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With the growing penetration of new energy sources, the impact of new energy
generation on the income of the energy portfolio is becomingmore significant.
This paper proposes a risk measurement method based on the Conditional
Value-at-Risk (CVaR) approach to measure the income risk from new energy
generation on the energy portfolio. The superiority is proved by comparing it
with the method only considering spot price fluctuations. Then, we
constructed an energy allocation model of the hydropower plant to
maximize the combined income-risk utility. In solving the optimal allocation
of the energy portfolio, the effects of inflow and water level on the risk aversion
parameters of the hydropower plant are considered. The results and
comparison show that the proposed risk measurement method increases
the income of the energy portfolio by 12%, and the proposed risk aversion
parameter’s adjustment strategy can increase the income of the energy
portfolio by 5.8% and reduces the CVaR value by 14.5%. Moreover, the
method that considers the income risk from new energy generation can
provide favorable conditions for improved new energy accommodation and
safe operation of the system.
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1 Introduction

At the beginning of China’s electricity market construction, the electricity market
mainly carries out forward contracts and spot market trading. Hydropower plants can
lock in income through forward contracts and simultaneously participate in the spot
market to take advantage of the spot market price fluctuations to obtain additional
income (Fernandes et al., 2018). In participating in energy market transactions,
hydropower plants need to consider the spot price risk and the forward contracts
performance risk caused by the uncertainty of energy generation by inflow (Rotting and
Gjelsvik, 1992; Maceira et al., 2002; Pereira-Bonvallet et al., 2016). Considering the risk
factors faced by hydropower plants in energy trading, it is essential to establish a set of
effective energy optimization allocation methods to realize the decision of hydropower
plants in the trade-off between benefits and risks.
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Domestic and international researchers conducted a series of
studies optimizing energy allocation for power plants. In (Garcia
et al., 2017), the Conditional Value-at-Risk (CVaR) approach was
applied to solve the risk measurement problem of the energy
allocation portfolio, and a risk-minimizing energy portfolio
optimization model was proposed. On this basis, the literature
(Mathuria and Bhakar, 2014) constructed an optimization model
for energy allocation decisions combining Generalized Auto
Regressive Conditional Heteroskedasticity (GARCH) and modern
portfolio optimization theory. The optimization model increases the
economic income of the power plants’ energy portfolio by
improving the spot price’s forecasting accuracy. In the literature
(Leonel et al., 2021), a risk management model for the energy
allocation portfolio considering the uncertainty of fuel prices,
spot market price, and carbon emission rights price was
developed and used to optimize the allocation of energy
portfolios in forward contracts and spot markets for thermal
power plants. A series of studies have been conducted on
hydropower plants’ inter-zonal energy allocation problem. In
(Diniz et al., 2020), a stochastic optimization model embedded
with the CVaR method is proposed to solve the inter-zonal
energy allocation decision problem of hydropower plants
optimally under the Energy Reallocation Mechanism (ERM) in
Brazil. In the paper (Ang et al., 2022), an optimal hydropower
dispatching method combining Stochastic Dual Dynamic
Programming (SDDP) and the Benders decomposition method is
proposed to provide technical support for the long-term inter-zonal
dispatching decision of hydropower under the combined
hydropower-fired operation scenario in the Brazilian power
sector. However, the above studies do not fully consider the
impact of new energy generation from the scenery on the energy
allocation decision of regulable hydropower plants. As the awareness
of a clean environment increases, new energy applications are
gaining continuous promotion worldwide (Pool, 2019; Xu et al.,
2023). With the growing penetration of new energy sources, the
impact of new energy generation on electricity market prices has
become increasingly significant (Liu andWu, 2007a). Measuring the
income risk caused by the new energy generation on the energy
portfolio has become one of the urgent research issues for
hydropower plants in China.

To address the risk measurement problem of hydropower
plants’ energy portfolio, some researchers have used Minimum
Variance (MV) (Liu and Wu, 2007b) and Value-at-Risk (VaR)
approach (Dahlgren et al., 2003; Gong et al., 2009) to measure
the income risk of the energy portfolio. The MV approach uses the
variance of income as the basis of risk measurement and does not
distinguish between the upward and downward deviations of
income. For market participants, the upside deviation is an
additional income rather than a risk. The VaR approach requires
the income of trading varieties to meet a normal distribution.
However, the electricity market’s income has significant skewness
and fat-tail characteristics (Safdarian et al., 2013), which can lead to
a lower risk value than the actual one obtained by using the VaR
approach. The CVaR approach measures the risk of income for both
normal and non-normal distribution and records only the downside
deviation of incomes as a risk. Numerous studies have shown that
the CVaR approach can more accurately measure the risk of the
electricity market (Carrión et al., 2007; Catalão et al., 2011; Díaz and

