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With the increasing number of electric vehicles, a large number of charging loads
connected to the power system will have an impact on the economic and safe
operation of the power system. In this paper a day-ahead optimal dispatching
method for distribution network (DN) with fast charging station (FCS) integrated
with photovoltaic (PV) and energy storage (ES) is proposed to deal with the
negative impact of FCS on DN. By adjusting the load distribution of DN
through the optimization decision of ES and soft open points (SOP), the
operation level of DN is improved. Firstly, based on the historical vehicle travel
data, Monte Carlo simulation method (MCSM) is applied to realize the simulation
of fast charging load. Secondly, the uncertainties of PV power is addressed via a
robust optimization model of the economic operation level of DN. Based on the
second order cone relaxation and duality theory, a two-stage optimal dispatching
model of DN is proposed. The optimization model is divided into main problem
(MP) and sub problem (SP). For MP, the access position of FCS is adjusted based on
SOP. And the charging and discharging power of ES is adjusted. The load
distribution is optimized. For SP, based on the uncertainty of PV, the worst
scenario of DN is calculated. The robustness of the proposed strategy is
guaranteed. Finally, the proposed is verified based on the IEEE 33 bus system
and a road network with 34 nodes. The simulation results show that the proposed
method can effectively relieve line congestion of DN. The operating range of the
voltage is better optimized. And the operation cost of DN is reduced significantly.
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1 Introduction

Electric vehicles (EVs) are regarded as one of the important ways to alleviate the energy
crisis and reduce carbon emissions (Li et al., 2021). However, the charging load of EVs has
greater randomness. When large-scale charging loads are connected to distribution network
(DN), the safe and economic operation of the distribution network will face huge challenges.
The random of charging time and charging place will lead to the increase of network loss, line
congestion (Zhang et al., 2021). Therefore, it is necessary to study the charging loadmodeling
of FCSs and its related regulation methods.
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On the one hand, charging load modeling is the basis for
conducting research on related optimal scheduling methods. At
present, most scholars mainly study charging load modeling from
spatiotemporal dimension (Chaudhari et al., 2018). According to the
measured vehicles arrival data, a charging load estimation model
was established, and themodel was solved based on Voronoi method
(Biviji et al., 2014; Zhang et al., 2017). At the same time, according to
the daily load, the time of use tariff mechanism was established to
influence the temporal and spatial distribution of charging load
through charging price. Although the price factor was considered,
the charging station information and road condition information
were not considered. The statistical modeling method is applied to
obtain the probability distribution of the parameters related to the
charging behavior of EVs, such as initial charging time and state of
charge (SOC). And Monte Carlo simulation method (MCSM) is
applied to obtain the charging load of EVs (Su et al., 2019). However,
in the above literature the method based on temporal dimension is
applied to predict the charging demand. The spatio-temporal
characteristics of EVs are modeled based on Markov chain. And
the charging load probability model of FCSs is obtained (Shen et al.,
2022). But the behavior simulation of electric vehicles on the road is
lacking.

On the other hand, renewable energy distribution generations
are widely used to reduce the dependence on traditional energy and
relieve the power supply pressure of power system (Li et al., 2022). In
order to reduce the impact of charging load on the distribution
network, a predictive voltage/reactive power optimization method
based on time range considering the uncertainty of photovoltaic
(PV) and load is proposed under different penetration rates of
electric vehicles (Singh et al., 2019). The user equilibrium (UE)
model of the road network (RN) is applied to plan the travel path of
EVs. Base on the randomness of charging load, a robust
optimization model (RO) of distribution network coupled with
the transport system is proposed (Wu et al., 2017). But the time-
varying of charging load is neglected. In order to mitigate the impact
of electric vehicle charging on the power system, A. (Zahedmanesh
et al., 2020) proposed a coherent horizon energy management
(CHEM) process is proposed. FCSs can relieve the fluctuation of
charging load through energy storage system (ESS). At the same
time, the power system can realize the calculation of the economic
operation of FCSs and realize the elastic distributed control of FCSs.
Bryden T. S, (2019) established the relationship between the energy
storage capacity and the charging waiting time for FCSs. The impact
of charging load on the power system has been mitigated to a certain
extent. The authors (Shao et al., 2019) proposed a two-layer queue
model to simulate the dynamic queue of FCS. The dynamic
electricity price demand function was used to establish the
charging price model, and the objective is to minimize the
charging cost of users to guide users to choose fast charging
stations. However, the above literatures only considered the
dispatching problem of a single electric vehicle, and did not
consider the impact of a large number of EVs on road network
and power system.

