
Functional materials for solar
thermophotovoltaic devices in
energy conversion applications: a
review

Modupeola Dada*, Patricia Popoola, Alice Alao, Folasayo Olalere,
Evlly Mtileni, Ntanzi Lindokuhle and Makinita Shamaine

Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology, Pretoria, South
Africa

Fossil fuels are now used to meet over 80% of the world’s energy demands, but
they have the disadvantages of being unsustainable economically and polluting
the environment. Solar energy is also one of the most desired alternative forms of
renewable energy due to the quantity of direct sunlight among these sources. Due
to the difficulties with solar cells, less than 1% of this energy is harvested and
transformed into electricity. Notably, solar thermal and photovoltaic systems are
the traditional methods for converting solar energy into electricity. It can be
challenging to turn the solar energy captured by these systems into power. In
contrast to conventional conversion methods, which involve converting solar
energy directly into electricity, this article conducts a thorough investigation of
solar thermophotovoltaic devices and the high-tech materials used in solar
thermophotovoltaic systems as a solution to the conversion challenges.
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Introduction

In 2019, the global energy consumption growth rate declined by +0.6% compared to its
ever-increasing trend, contributing to slow economic growth. Consumption in Algeria and
Indonesia was dynamic; however, consumption in South Africa, Saudi Arabia, and Nigeria
continued to increase (Xu G. et al., 2020; Zhou et al., 2020). Generally, energy consumption is
a socio-economic human need, and the energy demand is met by fossil fuels such as carbon
and hydrogen compounds, from which petroleum, natural gas, and coal are derived (Sharma
and Ghoshal, 2015; Pareek et al., 2020). Coal was one of the first fossil fuels used for steam
engines, transportation, and the production of steel, while petroleum was used for fuel in
combustion engines and lighting paraffin lamps, and natural gas was used for cooking and to
generate electricity (Kalair et al., 2021; Welsby et al., 2021). Nonetheless, the adverse effects
of these fossil fuels include, but are not limited to, the emission of nitrous oxide (N2O) and
carbon monoxide (CO). Inhalation of CO causes dizziness and headaches that may lead to
death (Vohra et al., 2021; Abbasi et al., 2022). N2O, on the other hand, generates ground-
level ozone, which is harmful to crops and the respiratory system. Moreover, oil and coal
contain sulfur, which, in contact with moisture, forms sulfuric acid, resulting in very
damaging acid rain (Guenet et al., 2021; Qasim et al., 2021). Greenhouse gases are also one of
the most destructive emissions of fossil fuels, causing global warming and disrupting the
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surface temperature of the Earth from sustaining life; consequently,
alternative energy sources have been developed (Malhotra, 2020;
Shen et al., 2020). This study reviews the innovation in renewable
energy sources that are cleaner, more accessible, and derived from
natural sources. These sources include wind, geothermal, hydrogen,
hydroelectric, biomass, ocean, and solar energy.

Solar energy

The primary source of solar energy, which travels at 3.0 ×
108 m per second, is the Sun. The Sun, made up of helium gas
and hydrogen, makes this energy in its core through fusion
(Kalogirou, 2013; Gong et al., 2019). Fusion involves hydrogen
isotopes, and with the transformation of matter, it comes
together to form helium atoms, and this transformed matter
is given off as radiant energy by the Sun (Okutsu et al., 2021;
Kenjo et al., 2022). Radiant energy emitted from the Sun
reaches the Earth surface in tiny portions, approximately
1.7 × 1018 W, and these rations are enough to supply the
energy needed on Earth (Sisay, 2022). The Sun supplies
energy to different parts of the Earth in small fractions per
time, making it necessary to capture the solar energy through
solar collectors before transforming it into electricity, as shown
in Figure 1 (Panwar et al., 2011; Zhang L. et al., 2021).

Conversion of solar energy into
electricity

A solar cell built from semiconductor materials is one
device that is electronically a collector to convert solar
energy into electricity (Fukuda et al., 2020; Kim J. Y. et al.,
2020). The material used for solar cells must absorb sunlight,
which raises electrons in the light to higher-energy states, and

then the high-energy electron moves from the cell to an external
circuit (Fonash, 2012; Burlingame et al., 2020). Urbanization is
constantly increasing global electricity consumption, and like
other types of energy, the need to reduce the price of electricity
increases its supply, performance, and storage, making solar
cell devices a fundamental solution (Asongu et al., 2020; Zhang
et al., 2022). Solar thermal systems and photovoltaics are two
methods of converting solar energy into electricity (Pasupathi
et al., 2020; Rashidi et al., 2020). Solar thermal systems
comprise concentrated solar power, which uses solar energy
to generate electricity (Javadi et al., 2020; Osorio et al., 2022).
The process involves using a solar collector with a mirrored
surface to direct sunlight into a standby receiver, which, in turn,
heats a liquid. The heated liquid produces steam, which
produces electricity (Peuser et al., 2013; Ndukwu et al.,
2021). The photovoltaic process of generating electricity
involves the use of solar cells made up of silicon, which
supplies electricity when the radiant energy from sunlight
strikes the cell, triggering the electrons in the cell to move,
and this movement of electrons jerks an electric current,
switching from solar energy to electricity (Grätzel, 2005;
Prabhu and ValanArasu, 2020).