Esparcia, 2021). The literature (Carrión et al., 2007) proposed an
income risk measurement model for distribution companies’
electricity distribution portfolio based on the CVaR approach
considering fluctuations in spot prices and load demand. The
literature (Catalão et al., 2011) constructed a risk optimization
model for energy purchase by large electricity consumers based
on a stochastic programming framework and CVaR approach. In
the literature (Díaz and Esparcia, 2021), a trading risk measurement
model based on the CVaR approach considering fluctuations in spot
prices and wind turbines output was developed. An optimization
method for wind power generators’ spot market offer strategies was
also proposed, considering competitors’ offers. This paper uses the
CVaR approach to establish an improved risk measurement method
for hydropower plants’ energy portfolio income, which can quantify
the impact of new energy generation on energy portfolio income.

The risk preference of generators for the energy portfolio is one
of the critical factors in the process of energy portfolio optimization.
The literature (Atmaca, 2022) applies Time-Varying Risk Aversion
Parameters (TVP) in a Generalized Autoregressive Conditional
Heteroscedasticity In-Mean (GARCH-M) model. The model can
follow the market trend to adjust the risk preferences of market
participants and verify that the model has more stable profitability
and risk aversion ability compared with the Fixed or Invariable risk
Preferences (FP) model. The literature (Wang et al., 2005) proposes
an energy portfolio optimization method that dynamically adjusts
risk aversion parameters based on Sharpe and Treynor ratios in the
electricity market. The method validated has a better performance
level using Turkish day-ahead market data. It is important to note
that these studies have not yet discussed the impact of the
hydropower plants’ operational characteristics on risk appetite. In
this study, hydropower plants dynamically adjust their risk appetite
for the energy portfolio based on inflow and water levels. This
strategy helps hydropower plants obtain a better-performing energy
allocation scheme. Moreover, when hydropower plants adopt this
strategy for energy allocation, they can make their power generation
time not overlap with the time when the new energy generation is
significant. At the same time, they have higher power generation
capacity to support the system operation when the new energy
generation is small, which is conducive to promoting the
accommodation of new energy and improving the operation
safety of the system.

This study first analyzes the impact of new energy generation on
the income of the energy portfolio. Then we propose a risk
measurement method for the energy portfolio based on the
CVaR approach. Next, a dynamic risk appetite strategy
considering the operational characteristics of regulable
hydropower plants is investigated. Compared with the fixed risk
appetite strategy, this strategy can improve the performance of the
energy portfolio while promoting the level of new energy
accommodation and enhancing the operational security of the
power system. In summary, the main contributions of this paper
include.

(1) A portfolio’s risk measurement method for an energy portfolio
is established that considers the impact of new energy
generation.

(2) An energy allocation model of a regulable hydropower plant
that uses dynamic risk appetite to optimize energy portfolio
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performance is developed. This model allows regulable
hydropower plants to adjust their risk appetite for the energy
portfolio based on inflow and water levels. The energy allocation
models with both dynamic and fixed risk appetite are modeled
through the GAMS platform. And then, we compare their
performance in the energy portfolio’s income, the using time
to complete the expected minimum income, and the water level
during the electricity demand peak period.

This paper is organized as follows. We present the
mathematical description of the energy allocation model and
risk measurement method for regulable hydropower plants in
Section 2. In Section 3, we define the objective function and
constraints for allocation optimization of the energy portfolio.
The strategy for dynamically adjusting the risk appetite of the
regulable hydropower plant is given in Section 4. Section 5
provides simulation results and analysis. Section 6 concludes
the paper.

2 Regulable hydropower plant’s energy
allocationmodel and risk measurement
method

This section first proposes the energy allocation model for
regulable hydropower plants, then introduces the basic principle
of applying the CVaR method to measure the return risk of the
energy allocation portfolio. And finally, we establish the power
return loss function considering the influence of risk factors. The
flowchart of the optimization framework proposed in this paper is
shown in Figure 1.

2.1 Energy allocation model

This paper’s energy allocation portfolio of regulable hydropower
plants contains four trading varieties: the local forward contracts, the
local spot market, the inter-provincial forward contracts, and the

FIGURE 1
Flowchart of the energy portfolio allocation method optimization framework.
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inter-provincial spot market. The energy allocation decision cycle is
1 month (30 days), and the time granularity is 1 day. Based on the
introduction above of the trading varieties included in the portfolio
and the energy allocation model proposed in the literature (Ma et al.,
2018), the energy allocation model of regulable hydropower
plants is:

Qm � ∑n
i�1
∑D
d�1

qi,d (1)

Where: Qm is the total monthly energy of the regulable hydropower
plant, qi,d is the energy of the regulable hydropower plant allocated
to the market i on the operating day d, d � 1, 2, 3, ..., D, i �
1, 2, 3, ..., n (n is the total number of markets) This paper takes n �
4, D � 30.

Based on the introduction above of the trading varieties included
in the portfolio of regulable hydropower plants and Eq. 1, the energy
allocated to the spot market and forward contracts by the
hydropower plants can be expressed as Eq. 2, 3

The energy allocated to the spot market by the hydropower
plants is:

qs,d � q1,d + q2,d (2)
Where: q1,d is the energy allocated in the local spot market, and q2,d
is the energy allocated in the inter-provincial spot market.

The energy allocated to the forward contracts by the hydropower
plants is:

qc,d � q3,d + q4,d (3)
Where: q3,d is the energy allocated in the local forward contracts, and
q4,d is the energy allocated in the inter-provincial forward contracts.

The economic income of the energy portfolio consists of forward
contracts income, spot trading income, and energy deviation
settlement fees of the forward contracts. On the basis of the
mechanism of the southern China power market (Würzburg
et al., 2013) and Eqs 1–3, the economic income of the energy
portfolio can be expressed as Eq. 4.

E qc,d, qs,d, qc,s,d( ) � ∑D
d�1

qc,s,d · Pc +∑D
d�1

qs,d · Ps,d

−Pm qc,d −∑D
d�1

qc,s,d⎛⎝ ⎞⎠ (4)

Where: Pc is the forward contract price. Ps,d is the price in the spot
market on the operating day d. Pm is the settlement price of energy

deviation settlement fees. ∑D
d�1

qc,s,d is the actual monthly settlement

forward contracts.

2.2 The income risk measurement method
for the energy portfolio

The CVaR approach is a risk measurement approach that
calculates the income loss that an asset portfolio may suffer at a
given confidence level at a given period in the future. The income
risk measure of the energy portfolio is based on the risk measure

proposed in the literature (Ma et al., 2018), and its expression is
Eqs 5–8:

Let f(Qd, Rd) � Ld be the income loss of the energy portfolio
due to risk factors.

Where Qd is the energy portfolio of the hydropower plant on
operating day d, and Rd denotes the loss of income of the
market.

Qd � ∑n
i�1
qi (5)

Rd is the loss of the energy portfolio income.

Rd � Rs,d + Rc,d (6)
Rs,d is the income loss of electricity allocated to the spot market, and
Rc,d is the income loss of energy allocated to the forward contract
market.

Let αd be the value of energy portfolio income loss at a given
confidence level β quantile for Ld. The risk measurement function
Fβ(Qd, αd) can be expressed as:

Fβ Qd, αd( ) � αd + 1
1 − β

. ∫
Ld ≤ αd

Ld − αd[ ]+p Rd( )d Rd( ) (7)
Ld − αd[ ]+ � max 0, Ld − αd{ } (8)

Where p(Rd) is the joint probability density function of income loss
of Rd, and Eq. 8 represents the income loss expectation of the energy
portfolio at the confidence level of β.

2.3 The income loss function

The CVaR method’s key to measuring the return risk of the
energy portfolio is to construct the return loss function of the assets
(energy) allocated in each market affected by risk factors. In this
paper, we consider the impact of new energy generation on energy
portfolio income, including.

(1) The marginal generation cost of the new energy is extremely
low, and the average spot price will decrease with the increase of
new energy generation (Keles et al., 2013; Cludius et al., 2014;
Nappu et al., 2014; Paraschiv et al., 2014).

(2) When new energy generation is large, the generation of new
energy will crowd out the accommodation space of other
sources. The energy of forward contracted is affected by the
new energy generation and cannot be accommodated (Day
et al., 2002; Liu and Xie, 2020).

In summary, this paper constructs the income loss function of
the energy portfolio in terms of both spot market income loss and
forward contract income loss.

2.3.1 Spot market income loss function
The energy income loss function in the spot market consists of

two parts: the fluctuation of the spot price itself and the impact of the
new energy generation on the price.

Rs,d � Rs,v,d + Rs,e,d (9)
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Where Rs,v,d is the energy income loss by the fluctuation of the spot
price, and Rs,e,d is the energy income loss by the impact of the new
energy generation on the price.

The expression of the loss function describing the fluctuation of
spot prices in the spot market is:

Rs,v,d � ∑D
d�1

qs,d · ps,d( ) −∑D
d�1

qdc (10)

Where ps,d is the spot price of electricity corresponding to the
operating day d, c is the cost per unit of energy in the hydropower
plant. When the value of ps,d makes Rs,v,d < 0, the risk of spot price
fluctuation leads to the loss of spot market income.

Assuming that the impact function of the new energy
generation on the spot market price ps,d is linear, the
expression of the risk loss function describing the impact of
the new energy generation on the elasticity of market demand is
(García-González et al., 2007):

ps,d � f ws,d( ) � a − bws,d (11)
Where: a is the intercept of the impact function, b is the slope of the
impact function, and ws,d is the new energy generation.

Eq. 11 is rewritten as the energy absorption function of the spot
market (García-González et al., 2007):

Q ps( ) � Es − λsps (12)
Where Es � a/b is the total energy absorption capacity of the spot
market, λ � 1/b is the energy absorption elasticity coefficient of the
spot market, which indicates the market’s sensitivity to the spot price
change due to the spot market’s energy absorption capacity caused
by new energy generation.

The change in the absorption capacity of the spot market due
to new energy generation can be described by Eq. 12 as the change
in market price under a certain market electricity absorption
elasticity:

Rs,e,d � ∑D
i�d

qs,d − λs,dps,d( )ps,d −∑D
d�1

qs,dc (13)

When the values of ps,d and λs,d make Rs,e,d < 0, it means that the
impact of new energy generation onmarket demand elasticity causes
the loss of spot income.

2.3.2 Forward contracts income loss function
When the new energy generation is large, the accommodation

space for the energy of hydropower’s forward contracts will be
reduced by the market rule of prioritizing the accommodation of
new energy generation. Eq. 12 can be rewritten as the income impact
of new energy generation on the energy of the hydropower plants’
forward contract market can be expressed as:

tc,d � Es − λsps (14)
The loss function of forward contracts income is:

Rc,d � ∑D
d�1

qc,d − tc,d( )∑D
d�1

qc,dpc( ) −∑D
d�1

qc,d∑D
d�1

qc,dc (15)

Where tc,d is the energy of the forward contracts, qc,d is the
forward contract energy settlement price in the operation day d.
When the value of pc or tc,d make Lc,d < 0, the new energy generation
leads to the loss of income in the forward contracts.

3 Objective function and constraints of
the optimization for energy allocation

This section first gives the composition of the objective function
and describes its construction synthesis and linearization methods.
Then, the electricity market trading constraint and the operating
constraint of the hydropower plant are given.

3.1 Objective function

Hydropower plants reduce the risk of revenue loss and increase
income by optimizing energy allocation in different markets to
construct the optimal energy portfolio on each operating day.
The main ways to achieve this object are (Uryasev, 2000).

1) shifting energy from the low-priced spot market to the high-
priced spot market to improve income.

2) adjusting the energy allocated in forward contracts to reduce the
risk of energy deviation penalties due to inflow uncertainty.

The objective function of the optimal energy allocation for
regulable hydropower plants is the energy portfolio’s maximum
income and minimum risk. Based on Eqs 4, 7, these two objectives
are linearly combined into a combined utility function as follows
(Mathuria and Bhakar, 2014).

maxOh Qd|, λd( ) � ∑D
d�1

E Qd( )( ) − λdFβ Qd|, αd( )) (16)

Where: λd is the weight of the loss of the energy portfolio, also
known as the risk aversion parameter, which reflects the risk
appetite of the hydropower plant for the energy portfolio. This
weight is not a fixed value in this paper, and it depends on the inflow
and the water level of the hydropower plant. We will discuss the
calculation method of λd in Section 4.

Since the loss’s probability density function p(Rd) is often
difficult to find, this paper simulates the cumulative distribution

TABLE 1 Main parameters of hydropower station.

Parameter Number

Normal water level/m 1180

Dead water level/m 1023

Upper limit of outflow/(m3/s) 15,872

Lower limit of outflow/(m3/s) 0

Hydroelectric coefficient 8.6

Upper limit of power generation flow/(m3/s) 2189

Lower limit of power generation flow/(m3/s) 0

regulation capacity weekly
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function based on the sample value J for Rd. We simulate the
estimation of the cumulative distribution function based on the
sample value R1

d, R
2
d, ..., R

J
d. The estimation of the cumulative

distribution function of Ld can be expressed as L1d, L
2
d, ..., L

J
d, and

the simulated estimation equation of equation (7) is (Ma et al.,
2018):

Fβ � Qd, αd( ) � αd + 1
L 1 − β( ). ∑

J

j�1
Lj
d − αd[ ]+ (17)

To simplify the solution process, introduce dummy variables
xj
d � [Ljd − αd]+, j � 1, 2, 3..., J, then Fβ(Qd, αd) can be converted

into linear functions and linear constraints as follows (Ma et al.,
2018):

Fβ Qd, αd( ) � αd + 1
J 1 − β( )∑

J

j�1
xj
d (18)

xj
d ≥L

j
d − αd (19)

The transformed objective function can be solved by the
Linear Programming (LP) method (Andersson et al., 2001; Li
et al., 2022).

3.2 Energy market trading constraints

On the basis of the mechanism of the southern China power
market (Würzburg et al., 2013) and the optimization model’s
constraints proposed in the literature (Ma et al., 2018), the
energy market trading constraints expressed as Eq. 20.

s.t.

∑n
i�1
qi,d � Qd

0≤ qi,d ≤ qi,d max

Ed ≥ e
xj
d ≥ 0

xj
d ≥L

j
d − αd

∑D
d�1

Qd ≤Qm

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(20)

Where: e is the minimum income expectation of the
hydropower plant’s energy portfolio. qi,d max is the upper
limit of the energy allocated to the market i in the operating
day d. Qm is the total monthly energy generation of the
hydropower plant.

3.3 Hydropower plant operating constraints

Based on the constraints proposed in the literature (Chou et al.,
1992), the hydropower plant operating constraints can be expressed
as Eqs 21–24.

3.3.1 Regulable reservoir capacity constraint

V
d
min ≤Vd ≤Vd

max (21)

Where:V
d
min andV

d
max are the lower andupper limits of the reservoir

capacity of the hydropower plant in the operating day d respectively.

3.3.2 Water balance constraint

Vd+1 � Vd + FIn
d − Fe

d + Fs
d( )[ ] (22)

Where: FIn
d , F

e
d and Fs

d are hydropower station inflow, power
generation flow, and water abandoning in the operating day d.

3.3.3 Hydropower plant outflow constraint

F
d
min ≤Fd ≤Fd

max (23)

Where F
d
min and F

d
max are the lower and upper outflow limits of

the hydropower plant in the operating day d.

3.3.4 Hydropower plant generation constraint

P
d
min ≤Pd ≤P

d
max (24)

Where P
d
min and P

d
max are the lower and upper generation limits

of the hydropower plant in the operating day d.

4 Dynamically adjustment risk
preference strategies for regulable
hydropower plants

In the energy portfolio optimization process using the CVAR
method, the power plant’s risk preference for the energy portfolio

TABLE 2 Statistical indicators of historical data and simulated data.

Data Historical data Augmented data

Mean Variance Skewness Kurtosis Mean Variance Skewness Kurtosis

LFCP 175 12.42 0.14 3.01 173 12.33 0.15 3.03

IFCP 353 13.25 0.22 3.22 358 13.48 0.22 3.25

LSP 198 13.92 0.28 3.72 198 13.62 0.28 3.72

ISP 398 15.75 0.22 3.22 379 13.48 0.22 3.25

NEG 17 2.1 0.11 3.03 18 2.3 0.13 3.02

Inflow 673.3 214.1 0.21 3.12 649.8 222.9 0.22 3.07
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is one of the critical factors. In this section, we introduce the
concept of risk aversion parameter to reflect the risk preferences of
power plants and propose the dynamic adjustment of risk
preferences (DARP) strategy for optimal allocation of energy
portfolio of regulable hydropower plants based on inflow and
water level.

The use of risk aversion parameters to reflect the risk
preferences of market participants is a widely used method
(Merton, 1980; Jackwerth, 2000; Baker and Wurgler, 2006). The
risk aversion parameter can be calculated from the volatility of
risky assets and the proportion of risk-free assets in the asset
portfolio (ember-climate.org, 2022). In this paper, we note λd as
the risk aversion parameter of the hydropower power plant to the
energy portfolio:

λd � ET Qd( ) − Rfd

σ2s,d
(25)

Where: ET(Qd) denotes the income target of the energy
portfolio in the operation day d. Rfd means the risk-free
assets in the energy allocation portfolio. This paper assumes
that the energy allocated to the forward contracts is a risk-free

asset. σ2s,d is the income variance of all risky assets in the energy
portfolio. At this stage, the short-term inflow forecasts are more
accurate than the medium- and long-term inflow forecasts. It is
more reliable to adjust the risk aversion parameters using short-
term inflow forecasts. In this paper, short-term inflow forecasts
are used to adjust the risk-averse parameters of the energy
portfolio of hydropower plants.

This paper assumes that hydropower plants implement the
following two operating scenarios for inflow based on inflow and
operating water levels.

1) When the hydropower plant can store inflow, it allocates its
energy in forward contracts to increase the risk-free income in
the energy portfolio.

Rfd′ � ∑D
d�1

q3,d + FIn
d 1 − V

d
max − Vd

FIn
d

[ ]+
· η( )Pc (26)

Where: η is the hydroelectric coefficient of the regulable
hydropower station.

2) When the hydropower plant cannot store the inflow or can
only store it in a daily regulation cycle, it allocates the energy
produced from the inflow to the spot market as much as
possible. The additional energy shares the fluctuation risk
from the spot portion of the original energy portfolio.

FIGURE 2
Correlation analysis of simulated prices in local and inter-
provincial forward contracts.

FIGURE 3
Correlation analysis of simulated electricity prices in local and
inter-provincial spot markets.

FIGURE 4
Matching analysis of hydropower plant’s energy in local spot
market and the spot price.

FIGURE 5
Matching analysis of hydropower plant’s energy in inter-
provincial spot market and the spot price.
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σ2s,d′ � qs,d/ qs,d + FIn
d

V
d
max − Vd

FIn
d

− 1[ ]+( ) (27)

Eqs 26, 27 show that the hydropower plant can adjust the risk
aversion parameter by allocating the energy generated by inflow
among risky and risk-free assets depending on the inflow and water
level. We can rewrite Eq. 25 as:

λd � ET Qd( ) − Rfd′
σ2s,d′

(28)

5 Simulation example

In this paper, the proposed method for optimizing the energy
allocation of regulable hydropower plants is a linear programming

problem modeled and tested on the GAMS platform and solved using
CPLEX 20.1. All the cases are implemented and computed on a desktop
computer equipped with a 3.7GHz, E3-1230 V3 CPU, 24GB RAM, and
64-bit Windows operating system. In this section, we first give the
parameters of the algorithm design, generate simulation data for
forward contracts and spot prices, and examine them. Then, we
analyze the optimization results of the energy portfolio optimization
method. Finally, the optimization method proposed in this paper is
compared with the fixed risk preferences (FRP) energy portfolio
optimization method in terms of the income-risk performance of the
power portfolio, the water level operation curve, and the level of new
energy accommodation of the system.

5.1 Data and parameters setting

A regulable hydropower plant has a confidence level β of 0.95, and a
minimum expected income rate of 0.25. And it has an average monthly
energy capacity of 4,000MWh and an average energy production cost
of $0.25/kWh. The main parameters are shown in Table 1.

To improve the accuracy of the optimization method, we first
use the Bootstrapping method to augment the historical data.

• Local forward contract prices (LFCP).
• Inter-provincial forward contract prices (IFCP).

FIGURE 6
Result of optimized allocation of the energy portfolio.

TABLE 3 Average spot prices for markets with different shares of new energy
generation.

Value

shares of new energy generation 27% 34% 40%

Average spot prices (Yuan/MWh) 376.42 366.63 324.52

Change in average price −5.42% −7.88 −18.46
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• Local spot prices (LSP).
• Inter-provincial spot prices (ISP).
• New energy generation in the inter-provincial receiving-end
grid (NEG).

• Inflow.

Then, the four critical statistical characteristics of the augmented
data, namely, mean, variance, skewness, and kurtosis, were

compared with the original historical data to verify the validity of
the augmented data. The results are shown in Table 2.

The data augmentation results are shown in Figure 2 and
Figure 3. The Pearson correlation coefficient for the local and
inter-provincial forward contract price is 0.017, indicating no
linear correlation between the two. The Pearson correlation
coefficient for the local and inter-provincial spot market price
is −0.812, indicating a strong negative correlation between the

FIGURE 7
Energy portfolio of different confidence levels.

TABLE 4 Portfolios at different confidence levels.

Confidence levels Income rate Value of CVaR Proportion of forward contract (%) Proportion of spot market (%)

0.99 0.2506 0.13406 94.93 5.07

0.98 0.2603 0.13459 94.65 5.35

0.97 0.2658 0.13550 94.20 5.80

0.96 0.2683 0.13596 93.39 6.61

0.95 0.2712 0.13686 92.82 7.18

0.94 0.2733 0.13747 92.58 7.42

0.93 0.2754 0.13829 91.69 8.31

0.92 0.2784 0.13891 91.60 8.40

0.91 0.2801 0.13972 91.52 8.48

0.90 0.2811 0.14051 90.83 9.17
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two. The allocation of energy by hydropower plants to the local and
inter-provincial spot markets can spread the spot price risk.

The analysis of the match between the hydropower plant’s energy in
the spotmarket and the spot price is shown in Figure 4 and Figure 5. The
high match between the hydropower plant’s energy in the local spot
market and the spot price is because the maximum energy capacity of
new energy in the energy supply structure of the province where the
hydropower plant is located is relatively small, about 2%. The impact of
new energy on spotmarket prices is weak, spot prices are relatively stable,
and hydropower stations need less deal with spot price volatility when
making spot energy allocations. The largest share of new energy in the
inter-provincial market is about 20.2%. The amount of new energy
influences the price of the inter-provincial spot market, and the spot
price volatility ismore obvious.Hydropower plant in the inter-provincial
spot market energy and spot price match is low, and the hydropower
plant needs to optimize the energy allocated in the inter-provincial spot
market. As far as possible, allocate the energy in the spot market on the
high price day to improve the income of the spot market power.

The maximum generation capacity of new energy in the cross-
provincial market for hydropower is 20.2% because China’s new
energy sources are at a steady construction stage, which is still far
from the goal of “a new power system dominated by renewable

energy.” To study the impact of the increased penetration of new
energy on the energy portfolio’s income, we increase the maximum
proportion of new energy’s energy generation in the system during
the simulation example. Germany’s new energy development is
relatively rapid. The proportion of new energy generation in
2020 is close to 40% (Moghaddam et al., 2013). This paper
assumes that after China completes new energy construction, the
new energy’s proportion in the system will be consistent with the
current level of Germany. The new energy exploitable potential of
the province where the hydropower station is located is small, and
the impact of new energy generation on the spot price of the
province where the hydropower station is located is ignored in
this paper. The relationship analysis between the share of new
energy generation and the average inter-province spot price is
shown in Table 3. As the proportion of new energy generation
increases, the average spot price decreases more and more
significantly. As the maximum share of new energy generation in
the system increases from 27% to 40%, the decrease in spot price
increases from 5% to 18.46%, and the price decreases from RMB
376.42/(MWh) to RMB 324.52/(MWh).

5.2 Analysis of results

5.2.1 Analysis of optimization results
Based on the simulation data of new energy generation, inflow, and

price, the optimization results of the monthly energy portfolio of
regulable hydropower plants are shown in Figure 6, Figure 7, andTable 4.

The analysis of Figure 6, Figure 7, and Table 4 prove the
effectiveness of the optimal energy allocation method proposed
in this paper.

1) The forward contracts account for a larger proportion of the
monthly energy portfolio of regulable hydropower plants, which
effectively locks in the income through forward contracts and
reduces the overall risk of the energy portfolio. The optimization
results align with the actual situation of hydropower plant
operation.

FIGURE 8
Optimal water level curve and inflow process.

FIGURE 9
Risk aversion parameter.
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(2) As the set confidence level decreases, the income and the risk
(CVaR) value of the energy portfolio obtained from the
optimization increase simultaneously. Reflecting that the
regulable hydropower plant operators can get more income
while being willing to take more risks, the results are consistent
with the hydropower plant operators in the actual market
decision-making situation.

Figure 8 shows the results of the inflow and the hydropower
plant’s water level. Figure 9 shows the result of the risk aversion
coefficient of the hydropower station to the energy portfolio. In the
initial stage, the water level of the hydropower plant is high, the
inflow is small, and the hydropower plant arranges the energy to
reduce the water level gradually. The risk aversion coefficient of the
hydropower plant is low, and the hydropower plant has an
aggressive risk preference. From day 3 to day 5, the risk
aversion coefficient rises gradually as the water level decreases.
On day 6, the hydropower plant encounters a large inflow, and the
water level of the hydropower plant is high. The risk aversion
coefficient turns from rising to decreasing, denoting the risk
preference of the hydropower plant is strengthened. In the
same period, the new energy generation is large. The lower risk
aversion parameter helps hydropower plant reduces water
abandonment and sells energy in the highest-priced of spot
market as much as possible to maximize the energy portfolio’s
income. After day 11, the effect of the last round of incoming water
disappears, the water level of the hydropower plant gradually
decreases, and the risk aversion parameter rises simultaneously.
From day 16 to day 30, during the second period of large new
energy generation, the higher risk aversion makes the hydropower
plant reduce allocate the energy in the spot market, which is
conducive to improving the new energy power accommodation
level in the spot market. Finally, on day 25, hydropower plants
reached the highest water level value, and the new energy
generation in the following days was low. The high hydropower
plant water level can provide strong energy support for the system,
improving the system’s operational safety. The higher water level
of the hydropower plant on the high-price day means that it can

sell more energy on the high-price day, which is conducive to the
income of the energy portfolio. The maxima and jumps in risk
aversion parameters occur from day 13 to day 16, when operating
water levels and income fall in tandem and genuinely reflect the
operating behavior of hydropower plants. That is because
hydropower plants tend to exhibit a greater risk-averse
preference during those periods, allocating limited energy to
forward contracts to avoid the penalty of deviation assessment.

The result of energy allocated to the inter-provincial spot market
before and after the optimization of hydropower plants on each
operating day is shown in Figure 10. From day 13 to day 20, when
the new energy generation is smaller, the spot price is usually higher, and
hydropower plants allocate more energy to the spot market, which
improves the income of the energy portfolio. From day 1 to day 12 and
day 21 to day 29, the new energy generation is larger, and the
hydropower plant allocates less energy to the spot market.
Hydropower plant generation avoids the large new energy generation
periods, providing more accommodation space for new energy.

As shown in Figure 11, the hydropower plant’s energy allocation
curve has improved thematching with the spot price after optimization.
After the optimized allocation, the hydropower plant allocated energy
mainly in the higher spot price period and less in the lower spot price
period. Because day 30 is the last day of the optimization cycle, the
hydropower plant allocates all the remaining spot energy of the month,
resulting in the energy of this day not fully matching the spot price.
Combined with Figure 10, we can find that the spot price of the new
energy generation period is also low, so the hydropower plant improves
the income of the energy portfolio by transferring the energy from the
low price period to the high price period.