In addition, energy storage (ES) is one of the important
measures to mitigate the impact of FCSs on distribution network.
Considering the load characteristics of EVs, a optimal dispatching
strategy of distribution network considering fast charging stations
integrated with energy storage, which greatly is proposed to reduce

the economic operation cost (Fan et al., 2019). At the same time, soft
open points (SOP) can continuously control the active power flow
between feeders to realize the interconnection between two feeders
(Li et al., 2017; Ivic and Stefanov, 2021; Liu andWang, 2021). A two-
stage optimization strategy based on SOP is proposed to reduce the
impact of load alternating attacks (LAA) on the distribution network
(Liu et al., 2022). And a real-time voltage and VAR control (VVC)
strategy based on SOP is proposed for active distribution network to
meet the requirements of rapid voltage regulation.

Therefore, in order to further mitigate the impact of fast
charging stations on the distribution network, the main work of
this paper is as follows:

(1) In order to more accurately describe the charging load, a charge
load modeling method based MCSM is proposed. According to
the spatio-temporal characteristics of the road network, the
operation state of the road network is divided into static road
network state and dynamic road network state. The static road
network state describes the connection state of the road
network. Based on the static road network state, the travel
routes of EVs will be simulated. Dynamic road network state
describes the traffic state of the road network. Based on the
dynamic road network state, the travel time of EVs will be
simulated. Based on the spatio-temporal characteristics of the
road network and historical travel data, the MCSM is used to
realize the charging load modeling of FCSs.

(2) An optimal operation strategy of distribution network is
proposed based on the flexible application of SOP and ES.
In order to mitigate the impact of charging load on
distribution network, FCSs integrated with PV and ES are
flexibly connected to the distribution network through SOP.
The grid connection point of node of charging load can be
adjusted according to the load distribution based on the SOP
control strategy. And The load distribution status of the
distribution network can be continuously controled
through SOP. The PV and charging load can b be
integrated based on the EV control strategy. And the
impact of charging load on distribution network is reduced.

(3) A two-stage RO solution method for distribution networks is
proposed. Considering the uncertainty of PV in FCSs, the
optimization model is converted into a two-stage RO for
solution. In main problem (MP), the control of energy
storage and SOP status is realized. In sub problem (SP),
the worst scenario is calculated. And the column-and-
constraint generation (C&CG) method is applied to solve
the RO. Compared with other optimization strategies, the
method of combining SOP and energy storage proposed in
this paper can improve the economic operation level of
distribution network.

2 Charging load modeling of fast
charging station

For EVs, the road network state can generally be divided into
two categories. Therefore, the state description of the road network
system can be divided into static road network state description
matrix and dynamic road network state description matrix.
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2.1 Static road network state description
matrix

The road network structure is mainly composed of nodes and
links. The static road network state description matrix is shown
in (1).

As �
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..
.
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..
.

ln1

/
1
/
1
/

l1i
..
.

0
..
.

lni

/
1
/
1
/

l1n
..
.

lin
..
.

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (1)

Where As is the static road network state description matrix; n is the
number of node in road network; lij(i, j � 1, 2,/, n) is the length of
the link.

lij �
0 i � j
lij i ≠ j, directly connected
INF i ≠ j, not directly connected

⎧⎪⎨⎪⎩ (2)

Where INF is expressed as infinity. lij describes the distance
relationship between two associated road network nodes. When
i � j, lij represents node i. When i ≠ j, if node i is directly connected
with node j, lij represents the distance between node i and node j.
When i ≠ j, if node i is not directly connected with node j, the
distance between node i and node j is INF.

For the selection of FCSs, the shortest route is selected according
to Dijkstra algorithm. And the distance between EV and FCSs is as
follows:

LOS � ∑
i,j∈Rlink

πijlij (3)

Where LOS is the distance between EV and FCSs; πij is a binary
variable.When πij � 1, the EV passes this link.When πij ≠ 1, the EV
does not pass this link.

2.2 Dynamic road network state description
matrix

The static road network state description matrix is shown in (4).
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⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (4)

Where Ad is the dynamic road network state description matrix;
tij(i, j � 1, 2,/, n) is the travel time of the link.

tij �
0 i � j
tij i ≠ j, directly connected
INF i ≠ j, not directly connected

⎧⎪⎨⎪⎩ (5)

Where tij describes the travel time relationship between two
associated road network nodes. When i � j, tij represents node i.
When i ≠ j, if node i is directly connected with node j, tij represents
the travel time between node i and node j. When i ≠ j, if node i is
not directly connected with node j, the travel time between node i
and node j is INF.

For the selection of FCSs, the shortest route is selected according to
Dijkstra algorithm.And the travel time between EVandFCSs is as follows:

TOS � ∑
i,j∈Rlink

πijtij (6)

Where TOS is the distance between EV and FCSs.

2.3 Charging load model

EVs under normal operation state should meet the following
requirements:

30%≤ StEV ≤ 100% (7)
Where StEV is the SOC of EVs in t.

The EVs needed to be charged are described as follows:

StEV < 30% (8)
SEV ,min ≤ StEVpSEV ,max + μPchargeΔt ≤ SEV ,max (9)

Where μ is the charging efficiency; Pcharge is the charging power; Δt
is the charging time; SEV,min and SEV,max are lower and upper limits
of battery capacity respectively.

In this paper, we assume that EVs will select the nearest FCS
when the EVs need to charge. So the charging load calculation
process is shown in Figure 1.

BPR model is used to update the road network state.

tlink � t0link × 1 + α
Qlink

Clink
( )β⎛⎝ ⎞⎠ (10)

Where tlink the travel time of the link; t0link is the free travel time of
the link; Qlink is the traffic volume passing through the link; Clink is
the actual traffic capacity of the link; α and β are the undetermined
parameter of the BPR model, and the recommended values are
0.15 and 4 respectively.

FIGURE 1
Calculation flow chart of charging load.
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Therefore, the charging load of FCSs is defined as follows:

Pt,CH � Nt,CHPcharge

0≤Nt,CH ≤Npile

Nt,CH � min Npile,Nt,CH( )
⎧⎪⎨⎪⎩ (11)

Where Pt,CH is the charging load of FCS; Nt,CH is the number of
charging piles in using; Npile is the charging piles in FCS.

3 An optimal operation strategy of
distribution network considering SOP
and ES

3.1 Objective function

In this paper, the FCS is equipped with ES and PV to reduce the
negative impact of the charging load on the distribution network. At
the same time, in order to further optimize the power flow the
distribution network, SOP is applied to adjust the FCS node to
realize the optimal dispatching of the distribution network.

The objective function is to minimize the day ahead operation
cost of the distribution network.

minC � min Cstorge + Cgrid + Closs( )
� min∑T

t�1
∑NES

e�1KES
Pdis
e,t

μES
+ μESP

ch
e,t( )( ) + Kgrid

t Pgrid
t

+ Kloss ∑
i,j∈Ω

I2ij,trij( ) + μSOP∑NSOP

iSOP�1wiSOP ,t PiSOP ,t

∣∣∣∣ ∣∣∣∣( ) (12)

Where C is the day ahead dispatching cost of the distribution
network; Cstorge is the dispatching cost of ES; Cgrid is the power
purchase cost of the distribution network; Closs is the cost of power
loss; t is the time segment; T is the number of time segment; e is the
index of ES;NES is the number of ES;KES is the unit dispatching cost
of energy storage; Pdis

e,t is the discharge power of ES; P
ch
e,t is the charge

power of ES; μES is the charging and discharge efficiency of ES;K
grid
t

is the time-of-use price (TOU); Pgrid
t is the power purchase of

distribution network; Kloss is the cost coefficient of power loss; i and
j are the index of the node;Ω is the node set of distribution network;
Iij,t is the amplitude of current; rij is the resistance of line; iSOP is the
index of SOP;NSOP is the number of SOP;wiSOP,t is a binary variable;
PiSOP,t is the power of SOP; μSOP loss parameter of SOP.

3.2 Constraints

3.2.1 Power flow constraints
The Distflow model is applied for AC power flow constraints of

distribution network. And the model is convex based on the second-
order cone relaxation method. The power flow constraints are as
follows:

Pij,t + ΚjP
PV
j,t + ΚjP

ES
j,t � rijLij,t + ΚjP

SOP
loss,t + pj,t +∑

j: j→k
Pjk,t + ΚjP

CS
j,t

(13)
Qij,t � xij,tLij,t + qj,t +∑

j: j→k
Qjk,t (14)

ui,t + Lij,t r2ij + x2ij( ) � 2 rijPij,t + xijQij,t( ) + uj,t (15)

2Pij,t

2Qij,t

ui,t − Lij,t

�����������
�����������
2

≤ ui,t + Lij,t (16)

Where Pij,t is the active power of line;Κj is a binary variable; PPV
j,t the

power of PV; PES
j,t the power of ES; Lij,t is square value of Iij,t; P

SOP
loss,t is

the power loss of SOP; pj,t is the active load; PCS
j,t is the charging load;

Qij,t is the reactive power of line; xij,t is the reactance; qj,t is the
reactive load; ui,t is the is square value of voltage amplitude.

3.2.2 Voltage constraints

ui,min ≤ ui,t ≤ ui,max (17)
Where ui,min is the minimum value of ui,t; ui,min is the maximum
value of ui,t.

3.2.3 Current constraints

0≤ Lij,t ≤ Lij,max (18)
Where Lij,max is the maximum value of Lij,t.

3.2.4 EV constraints

−PES
j,max ≤PES

j,t ≤PES
j,max (19)

SESj,min ≤ S
ES

j,t
≤ SESj,max (20)

SESj,t � SESj,t−1 + PES
j,t−1 (21)

FIGURE 2
Model solving process.
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Where PES
j,max is the maximum value of PES

j,t ; S
ES
j,t is the SOC of ES;

SESj,min is the minimum value of SESj,t ; S
ES
j,max is the maximum value of

SESj,t .

3.2.5 SOP constraints

−PiSOP ,max ≤PiSOP ,t ≤PiSOP ,max (22)
Where PiSOP,max is the maximum value of PiSOP,t.

4 A two-stage RO solution method for
distribution networks considering FCSs
integrated with PV and ES

In order to solve the uncertainty of PV in distribution network, a
two-stage robust optimization model is proposed. And the solution
process is shown in Figure 2.

4.1 Optimal dispatching model

Considering the uncertainty of PV, the uncertainty of PV is
addressed by box sets, which can be expressed as:

PPV
j,t ∈ P̂

PV

j,t − ΔPPV
j,t , P̂

PV

j,t + ΔPPV
j,t[ ]

∑T

t�1
PPV
j,t − P̂

PV

j,t

∣∣∣∣∣ ∣∣∣∣∣
ΔPPV

j,t

≤ ΓPV

0≤ ΓPV ≤T

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
(23)

Where P̂
PV
j,t is the forecasting value of PV output; ΔPPV

j,t is the fluctuation
deviation of PV output; ΓPV is the uncertain adjustment parameter.

The objective function can be modeled as follows:

minC � min∑T

t�1 ∑NES

e�1KES
Pdis
e,t

μES

+ μESP
ch
e,t( )( ) +maxmin∑T

t�1K
grid
t Pgrid

t

+Kloss ∑
i,j∈Ω

Lij,t rij( ) + μSOP∑NSOP

iSOP�1wiSOP ,t PiSOP ,t

∣∣∣∣ ∣∣∣∣( )
(24)

The optimization model is described in general form:

FIGURE 3
Topological structure of road network.

FIGURE 4
Topological structure of distribution network.
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TABLE 1 Case data.

FCS ID DN ID (node) Rode node Charging pile number PV (kWh)> ES (kWh) Maximum ES power (kW)

1 1 (11) 5 8 500 500 ±200

2 1 (17) 12 8 500 500 ±200

3 1 (21) 15 8 500 500 ±200

4 2 (25) 24 8 500 500 ±200

5 3 (33) 31 8 500 500 ±200

FIGURE 5
TOU setting.

FIGURE 7
Distributionof EVs charged for the FCSs selectionof the shortestpath.

FIGURE 6
Distribution of departure vehicles.

FIGURE 8
Distribution of EVs charged for the FCSs selection of shortest the
travel time path.
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min
x∈X

ρTx +max
v∈V

min
y∈Y

kTy( ) (25)

Rx ≥ r
Ey � Dx + v
Ay ≥ ρx + a
Gy
���� ����≤ gTy

⎧⎪⎪⎨⎪⎪⎩ (26)

Where x is the optimization variable of first stage; v and y are the
optimization variables of second stage; ρ and k are the coefficient
matrix of objective function; R, E, D, A, C, G are the coefficient
matrix of the constraints; a and r are the constant column vectors.

4.2 Optimal dispatching model

The C&CG method is applied to solve the two stage RO. The
optimization model is divided into MP and SP. The form of MP is as
follows:

min ρTx +Ψ (27)
Rx ≥ r
Ψ ≥ kTyϑ
Eyϑ � Dx + vϑ
Ayϑ ≥ ρx + a
Gyϑ
���� ����2≤ gTyϑ

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(28)

Where ϑ is the iteration times; yϑ is the value of y in ϑ th iteration; vϑ
is the value of v in the worst scenario.

The form of SP is as follows:

max
v∈V

min
y∈Y

kTy (29)
Ey � Dx* + v
Ay ≥ ρx* + a
Gy
���� ����≤ gTy

⎧⎪⎨⎪⎩ (30)

For a given v, the inner problem is linear optimization problem,
which is transformed into a

“max” form according to the strong duality theory and
combined with the outer “max” problem.

max
γ1 ,γ2 ,ωi ,φi ,v

Dx* + v( )Tγ1 + ρx* + a( )Tγ2 (31)

ETγ1 + ATγ2 +∑
i

GT
i ωi + giφi( ) � k

ωi‖ ‖2≤φi

γ1, γ2 ≥ 0

⎧⎪⎪⎨⎪⎪⎩ (32)

Where γ1, γ2, ωi, φi are the dual variables.

TABLE 2 Scenario setting.

Scenario ID Scenario setting

(1) Without EV and SOP

(2) Only without SOP, equip ES

(3) Only without ES, equip SOP

(4) Equip EOP and ES (The proposed method)

TABLE 3 Uncertain adjustment parameter setting.

Parameter setting ID Parameter setting

A 1

B 7

C 15

D 24

FIGURE 9
Gateway power of DN for the shortest path.

Frontiers in Energy Research frontiersin.org07

Zhang et al. 10.3389/fenrg.2023.1126295

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1126295


There are bilinear terms in the above objective functions,
i.e., vTγ1. Based on the big M method, the optimization model
can be transformed as follows:

max
γ1 ,γ1

* ,γ2 ,ωi ,φi ,v
Dx1

*( )Tγ1 + Dx2
*( )Tγ1* + vT τ+ − τ−( ) + ρx* + a( )Tγ2

(33)

FIGURE 10
Gateway power of DN for the shortest travel time path.

FIGURE 11
Distribution of minimum voltage amplitude for the shortest path.
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ET
1 γ1 + ET

2 γ1
* + ATγ2 +∑

i

GT
i ωi + giφi( ) � k

ωi‖ ‖2 ≤φi
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After the above transformation, the calculation process is as follows:

(1) Given a set of v as the worst scenario, set the lower bound of the
objective function LB → −∞, set the upper bound of the
objective function UB → +∞, ϑ � 1.

(2) Solve the MP (27), and update the lower bound
as LB � max(LB,Ψ*

ϑ)

FIGURE 12
Distribution of minimum voltage amplitude for the shortest travel time path.

FIGURE 13
The operation cost of DN for the shortest path.
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(3) Solve the SP (33), obtain the worst scenario vϑ; update the lower
bound as LB � max(LB,Ψ*

ϑ).
(4) If UB − LB < ε, return the optimal solution. Otherwise, create

yϑ+1 and add the following constraints:

Ψ ≥ kTyϑ+1
Eyϑ+1 � Dx* + vϑ+1
Ayϑ+1 ≥ ρx* + a
Gyϑ+1
���� ����≤ gTyϑ+1

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (35)

(5) Set ϑ � ϑ + 1, and go back to (2)

5 Case study

5.1 Case data

The road network structure is shown in Figure 3. This paper
selects a road network of about 10 mile2 (Li et al., 2020). There
are 55 passable roads and the roads are two-way roads in the road
network. There are five FCS, which are respectively located at
nodes 5, 12, 15, 24, and 31. The road network data can be
obtained from previous research (Zhang et al., 2023). For the
five FCSs integrated with optical storage charging, they are
located in three different distribution networks. We select a
distribution network to verify the proposed method. The
distribution network structure is shown in Figure 4. And the
corresponding coupling data is shown in Table 1. The TOU is
shown in Figure 5. The road network vehicle trip data is
generated based on the National Household Travel Survey
(NHTS) (NHTS, 2021).

5.2 Distribution of EVs

The distribution of vehicle trips is shown in Figure 6. It can be
seen from Figures 6–8 that the number of charged EVs increases
with the increasing of the number of traveling vehicles.

5.3 Comparative analysis

Several scenarios in Table 2 are used to verify the effectiveness of the
proposed method. In order to verify the robustness of the strategy, the
uncertain adjustment parameter setting is shown in Table 3.

