JPHOTOV.2021.3112037
https://doi.org/10.1002/pip.3615
https://doi.org/10.1109/PVSC40753.2019.9198980
https://doi.org/10.1109/JPHOTOV.2020.2993100
https://doi.org/10.1109/PVSC.2018.8547772
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles

