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Solar photovoltaic power generation has the characteristics of intermittence and
randomness, which makes it a challenge to accurately predict solar power
generation power, and it is difficult to achieve the desired effect. Therefore, by
fully considering the relationship between power generation data and climate
factors, a new prediction method is proposed based on sliced bidirectional long
short term memory and the attention mechanism. The prediction results show
that the presented model has higher accuracy than the common prediction
models multi-layer perceptron, convolution neural network, long short term
memory and bidirectional long short term memory. The presented sliced
bidirectional cyclic network has high prediction accuracy by low root mean
square error and mean absolute error of 1.999 and 1.159 respectively. The time
cost is only 24.32% of that of long short termmemory network and 13.76% of that
of bidirectional long short term memory network.
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1 Introduction

With the progress of the society and the development of the times, human beings rely
heavily on new renewable energy. In the 21st century, photovoltaic power generation
technology has become the fastest developing new energy technology (Bhang et al., 2019).
Therefore, solar energy plays an important role in the development of new energy (Manokar
et al., 2018). As a new renewable energy power generation method, solar photovoltaic power
generation has the advantages of safety, risk-free, environmental protection and no pollution
(Sadamoto et al., 2015). However, photovoltaic power generation is susceptible to the spatio-
temporal factors such as weather, season and climate (Hu et al., 2021) (Cao et al., 2022),
which makes the power generation of photovoltaic power stations unstable. When the grid is
connected, its volatility may cause periodic impact on the power grid and lead to the
instability of the power grid. Therefore, it is necessary to formulate adjustment and
dispatching plan in advance, coordinate multi-energy sources (Zhang et al., 2022)
(Sanjari et al., 2020) and reduce equipment standby before the prediction of the
generation power, so as to enhance the security and stability of power grid (Han et al.,
2022). In order to make full use of solar energy and reduce the impact of photovoltaic power
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stations when the grid is connected, it is necessary to accurately
predict the photovoltaic power generation (Si et al., 2020; Jia et al.,
2021).

In recent years, people have put forward many methods for
photovoltaic power generation prediction. There are common
prediction methods based on mathematical methods such as grey
theory, time series analysis (Yan et al., 2021), machine learning
methods such as support vector regression and BP neural network
(Feng et al., 2015). In addition, environmental information like the
weather forecast, the satellite image (Wang et al., 2020) and cloud
distribution (Fu et al., 2021) are used to support photovoltaic output
prediction. The prediction method based on environmental
information can achieve high prediction accuracy (Manokar, 2020;
Sasikumar and calorimetry, 2020), but these methods needs the using
of satellite cloud map and large climate database which will increase
the cost of the prediction (Chai et al., 2019), multi-layer perceptron
(MLP) (Zhang, 2020), convolution neural network (CNN) and long
short term memory (LSTM) belongs to the deep learning networks.
The CNN network mentioned in document (Kim et al., 2019) needs
various auxiliary processing for the photovoltaic prediction, and the
prediction effect is not very good. Recurrent neural network (RNN) is
suitable for dealing with time series sensitive problems (Lecun et al.,
1995). Empirical mode decomposition method in literature (Geddes
et al., 2020) and wavelet analysis algorithm mentioned in literature
(Lee et al., 2005) decompose the original data into sub data to achieve
the prediction. But these methods are relatively complex, which may
cause feature loss or reconstruction difficulties in the process of data
reorganization. The LSTM network proposed in literature (Xin, 2020)
is a typical deep learning model. The prediction accuracy of LSTM
model in literature (Huang et al., 2020) is relatively good, these
methods can meet the requirements of photovoltaic power
generation prediction to a certain extent, but the prediction
accuracy still needs to improve. Therefore, based on LSTM
network, a prediction method combined sliced bidirectional LSTM
with the attention mechanism (SBiLSTM + Attention) is proposed.
Testing results indicate the presented Sliced BiLSTM greatly improves
the training speed, and the application of the attention mechanism
effectively improve the prediction accuracy.

2 Photovoltaic power prediction based
on BiLSTM-Attention method

2.1 Influence factors of photovoltaic power
generation

Photovoltaic power generation is easily affected by many factors,
these factors also affect each other. The most factors like light intensity,
ambient temperature, season and wind speed are the most important
factors that affect the prediction. The generation power of photovoltaic
silicon plate per unit area is determined by Formula 1.

Ps � ηSI 1 − 0.005 t0 + 25( )( ) (1)
In Formula 1, η is the conversion efficiency; S(m2) is the array

area; I(A) is the solar irradiation intensity; t0(℃) is the ambient
temperature. For the same group of units, the historical data reflect
the impact factors such as converter conversion efficiency and the
tilt angle, thus, the problems caused by the time series of the PV

units and the randomness caused by the installation location are
solved by using historical data. The method presented in this paper
predicts the power generation for moments in the future by using
the historical data of generator units and weather factors.

2.2 Attention mechanism

Attention mechanism is a mechanism of distributing weight
probability, which can selectively obtain useful information and
remove redundant information. The attention mechanism applied
in this paper can optimize the model and improve in the training. It
effectively solves the problem that the prediction model can not
learn a reasonable vector representation due to the too long-time
series of the input. The structure of attention mechanism adopted is
shown in Figure 1,

In Figure 1, at represents the weight value of the attention
mechanism on the output of the hidden layer of the neural network.
The calculation formula is shown in Formula 2,

at � ∑n
i�1
βt,iαi (2)

The attention score indicates the similarity between the state of
the decoder at the previous time and the output of the encoder at
present moment. The calculation formula is as follows,

αt,i � F yi, st−1( ) (3)
In Formula 3, αt,i indicates the attention score of the decoder at

moment t related to the output of the encoder at moment i, yi

represents the output of the encoder at moment i, si−1 represents the

FIGURE 1
Schematic diagram of attention mechanism.
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FIGURE 2
The structure diagram of Bidirectional long-term and short-term memory network.

FIGURE 3
The structure of SBiLSTM network.

Frontiers in Energy Research frontiersin.org03

Chen et al. 10.3389/fenrg.2023.1123558

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1123558


output state of the decoder at moment t − 1, and F(·) represents the
transformation function.

The probability distribution equation obtained by softmax
conversion of attention score is as follows,

βt � sof tmax αt( ) (4)
In Formula 4, αt represents the attention component of the

decoder related to the encoder at time, and βt is the probability
distribution of αt.

The next step is to combine the input of the decoder at the
current time with the attention vector to form a new input for
decoding. The calculation formula is as follows,

st � f ct,at[ ], st−1( ) (5)
In Formula 5, ct represents the input of the decoder at moment t,

and f(·) is the transformation function.
The advantage of application of the attention mechanism for the

prediction is that the global attention sequencemodeling breaks through
the limitation of time distance. Therefore, the attention mechanism can
be used together with cyclic neural network. First, the attention weight
was initialized, historical generating power and total irradiance was set to
30% and 20% respectively, and other influencing factors are set to 10%.
Then they will be adaptively adjusted through the training.

2.3 Sliced BiLSTM with attention mechanism

The essence of BiLSTM network is to add a hidden layer on the
basis of LSTM network. The structure is shown in Figure 2. There

are two hidden layers, one in the direction from the front to the back
and the other is from the back to the front. There is only one output
layer. Both hidden layers point to this output layer. Finally, the data
of the two hidden layers are integrated. There is no information
interaction between the two hidden layers.

In a normal recurrent neural network, each state depends on the
input of the previous state, which makes a lot of time costs on
training. In order to decrease the time spending, this paper proposes
a new sliced recurrent network structure, as shown in Figure 3,

SBiLSTM + Attention network can divide the input sequence
into several small sub-sequences by the same length. The cyclic units
on each sub-sequence work at the same time. Slicing a long input
sequence into small sequences can greatly reduce the training time.
Each sub-sequence is divided into N equal length sequences, and
then such divisions are operated K times until the minimum sub-
sequence length is appropriate. The k+1 layer network can be
obtained through the k times of division. The output of each
sub-sequence is merged into a new sequence as the input of the
next layer.

h1t � BiL �STM0 mess0t−l0+1( ) ~ t( ) (6)
hp+1t � BiL �STMp hpt−lp ~ hpt( ) (7)

In Formula 6, 7, BiL �STMp represents the circulation unit of the
p layer, mess represents the minimum sub-sequence of layer 0, hpt
represents t hidden states on layer p, lp is the minimum sequence
length of layer P. The status of layer K is as follows,

F � BiL �STMp hpt−lk ~ hpt( ) (8)

FIGURE 4
Model structure diagram.
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Taking 2048 input sequences as an example, the sequences are
divided into eight sub-sequences twice in total by the presented
sliced recurrent network (shown as Figure 3), and the minimum
sequence length is 32. Compared with the standard RNN structure,
SBiLSTM network can largely reduce the training time. For a
network with k+1 layers, the training time formula is as follows,

tSBiLSTM � nk + T

nk
( )r (9)

In Formula 9, r represents the time spent in each cycle unit, T
represents the length of the input sequence, n represents the number
of divisions, and K represents the number of divisions. The standard
RNN network training time is as follows (10),

tRNN � Tr (10)
The superiority on speed of SBiLSTM network over RNN

network can be expressed by Formula 11,

α � tSBiLSTM
tRNN

� 1
nk

+ nk

T
(11)