Limitations to the conversion methods

There is an absolute theoretical Shockley–Queisser (SQ)
limitation to the efficiency of conventional solar cells (Shockley
and Queisser, 1961; Markvart, 2022). The conversion of solar
energy to electricity, as shown in Figure 2 by solar cells is
established by the photoelectric effect, which is an interaction
between the transformed matter and the electromagnetic wave
(Guillemoles et al., 2019; Ehrler et al., 2020). During their
study, Shockley and Queisser (1961) realized there was a
mismatch between the emission angles and absorption;
therefore, they proposed that the Sun and solar cells act as
black bodies. To this effect, a single layer of solar cells
consisting of silicon was detailed through emission angle
restrictions, photon recycling, and optical concentration to
having an upper limit of a little above 32% for a 1.1eV gap
(Lu et al., 2021; Chen et al., 2022).

The SQ limit defines 32%–33.6% as the maximum solar energy
conversion efficiency achievable for any solar cell material (Xiang
et al., 2019; Kim S. et al., 2020). This limitation, which was
developed in 1961, is applicable to the principle of detailed
balancing, which equates the photon flux that goes into the
solar cell device with the electron or photon flux that goes out
of it at different open-circuit conditions (Rühle, 2016; Green and
Ho-Baillie, 2019).

Exploring solutions to the theoretical
limitations

In recent times, possible ways of increasing the efficiency of
solar cells above the absolute limit have been found, namely, by
adding multiple layers of solar cells, which increases the incident
intensity, the current density, and the voltage (Kim J. Y. et al., 2020;

FIGURE 1
Solar energy.
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Park, 2020). Angle restriction filters can also be used to reduce the
existing recombination current; multiple semiconductors with
several bandgaps can also be used to decrease thermal losses
and increase efficiency (Beard et al., 2013; Tennyson et al.,
2019). Axelevitch (2018) reviewed the ways of improving the
efficiency of single-junction solar cells, with specific attention
given to solar cells enhanced with the plasmon. The author
described using multi-junction solar cells, down-conversion
solar cells, up-conversion solar cells, multiple exciton
generation solar cells, solar cells with intermediate bands, and
hot carrier solar cells as enhancement mechanisms of solar cells
from the SQ limitations (Krügener et al., 2021; Yao and Hou,
2022). The possibility of using nano-structures made up of gold or
silver nanoparticles was also discussed, concluding that the
combination of an up-converter and a plasmon is a promising
solution to the SQ limitation (Chen et al., 2021; Singh and Jen,
2021). The plasmon with extreme energy photons will generate
multiple charged carriers under the absorption of one photon,
while the up-converter uses the wavelength photons to increase the
efficiency of solar cells (Gerislioglu et al., 2019; Huang et al., 2021).
Nonetheless, a preferred alternative for exceeding the SQ
limitations is the conversion of solar energy to heat first before
generating electrical power through solar thermophotovoltaic
devices, as shown in Figure 3.

Solar thermophotovoltaics and their
devices

There are several technological options for converting primary
energy into electricity. A few of them may be converted directly (for
example, PV and fuel cells), but the vast majority require the
intermediary creation of heat, which is then converted into
electricity using a heat engine (Snyder and Toberer, 2008; Shi
et al., 2020). Consequently, many other types of heat engines
have been invented, but only those based on solid state devices
(thermoelectrics and thermionics) have been widely employed,
particularly in the energy and aerospace sectors (Mahan and
Sales, 1997; Chen et al., 2003), while the dynamic systems
(Rankine, Stirling, and Brayton) are still under development until
they demonstrate high levels of reliability.