5.3.1 Gateway power of distribution network
The curve of distribution network gateway power is shown in Figures

9, 10. The simulation results based on the selection FCSs with the shortest
path are shown in Figure 9. And the simulation results based on the
selection FCSs with the shortest travel time path are shown in Figure 10. It
canbe seen from scenario 1 and scenario 2 thatwhenFCS is equippedwith
ES, ES can be charged in the valley periods of TOU. And ES is discharged
in the peak period of high load value. By the application of ES, the line
congestion is relieved. It can be seen from scenario 1 and scenario 3 that
when SOP is used to adjust the access position of FCS, the gateway power
of the distribution network is effectively reduced at 8:00–11:00. In scenario
4, SOP and ES are comprehensively considered. From 6:00 to 11:00, the
gateway power of scenario 4 is the lowest, which effectively reduces the
power purchase cost of DN. At the same time, based on the application of
SOP and ES the fluctuation of gateway power is reduce effectively.

The selection FCSs with the shortest path and the selection FCSs
with the shortest travel time path represent extreme cases of
uncertainty. And it can be seen from Figures 9, 10 that the

FIGURE 14
The operation cost of DN for the shortest travel time path.
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uncertainty of charging load will not affect the robustness of the
proposed strategy.

5.3.2 Distribution of voltage
In this paper, theminimumvoltage amplitude inDN at each time is

selected for comparison. It can be seen from scenario 1 and scenario

2 inFigures 11, 12 that when ES is equiped, the distribution of voltage
amplitude is significantly improved. Especially in the period from 7:
00 to 9:00, the minimum value of voltage amplitude is obviously. It can
be seen from scenario 1 and scenario 4 that when SOP and ES are
considered comprehensively, the voltage distribution of DN is
optimized obviously. The voltage amplitude between 7:00 to 9:

FIGURE 15
ES operation status of scenario 2 for the shortest path.

FIGURE 16
ES operation status of scenario 4 for the shortest path.
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00 and 18:00 to 24:00 is optimized obviously. The comparison of four
scenarios shows that the voltage amplitude can bemaintained in a better
range when the proposed method is applied.

5.3.3 Cost optimization
The operation cost is shown in Figures 13, 14. It can be seen

from the comparison between scenario 1 and scenario 2 that

when ES is applied, ES will adjust the charging and discharging
time according to TOU, which can reduce the operation cost of
DN. It can be seen from scenario 1 and scenario 3 that SOP can
adjust the access point of DN according to the load distribution,
which can effectively reduce the power loss. In Figure 13B It can
be seen from Scenario 4 that when SOP and ES are
comprehensively considered, the operating cost of DN has

FIGURE 17
ES operation status of scenario two for the shortest travel time path.

FIGURE 18
ES operation status of scenario four for the shortest travel time path.
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decreased by ¥36877.4 compared with scenario 1. And the
economic operation level of DN has been
significantly improved. The effective output power period of
PV is less than 24 h. So in Figures 13C, D, the operation costs
are equal.

5.3.4 ES dispatching
The ES dispatching strategy of scenario 2 and scenario 4 is

shown in Figures 15–18. The overall trend of the residual capacity
of ES in the two scenarios is basically consistent, which is related
to TOU of DN. When TOU is in the valley period, ES will be

FIGURE 19
Status of SOP for the shortest path.

FIGURE 20
Status of SOP for the shortest travel time path.
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charged; When TOU is in the peak period, ES will be discharged
to reduce the power purchase and the operation cost of DN. For
the ES dispatching strategy, there are some differences between
Figures 15, 16. In scenario 4, the control of SOP is also
considered.

5.3.5 SOP dispatching
The ES dispatching strategy of scenario 3 and scenario 4 is

shown in Figures 19, 20. And the SOP status settings are shown in
Table 4. In scenario 3 and scenario 4, the status of SOP is basically
consistent. The status of SOP is different between scenario 3 and
scenario 4 at 1:00 and 23:00 based on the application of ES in
Figure 19A and Figure 20B. Due to the difference of charging load,
the status of SOP is different in Figure 19C and Figure 20C.

6 Conclusion

In this paper, a robust optimal dispatching strategy of
distribution networks considering fast charging stations
integrated with photovoltaic and energy storage is proposed. The
following are some major finding:

(1) A fast charging load modeling is proposed based on the road
network model and MCSM. The road network analysis is
realized based on historical travel data and BPR model. And
the simulation and modeling of charging load is realized.

(2) A robust optimal dispatching strategy of distribution networks
considering FCS integrated with PV and ES is proposed. Based
on the cooperation of SOP and ES, the operation state of
distribution network is optimized. And the operation cost of
distribution network is reduced.
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