3 Model structure and training process

In Figure 4, the model structure is divided into three parts. Part
A normalizes the PV Plant data collection and divides it into the
training set and the testing set. Part B makes use of the attention
mechanism, which can reasonably assign the weights of the training
set and the test set, adaptively arrange bigger weights to the
important influence factors and suppress the weight of
unimportant factors. At the same time, the weight matrix W is
updated by iteration. Through the automatic adjusting, the
information significantly related to the prediction output is
allocated big weight and the accuracy of the prediction is
improved. Part C is a sliced bidirectional recurrent neural
network. In the figure, B represents BiLSTM. The network
construction also includes setting the number of hidden layers,
training times, adjusting the learning rate, setting the number of
divisions N and division times K of the input sequence. The
predicted generation power is the output after the training.

The inputs of the prediction model are climate data and
historical power generation data, including historical power data,
total irradiance, normal direct irradiance, horizontal scattering
irradiance, air temperature, air pressure and relative humidity.
Similarly, according to the empirical formula and experimental
experience, the number of hidden layer nodes of the prediction
model is set to 100, the number of iterations is set to 100, and the
input sequence is divided twice, each time divide into eight sub-
sequences, with a minimum sequence length of 32. An ultra short
term power prediction of 15 min after the current moment is
obtained by using the historical data 6 h before the prediction.
The main processes include data preprocessing, training model
and model analysis. The specific steps as follows.

(1) 96 historical photovoltaic data and six historical weather data
are used as the input sequence.

(2) The experimental data were normalized.
(3) The prediction model is established. Initialize the network

parameters. Using adam optimization algorithm to adjust the
learning rate and the number of iterations.

TABLE 1 Date set information.

Month Number of training samples Number of test samples Sampling time

Jan 2476 500 1/1/0:00-1/31/23:45

Apr 2380 500 4/1/0:00-4/30/23:45

Jul 2476 500 7/1/0:00-7/31/23:45

Oct 2476 500 10/1/0:00-10/31/23:45

FIGURE 5
Forecast result.
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(4) To meet the dimensional requirement of SBiLSTM attention
network for input data, the input data is cut.

(5) Selecting 1 month’s historical data as the sample data set,
January, July and October include 2976 data sets, and April
includes 2880 data sets. In the sample data-set, 500 data are
selected as the test set and the rest as the training set.

(6) Compare and analyze the results predicted by the presented
model with other models.

4 Examples and analysis

4.1 Data acquisition and processing

The data set used in this paper is provided by the National
Institute of Standards and Technology (NIST). The data sampling
time is shown in Table 1. The sampling interval is 15 min, and there
are 96 data points every day. The required meteorological data are
provided by various equipment in the photovoltaic system. The
historical data group includes weather data such as power
generation data, air temperature, air pressure, relative humidity,
total radiance, normal direct irradiance and horizontal scattering
irradiance.

The data selected in the actual prediction includes historical
power generation data and meteorological data. Their units are
different and the magnitude is quite different. Because of the
characteristics of neurons, the activation function mostly
limits the output to [0,1], and the power generation is far
greater than this range. In order to reduce the influence of
neuron saturation caused by the difference of number size
between them, the data is normalized, and the input and the
target are limited between [0,1]. The normalization formula is
shown in Formula 12,

Pn � ρn − ρ min

ρ max − ρ min
(12)

In Formula 12, ρn is the original data; ρmin and ρ max are the
minimum and maximum values in the data; Pn is the
normalized data.

4.2 Evaluation parameters of prediction
model

In this paper, the root mean square error (RMSE) is adopted to
evaluate the effect of the model, and the formula is shown in (13).

RMSE �
������������∑n

i�1 pi
f − pi

t( )
n

√
(13)

In (13), n is the total amount of data; pi
f is the predicted value; p

i
t

is the actual value.
At the same time, the error is also calculated by mean absolute

error (MAE) through training, shown in Formula 14. The gradient
of error is tracked through the training and testing till it reaches the
setting value.

MAE � 1
n
� ∑n

i�1 pi
f − pi

t( )∣∣∣∣∣ ∣∣∣∣∣ (14)

4.3 Analysis of prediction results

Figure 5A shows the comparison of the training loss between the
training set and the test set in July. It is obvious from the view of the
figure that the two curves are very close when the training times
achieve 100, and the training loss of the test set is very low (In
Figure 5A, the RMSE value of this model is 1.999 and theMAE value
is 1.159.), which indicates that the parameters obtained from the
training are very suitable for predicting. Figure 5B is the 15-mintues
prediction results, it shows that the prediction curve fits the actual
power output generation curve well.

TABLE 2 Summary of error evaluation indicators.

Model Error indicator Jan Apr Jul Oct Time s)

SBILSTM-Attention RMSE 2.439 2.487 1.999 1.192 138.28

MAE 1.150 1.304 1.159 0.744

BILSTM RMSE 2.498 2.828 2.106 1.443 1004.97

MAE 1.277 1.631 1.234 1.155

LSTM-Attention RMSE 2.641 4.207 2.342 2.007 686.02

MAE 1.264 2.463 1.581 1.349

LSTM RMSE 2.508 3.142 2.227 1.797 568.53

MAE 1.523 1.736 1.177 1.251

CNN RMSE 2.986 3.746 3.542 2.383 2108.64

MAE 1.955 2.838 2.502 1.703

MLP RMSE 3.748 3.972 4.006 3.257 257.83

MAE 2.745 2.849 2.386 2.157
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Table 2 lists the comparison of errors predicted by different
network models in different months and the total training time.

The prediction effect can be seen intuitively from the table. For
ultra short-term prediction, the SBiLSTM attention network model
has the smallest prediction error value, followed by the BiLSTM
neural network model. The prediction result of the basic CNN
network model and MLP network model is very general. The
prediction result of the LSTM model with only attention
mechanism is far worse than that of the LSTM model with
attention mechanism and Bi-direction, which shows that the Bi-
direction benefits in optimizing the algorithm and improving the
accuracy of the prediction model. The prediction effects of six
network models are also compared. The performance of the
SBiLSTM attention model proposed in this paper is the best, and
the training time of the SBiLSTM attention networkmodel is 13.76%
of that of the BiLSTM network model, which shows the effectiveness
of the slicing.

Figure 6 lists the final power predictions of different network
models in 4 months (January, April, July and October). It can be
clearly seen from the figure that the photovoltaic power generation
power prediction curve has a certain periodicity, because the light
intensity at night is zero, the output of the photovoltaic array is
zero, and in the daytime, the power generation of the photovoltaic
array will increase with the increase of the light intensity. Among
the six models, SBILSTM Attention network model has the best
prediction effect. In addition, the error value of different months
fluctuates greatly, and the prediction error of all models in October
is the smallest. This is because the sample data collected in
different months are different, and the weather conditions are
also different, resulting in a large fluctuation of the error value
predicted in different months.

Comparing the power prediction comparison of different
months by Table 2, the error of July and October is smaller
than that of January and April, and their predicted waveform
shapes have little difference. However, the wave forms of January
and April fluctuate greatly, which indicates that the light
intensity of the forecast day in January and April changes
greatly. The change of light intensity in July and October is
relatively small, thus the daily generating power is relatively
stable. The prediction errors based on SBiLSTM attention
network model from April 26 to April 30 are listed below. See
Table 3 below.

On the 28th and 29th, it was cloudy. On the 26th and 27th, the
light intensity was weak for light rain weather, and the change of
light intensity was small. On the 30th, it was cloudy, and the light
intensity was relatively large. However, at noon, affected by
clouds and strong winds, the change of light intensity was
relatively large. It can be clearly seen from Table 3 that the
prediction error on the 30th day is obviously large, which is due
to the relatively large change of the sunlight intensity, and the
change in sunlight intensity from the 26th to the 29th day is
small. Therefore, the SBiLSTM attention network model is very
suitable for predicting the weather with stable climate and small
change in light intensity throughout the day. However, even if the
weather conditions fluctuate greatly, the prediction error is
relatively small.

5 Conclusion

The SBiLSTM-Attention network model presented in this
paper applies the slicing idea to the photovoltaic power
prediction. Slicing the cyclic neural network shortens the

FIGURE 6
Comparison of January, April, July and October forecasts.

TABLE 3 Comparison diagram of 5-day error model.

Date Sunlight Generated output RMSE MAE

26 65 1152.06 0.516 0.403

27 76 1293.92 0.592 0.348

28 96 1903.63 0.583 0.326

29 100 1945.43 0.555 0.352

30 122 2186.02 1.322 1.205
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training time and improves the prediction efficiency. The
prediction model considers multiple meteorological factors,
fully considers and optimizes the over fitting problem brought
by neural network, and uses Adam optimization algorithm to
adjust the learning rate and iteration times to obtain the best
prediction model. The application of attention mechanism and
bidirectional mechanism into LSTM can fully adaptive assign
weight to the impact factors which improves the prediction
accuracy, reduces the dimension of data and optimize the
algorithm. Testing results show that the prediction accuracy is
high, and the RMSE and MAE is 1.999 and 1.159 respectively, the
training time is 24.32% of that of LSTM network and 13.76% of
that of BILSTM network. It is not affected by weather
fluctuations, even in severe weather and climate fluctuations,
the prediction error is relatively small, and the accuracy rate is
very high in stable weather.
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