In thermoelectrics, thermal energy is directly converted into
electrical energy via thermoelectric modules, which are solid state
devices (Snyder and Ursell, 2003; Pei et al., 2012). The “Seebeck
effect,” which is the appearance of an electrical voltage induced by a
temperature gradient across a material, lies at the heart of the
conversion process. The inverse of this is the “Peltier effect,”
which causes a temperature gradient to form when voltage is
applied (Tritt, 2011; Pourkiaei et al., 2019). As a result, the
performance of the thermoelectric (TE) device is directly
dependent on the temperature gradient (DT), the thermoelectric
figure of merit (ZT), and the material parameter (Jia et al., 2021; Mao
et al., 2021). The thermoelectric efficiency is defined for power
generation by combining the Carnot efficiency (DT/Thot) (Zou
et al., 2020; Zhang Z. et al., 2021). To increase this efficiency, high ZT
values and a significant temperature differential across the
thermoelectric material are required (Yang et al., 2021). Mahan
and Sofo (1996) studied the electronic structure required to provide
a high figure of merit in thermoelectrics, and it was discovered that a
delta-shaped transport distribution maximizes thermoelectric
properties. Their result indicates that for maximum
thermoelectric efficiency, a narrow distribution of the energy of
the electrons involved in the transport process is required.

FIGURE 2
Schematic representation of the thermophotovoltaic process.

FIGURE 3
Electric power through solar thermophotovoltaic devices.
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Nonetheless, according to Sootsman et al. (2009), current
thermoelectric devices have a ZT of 0.8 and function at only
around 5%–6% efficiency. By raising ZT by a factor of 4 and
depending on DT, the estimated efficiency rises to 30%.
However, the difficulty in developing high-ZT thermoelectric
materials is attaining high electronic conductivity (s), high
thermoelectric power (S), and low thermal conductivity (k) in the
same solid. These characteristics are governed by the specifics of the
electronic structure and the dispersion of charge carriers (electrons
or holes) and so cannot be controlled independently. Dresselhaus
et al. (2007) discovered a simultaneous increase in power factor and
decrease in thermal conductivity using nanocomposites when
compared to alloy samples of the same chemical makeup;
Nandihalli et al. (2020) studied polymer-based thermoelectric
nanocomposites; the level of material performance for output
power factor PF = σS2 and energy conversion efficiency was
determined through the dimensionless figure of merit ZT =
σS2T/k (σ, S, T, andK are the electrical conductivity, Seebeck
coefficient, temperature, and thermal conductivity, respectively).
The authors concluded that the trade-off relationships between
conductivity and Seebeck coefficient in polymer-based materials,
as well as in inorganic thermoelectric (TE) materials, limit the ability
to improve TE performance. These issues can be solved, however, by
modifying the interfaces between the polymer and inorganic or
organic additives. As a result, a suitable manufacturing process is
required, in which interfacial density and defects at the interface of
nanocomposites may be regulated in order to enhance electrical
conductivity and the Seebeck coefficient at the same time. Therefore,
significant interest from researchers in developing advanced
thermoelectric properties through organic and inorganic
nanomaterial-based hybrid nanocomposites has gained popularity
among researchers (Bisht et al., 2021).

Compared to thermoelectrics, thermionic energy converters are
power generators and their thermal management process is shown
in Figure 4. The thermionic converter uses heat as its source of
energy and transfers energy through mechanical work at no point

during its operation. As a result, it is classified as a fuel cell or a
photovoltaic cell (Herring and Nichols, 1949; Schwede et al., 2010).

Thermophotovoltaics (TPV) is a solid state alternative to
thermoelectric and thermionic converters, which is very efficient.
The two most prevalent methods for harnessing solar energy are
photovoltaic, in which sunlight directly excites electron–hole pairs
in a semiconductor, and the solar-thermal technique, in which
sunlight powers a mechanical heat engine (Daneshvar et al.,
2015; Burger et al., 2020). Photovoltaic systems directly convert
solar radiation into electricity and are used to generate power from
solar energy. Another approach uses a solar collector to convert Sun
photons to thermal energy, which is then used in a thermal engine to
generate electricity (Joshi et al., 2009; Lupangu and Bansal, 2017).

Photovoltaic power generation is intermittent and only
efficiently utilizes a fraction of the Sun spectrum, but the
inherent irreversibilities of tiny heat engines make the solar-
thermal technique best suited for utility-scale power facilities. As
a result, hybrid solutions for solar power generation are becoming
increasingly important. Solar thermophotovoltaics (STPV) can also
be referred to as systems that collect and re-emit solar light as heat
radiation before directing it to photovoltaic cells (Hosenuzzaman
et al., 2015; Das et al., 2018). With the STPV system, optimization
may involve selecting an emitter spectrum and reflecting the unused
portion of the radiation from the receiver back to the emitter surface.
STPV systems’ primary features are modularity, portability, the
absence of moving parts, pollution-free operation, great
efficiency, and high-power densities. Typically, the goal is to
enhance photovoltaic conversion efficiency by matching the
spectrum of the light to the bandgap of the cell (Davies and
Luque, 1994; Wang et al., 2019). Solar thermophotovoltaics
promise to leverage the benefits of both optimal approaches by
converting sunlight into thermal emission tuned to energies that are
directly above the photovoltaic bandgap. This is achieved by using a
hot absorber–emitter with high efficiency and harnessing the entire
solar spectrum, scalability and compactness due to their solid state
nature, and dispatchability due to the ability to store energy using

FIGURE 4
Thermal management process.
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thermal or chemical means (Kohiyama et al., 2016; Chen et al.,
2020).

STPV systems have a variety of possible applications, including
electrical and thermal energy supply, grid-independent storage
appliances, waste-heat recovery, and space and aerospace power
applications. However, at high working temperatures, effective
sunlight collection in the absorber and spectrum control in the
emitter are extremely difficult (Datas and Martí, 2017; Gupta et al.,
2018); because of this limitation, earlier experimental
demonstrations have had a conversion efficiency of
approximately or below 1%. Hence, a number of factors
influence solar thermophotovoltaic efficiency, including the
sunlight concentration ratio, absorber/emitter temperature/
efficiency, photon recycling efficiency, and TPV cell
characteristics (Bitnar et al., 2013; Zhou et al., 2016).

In a study of STPV systems, a newly developed Fresnel lens was
used, and the calculated system efficiency with a tungsten emitter
achieved 35%. The system comprised a solar concentrator, an
absorber emitter, a spectrum filter, PV cell arrays, a bottom
reflector, and a cooling system. A parabolic reflector was utilized
as the concentrator in this case. The emitter might be composed of
grayscale or spectrum-selective material. Forty GaSb cells were
linked in series and positioned on the cooling system’s inner
surface. The bottom surface totally reflected heat radiation,
ensuring that it was absorbed completely by the cells (Zenker
et al., 2001; Khvostikov et al., 2007). The solar collector collects
the Sun’s rays, which subsequently radiate to the absorber surface
area. The absorber was a critical component of the STPV system,
acting as a spectrum-selective surface that transforms solar light into
thermal energy. This surface increases solar energy absorption in the
visible and near-infrared ranges while minimizing heat emission in
the infrared region (Chaudhuri, 1992; Nam et al., 2014).

Hence, the absorber surface must function at elevated
temperatures with a high energy density to achieve thermal
stability. Another selective surface that radiates heat energy
toward the PV cell is the emitter. According to the SQ limit, a
single-junction solar PV has a significant limitation in utilizing solar
energy because photons with less than the required energy to
generate electron–hole pairs are practically useless, while photons
with more energy than the bandgap result in excess energy at the PV
surface and reduce efficiency (Mojiri et al., 2013; Abbas et al., 2022).
As a result, by customizing the bandgap, emitters give the most
efficient spectrum for the PV cell.

Another innovative STPV system offers electrical energy that is
passed via the solid oxide electrolyzer cell (SOEC) to create
hydrogen. The ultimate purpose of an electrolyzer cell is to
create hydrogen from the intake water. Heat and power are
required for the electrolyzer cell to perform this feat. Thus, a
steam electrolyzer that runs at high temperatures is an effective
way to significantly cut energy use (Charache et al., 1999; Dashiell
et al., 2006). Consequently, the efficiency of numerous
intermediary energy conversion processes is critical to the
performance of STPV. The absorber converts optically focused
sunlight into heat, the absorber temperature increases, heat
conducts to the emitter, and the hot emitter thermally radiates
toward the photovoltaic cell, where radiation is eventually
harnessed to excite charge carriers and create electricity
(Kohiyama et al., 2020; Hou et al., 2023).

The overall efficiency η stpv can be expressed as a product of the
optical efficiency of concentrating sunlight (η o), the thermal
efficiency of converting and delivering sunlight as heat to the
emitter (η t), and the efficiency of generating electrical power
from the thermal emission (η tpv) (Tervo et al., 2020):

η stpv � η o η t η tpv.

The TPV efficiency η tpv hinges on the spectral properties and
temperature of the emitter. A spectrally selective emitter should have
a high emittance for energies above the photovoltaic bandgap (Eg)
and a low emittance for energies below the bandgap. To excite
enough thermal modes for substantial emission above the bandgap,
the emitter temperature should ideally be high enough that Planck’s
blackbody peak coincides with the bandgap; in other words, by
Wien’s displacement law (Tian et al., 2021)

Topt
e ≈ 2336 K eV − 1[ ] · Eg.

The emitter’s high-temperature operation faces two major
obstacles to a successful STPV power conversion: efficiently
collecting sunlight to meet Topt

e and preserving spectral selectivity
at raised temperatures. For the absorber, one approach to effectively
enhance the intrinsic solar absorptivity of materials is to use
macrocavity geometries. Because of the high aspect ratio of the
cavity needed to enhance absorption, this approach typically
requires high levels of optical concentration to reach Topt

e . A high
optical concentration necessitates sophisticated systems with poor
optical efficiencies (η o ≈ 65%). Tungsten has poor inherent
spectrum selectivity as an emitter at Topt

e because its emissivity at
low photon energies (<Eg) increases with temperature, accompanied
by an increase in electrical resistance. Ultimately, depending on the
intrinsic spectral properties of materials for their absorber–emitter
performance is limited with experimental STPV conversion
efficiencies. Hence, to improve the performance of the
absorber–emitter, the design of structured surfaces with spectral
properties approaching those of ideal STPV components is achieved
with simulation studies using realistic nanophotonic surfaces, which
predict STPV efficiencies exceeding 40% (Bhatt et al., 2020).

Solar thermal generators, which offer very high energetically
dense thermal storage, are an eventual alternative to solar PV
because an STPV system requires a broadband absorber capable
of absorbing the entire solar spectrum, a narrowband emitter
capable of converting the absorber’s absorbed energy in the form
of heat to photons in a narrowband spectrum just above the bandgap
of the PV cell, and a low bandgap PV cell capable of effectively
generating electron–hole pairs while avoiding thermalization losses
(Xu Y. et al., 2020).

The broadband absorber and narrow band emitter create an
intermediate structure that may be built with metamaterials and
their two-dimensional metasurface equivalents (Liu et al., 2019).
Metasurfaces have the special benefit of being compact and having a
high absorptance. To produce strong absorptance across a wide
range of incidence angles, both the absorber and the emitter should
be angle-insensitive (Anggraini et al., 2022). The major goal in both
circumstances is to maximize the absorptance profile since,
according to Kirchhoff’s Law, absorptance equals emittance in
thermodynamic equilibrium; furthermore, because the STPV
system must function under high-temperature settings, the
materials used to construct the absorbers and emitters are
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carefully chosen from a limited number of refractory materials
(Azzali et al., 2021; Bendelala and Cheknane, 2022). Nevertheless,
oxidation is a significant issue when employing refractory materials
(Rana et al., 2021). Most refractory metals with high melting points
oxidize at significantly lower temperatures and pressures. Tungsten
(W), rhenium (Re), tantalum (Ta), and titanium nitride (TiN) are
refractory metals with extremely high melting temperatures of
3695.15 K, 3458.15 K, 3290.15 K, and 3203.15 K, respectively.
Ongoing research on absorbers, emitters, and STPV systems in
general is hampered by non-planar three-dimensional (3D) or
multilayer designs and reduced efficiency (Tong, 2018).
Fabrication of 3D designs is inherently complex for the primary
lens (or mirror), the absorber, the PV cell, and a photon recuperator
mechanism, which are the key components of TPV systems
(Palfinger, 2006).

Hence, the TPV efficiency is optimized by optimizing three
parameters: absorber, PV cell temperatures, and cell voltage. When
photons of above-bandgap energy released by the heat emitter are
absorbed by the PV cell, the photovoltaic effect produces electron-
hole pairs (EHPs) (i.e., photogeneration) (Zou et al., 2020; Ren et al.,
2021; Zheng et al., 2021). When EHPs in a PV cell are recombined,
photons with energies larger than the bandgap are released
(i.e., radiative recombination). The above-bandgap spectral
radiation released by the PV cell quantum efficiency (Qe) is
mostly the result of radiative recombination (Prentice, 1999).
Although Qe comprises a free carrier and lattice emission in the
PV cell, its contributions are unimportant to photogeneration or
radiative recombination. The photocurrent flows through the
external circuit as EHPs produced by photogeneration and
radiative recombination undergo charge separation and migrate
to electrodes (Sahoo and Mishra, 2018). Charge carriers that are
lost due to recombination (non-radiative, radiative, and surface
recombination) are unable to contribute to photocurrent
production. Internal quantum efficiency is defined as the ratio of
the number of created EHPs that may be employed for photocurrent
production to the number of absorbed photons (Goodnick and
Honsberg, 2022).

Advanced NF-TPV device ideas, particularly hybrid devices
with NF-TPV integrated with a thermionic device or light-
emitting diode and NF-TPV devices with multi-junction PV cells,
are gaining research interest (Song et al., 2022). The trade-off
between resistance and shading losses in the frontside is
mitigated by serial integration of thermionic and
thermophotovoltaic devices as a means of resolving the
difficulties in an NF-TPV device. The near-field
thermophotovoltaic (nTiPV) device with a thermionic cathode
[i.e., LaB6] and an anode [i.e., BaF2] is positioned on the emitter
and PV cell sides of the NF-TPV device, respectively (Datas and
Vaillon, 2021). Electrons are emitted from the heated cathode and
transmitted to the anode through the thermionic effect in nTiPV
devices, along with photons. Electrons passing through the anode
and reaching the top side of the PV cell negate the accumulated holes
caused by the photovoltaic effect (Qiu et al., 2022). As a result, an
electrical connection is created via the vacuum, eliminating the
necessity for a frontside contact electrode. Additionally, electrons
arriving at the PV cell’s backside electrode are given to the emitter
cathode, releasing the extra-potential of thermionic and
photovoltaic effects. The elimination of the trade-off between

series resistance and shading losses opens the door to
significantly improved performance, even for scaled NF-TPV
devices (Song et al., 2022). The space charge effect creates an
electrostatic potential within the vacuum gap, acting as a
potential barrier to thermionic transfer. When the vacuum gap
approaches the near-field regime, not only is photon transport
accelerated but also thermionic electron transport since the
electric potential barrier is reduced (Khalid et al., 2016; Xiao
et al., 2017).

As a result, with no frontside contact electrode, increased
photocurrent from evanescent modes may be successfully
transported to the emitter side cathode. At a realizable vacuum
gap of 100 nm and an emitter temperature of 1000 K, the power
density of the nTiPV device was 3.7 times and 10.7 times higher than
that of the NF-TPV device in the same operation condition with
‘ideal (i.e., series resistance is 0 mΩ)’ and ‘realistic (i.e., series
resistance is 10 mΩ)’ conditions, respectively. With a 1-cm2

macro-scale device area with the same vacuum gap and emitter
temperature parameters, the nTiPV device had a power density of
6.73 W/cm2 and 18% conversion efficiency (Jang et al., 2016). As a
result of the trade-off between resistive and shading losses, the
nTiPV device may be promising for the macro-size application of
NF-TPV conversion. Fabrication of the anode and cathode with
sufficiently low work-functions, which is required for improved
thermionic emission in the near-field domain, still remains a
problem for the specified application (Song et al., 2022).

In contrast to PV cells, a light-emitting diode (LED) produces
luminescence by radiative recombination of bias-driven injected
charge carriers. If the TPV device’s passive emitter is replaced with
an active emitter, such as an LED, the PV cells’ above-bandgap
absorption can be boosted due to the electroluminescence created by
the LED. A PV-LED hybrid device of this type is known as a
thermophotonics (TPX) device. If the nearfield idea is implemented
in the TPX device, it is evident that the evanescent mode will
improve both PV and LED performances, resulting in a better
power density. This gadget works by driving the LED with a
portion of the electricity provided by the PV cell (Sadi et al., 2020).

A near-field TPV (nTPX) device used AlGaAs ternary
semiconductors in both the PV cell and the LED. Using rigorous
balancing analysis, they simulated the photon flow that conveys
chemical potential and the non-radiative recombination rate. When
the LED and PV cell temperatures were 600 and 300 K, respectively,
at the 10-nm vacuum gap, their nTPX device could create 9.6 W/cm2

of electrical power with a conversion efficiency of 9.8%. With the
same temperature difference, the suggested nTPX device exceeded
the record-high power output density and conversion efficiency of a
conduction-based thermoelectric generator. A TPX device’s
performance is generally more sensitive to emitter side
temperature (i.e., LED temperature) than a TPV device. First and
foremost, bandgap alignment between the LED and PV cells is
required for high-performance TPX devices. Since the bandgap
energy depends on the temperature, the performance of TPX
devices could be degraded even if the temperature of the LED
slightly deviates from the optimum point. In addition, because
parameters of the non-radiative recombination rate, such as
Auger and SRH recombination lifetimes (?Auger and ?SRH) and
intrinsic carrier concentration (??), are also functions of the
temperature, the increase in LED temperature can result in
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detrimental effects on the TPX performance; in other words, as the
LED temperature increases, ?Auger and ?SRH decrease and ??
increases (Legendre and Chapuis, 2022).

High-tech materials for solar
thermophotovoltaic devices

Conventional photovoltaic materials convert solar energy
directly to electricity; hence, they undergo theoretical limitations.
However, ways of increasing the overall efficiency are to convert
solar energy first to heat and then use the heat to generate electrical
energy (Nevala et al., 2019, Hassan et al., 2020). Table 1 shows the
solar thermophotovoltaic devices and the devices used for this

application are referred to as solar thermophotovolataics (STPV).
Devices used for this application are referred to as solar
thermophotovoltaics (STPV), with the flowchart shown in
Figure 5. STPV pairs low-efficiency conventional solar cells with
an added layer of high-tech material that helps in multiplying the SQ
limitation, making it possible for the cells to generate more power
(Alam and Khan, 2019; Wong et al., 2020). The device works on the
principle of dispersing waste solar energy as heat inside the solar cell,
a by-product of the nuclear/chemical reactions or mechanical work
(Jayawardena et al., 2020; Gong et al., 2021). The heat is then
absorbed by the transitional component at temperatures that will
allow this component to produce thermal radiation. The
configurations of the cell and the high-tech materials used in the
devices are fine-tuned to the right wavelengths for the cell to capture
light, which improves its efficiency (Guillemoles et al., 2019).

According to Jayawardena et al. (2020), perovskite cells mixed
with lead–tin as an absorber can achieve a fill factor above 80% by
post-treating the absorber with guanidinium bromide. The authors
showed that the post-treatments were favorable in aligning the
cathode and anode interfaces, thus enabling a bipolar extraction,
which resulted in the device having an area of 0.43 cm2, a fill factor
above 80% and 14.4% power conversion efficiency. Rau et al. (2005)
proposed using fluorescent collectors with photonic structures,
which act as an omnidirectional spectral band stop-filter, to
enhance the efficiency of photovoltaic solar cells, and they
concluded that the combination of fluorescent collectors with
photonic structures can close the theoretical SQ limitation while
saving about 99% of the solar cell material. Thus, the authors
recommended more research should be focused on the potential
of two- to three-dimensional photonic structures used with
fluorescent collectors. Briggs et al. (2013) developed an up-
converter solar cell using thermodynamics to exceed the SQ
limitation. The results showed that the efficiency of the solar cell
increased from 28% to 34% with an increase in the up-converter
quantum yield and capacity. Jia et al. (2016) reported the use of
silicon nanocrystals built into the dielectric matrix as a promising

FIGURE 5
STPV and its energy flow flowchart.

TABLE 1 Literature review on solar thermophotovoltaic devices.

Solar thermophotovoltaic (STPV)
device

Experimental approach Findings Efficiency
improvement

References

STPV with a carbon nanotube absorber with a 1D
Si/SiO2 photonic crystal emitter

Physical and chemical vapor
deposition

Device is compact and
planar than conventional

devices

3.2% Lenert et al. (2014), Fink et al.
(1998), Wu et al. (2021), and

(Wu et al. (2023)

STPV with a multi-walled carbon nanotube
absorber and 1D Si/SiO2 PhC emitter and the

InGaAsSb PV cell

Mathematical modelling and
experimental procedures via

electrolysis

Overall efficiency of the
device is 34% more than
conventional devices

17% Daneshpour and Mehrpooya
(2018)

Solid oxide electrolysis cells Thermodynamic modelling and
experimental procedures via

electrolysis

The model has a better
performance than low-
temperature systems

14% Ferrero et al. (2013)

STPV using simulated solar energy Thermodynamic modelling and
experimental procedures via

electrolysis

Temperature stability, no
heat exchange of fluids, and

easy to fabricate

6.2% Ungaro et al. (2015)

STPV with a micro-textured absorber and
nanostructure multilayer metal-dielectric-coated

selective emitter

Thermodynamic modelling and
experimental procedures via

electrolysis

The highest STPV system
efficiency so far

8.4% Bhatt et al. (2020)

STPV and phase-change materials (PCMs) Theoretical analysis Cost reduction and high
efficiency

3̴5% Datas et al. (2013)

Frontiers in Energy Research frontiersin.org07

Dada et al. 10.3389/fenrg.2023.1124288

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1124288


high-tech material for solar cells. Conversely, the material did not
exceed the SQ limitation; therefore, the authors investigated the
maximum efficiency of the material, and they stated that the
practical limit of the solar cell’s efficiency was 32%. Based on
these results, they made suggestions for further studies to figure
out the reason for the limitation and the proposed solution for
improving the performance of the cell.

Trupke et al. (2002) tried generating a multiple electron–hole
pair, a down-conversion high-energy photon, in enhancing the
efficiency of solar cells. The authors detailed that there was an
increment in the efficiency of the solar cell from 30.9% to 39.63%.
They investigated the reason why intermediate-band solar cells
could not exceed the SQ limitation, and they realized that the
restriction was attributed to the radiative recombination through
the intermediate band, yet they stated that suppressing the
radiative recombination by introducing a quantum ratchet to
the intermediate band can enhance the solar cell efficiency;
therefore, the authors recommended using quantum ratchets as
a more effective alternative to single-gap solar cells. On the other
hand, Wang et al. (2013) used carrier transport and photon
recycling simulation to figure out the reasons why thin-film
GaAs solar cells did not exceed the SQ limitation by studying a
single-junction thin-film solar cell and the influence of the design
parameters. The authors concluded that an increment in efficiency
will occur via enhancements on the backside mirror reflectivity
above 95%, thus naming the series resistance and the back mirror
reflectivity as the two important factors to focus on when creating
high-efficiency thin-film solar cells, while Schaller et al. (2006)
showed that charge carriers in large portions can enhance the
performance of solar cells by increasing the photon to exciton
conversion by 700%.

Xu et al. (2015) used nanostructured solar cells as photovoltaic
devices, which under a 1.5 solar illumination showed a maximum
efficiency of about 42%. However, they reported that the device did
not exceed the theoretical limit for planar devices with optical
concentrations, even though it exceeded the SQ limitations for
non-planar devices. The authors attributed the failure to reach
the SQ limitations to the principle of detailed balance with good
knowledge of the absorption in the device structure. They
recommended that nanostructured devices should be developed
with limited absorption at wavelengths and angles very different
from the incident illumination. More so, the improvement of the
devices should come from the open-circuit voltage with non-
radiative recombination and good-quality surface passivation.
Mann et al. (2016) showed that large absorption of the cross
sections is not responsible for the enhancements of solar cells
using nanophotonic materials for photovoltaics; however,
increasing the directivity bounds, which consist of the nanoscale
concentrations in macroscopic solar cells, and the maintenance of
high short-circuit currents are the significant voltage enhancement
factors. Bierman et al. (2016) developed a high-tech nanophotonic
crystal that was used to emit the desired wavelengths of light when
heated while integrated into a system vertically aligned with carbon
nanotubes, which serve as absorbers while operating at about
1,000 ℃. When the crystal was heated, it continued to give out
light that matches the band of wavelengths that the solar cell uses to
convert to electric current. The carbon nanotube enables all the
energy of the photons to get converted to heat, which, in turn, re-

emits light that matches the solar cell’s peak efficiency through the
nanophotonic crystal. The authors, using an absorber, solar
stimulator, photovoltaic receiver, and filter all in one device,
argue that a device coupled with a thermal storage system could
provide continuous on-demand electrical power. They
recommended further studies on increasing the current
laboratory size of the device for commercial purposes (Chan
et al., 2013; Davids et al., 2020).

Future recommendations

The literature has shown that converting solar energy into heat
and then from heat into electricity is an efficient way of exceeding
the SQ limitation. This knowledge has sparked significant interest in
using solar thermophotovoltaic devices, where photons from a hot
emitter are used to transverse a vacuum gap that is absorbed by the
solar cell and used to generate electricity. Nonetheless, recent
reports have shown that the temperature of the emitter is still
too low to give off a photon flux sufficient for the photovoltaic
cell, thus limiting the service life of these devices. New approaches
use thermophotovoltaic energy conversion mechanisms such as
photon-assisted tunneling with a bipolar grating-coupled
complementary metal–oxide–silicon tunnel diode or a micro
thermophotovoltaic generator, and these are recommended
solutions to increase the efficiency. Solar thermophotovoltaic
devices lack suitable structural designs that overcome the
thermal losses experienced with current fabrication
techniques, which can be improved. Thus, further studies need
to be conducted to enhance current designs. The real
implementation of an NF-TPV device is extremely challenging
because it requires maintaining a high-temperature difference in
the sub-micron gap between the low-bandgap PV cell and the
emitter. In addition, the temperature of the PV cell should be kept
near room temperature to prevent performance degradation.
Therefore, a thermally isolated emitter would be desirable for
a real system. Furthermore, innovative materials that can be used
as absorbers, and emitters should be explored for long-term
thermal stability. Ways to reduce the cost of setting up the
existing thermophotovoltaic systems are few, and cheaper
alternatives should also be investigated.

Conclusion

In this paper, we discussed how the world’s demand for energy
consumption led to the development of fossil fuels; however,
economical sustainability and environmental pollution have created
a need for cleaner energy sources. Solar energy was outlined as a
preferred alternative source of renewable energy attributed to its
availability and sustainability; however, the efficiency of this source
of energy in its conversion mechanism to electrical power is limited.
Therefore, we presented a literature review on different solar
thermophotovoltaic devices, materials, and methods researchers have
used in exceeding the theoretical limitations, and future
recommendations and solutions were shown. Surveying the studies
presented, it is clear that nanomaterials as advanced functional
materials can enhance the efficiency of solar thermophotovoltaic
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devices. In general, solar energy is a significant source for fulfilling the
required energy demands.
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