In Figure 12, We analyzed the impact of the regulation capacity
of the hydropower plant on the results of optimal energy allocation.
For weekly regulated hydropower plants, the energy portfolio
optimization method will prioritize the completion of the
forward contract to avoid losses caused by negative deviation
assessment, and the reservoir capacity of the hydropower plant
changes more drastically. For monthly regulated hydropower plants,
the energy portfolio optimization method will increase the energy
allocation in the spot market as much as possible to obtain

FIGURE 10
Hydropower plant’s energy allocation before and after optimization.
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additional income, and the reservoir capacity of hydropower plants
will change slightly. The results show that the optimization method
proposed in this paper is equally effective for hydropower plants
with different regulation capacities.

5.2.2 Performance comparison
The methods of two relevant study papers are selected for

comparison in this paper to verify the characteristics of the
proposed optimal energy allocation method in terms of risk
measurement and energy portfolio income.

a) The risk measurement method based on the spot price forecast in
literature (Mathuria and Bhakar, 2014) is used to compare the
risk measurement method proposed in this paper.

b) Fixed risk preferences (FRP) strategy from the literature [40] is
used dynamically adjustment risk preference (DARP) strategy
proposed in this paper.

Table 5 shows the comparative results of solving the two risk
measurement methods. Table 6 gives the solution comparison
results of the two risk preference strategies.

1) Performance comparison of risk measurement methods

The confidence level of both risk measurement methods is
0.95, and other parameters are the same. As shown in Table 5, as
new energy generation rises, the risk value (CVaR) obtained
based on the method in (Mathuria and Bhakar, 2014) changes
less, and the energy portfolio income gradually decreases.
Because the method of (Mathuria and Bhakar, 2014) does not
consider the impact of new energy generation on the energy
portfolio income, the risk value cannot reflect the risk of energy
income caused by the increase of the new energy generation,
which makes the income of the energy portfolio decrease. The
risk measurement method proposed in this paper obtains a risk
value that increases gradually with the new energy generation. At
the same time, the change in energy portfolio income is small. It
shows that the risk measurement method proposed in this paper
can correctly reflect the risk of new energy generation on the
energy portfolio and effectively reduce the fluctuation of its
income. It should be noted that when the new energy
generation in the system in the system is higher than 25%, the
advantage of the solution results of the proposed method
gradually increases. In the scenario where the new energy
generation in the system is 40%, the energy portfolio income
based on the risk measurement method proposed in this paper is
12% higher than that of the literature (Mathuria and Bhakar,
2014), which has a significant advantage. This result is because
the operating days with higher new energy generation usually
overlap with those with lower spot prices. The method based on
spot price forecasting in (Mathuria and Bhakar, 2014) can reflect
part of the risk of energy income loss due to spot price
fluctuations. However, the method in (Mathuria and Bhakar,
2014) underestimates the spot price risk on the operating days
with higher new energy generation because it does not consider
the impact of new energy generation. And it does not reflect the
risk of energy income loss in forward contracts due to new energy
generation. As new energy generation increases, the advantages

FIGURE 11
Matching analysis of energy allocation after optimization in inter-
provincial spot and the spot prices.

FIGURE 12
Optimization results for hydropower plants with different regulation capacities.
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of the method proposed in this paper over the method in
(Mathuria and Bhakar, 2014) become more and more obvious.

2) Performance comparison of DARP and FRP

As shown in Table 5, the optimization results based on the two
strategies of setting risk preference, DARP, and FRP, are
significantly different, where the risk preference of the FRP
strategy takes the value of 1 (Moghaddam et al., 2013) and using
the risk measurement method proposed in this paper. Other
parameters of the optimization are the same.

Compared with the FRP strategy in the literature
(Moghaddam et al., 2013), the DARP strategy proposed in this
paper increases the income of the energy allocation portfolio by
5.8% and reduces the CVaR value by 14.5%. The time taken to
complete the expected minimum income (TCM) is 7.9% faster
than the FRP. In addition, the average energy of the hydropower
plant during the rich new energy generation periods (AEHN) is
significantly lower, indicating that hydropower plants can
allocate more of their energy to periods with higher electricity
prices. That provides favorable conditions for the system to
increase new energy consumption. The DARP strategy also
increases the water level during electricity consumption peak
periods (WLP), which allows hydropower plants to generate
more energy during peak periods and supports the safe
operation of the system. Generally speaking, the price of
electricity during peak load periods is higher than in other
periods. Hence, a higher water level during peak load periods
benefits hydropower plants to obtain more economic benefits.

2) Performance comparison of DARP and FRP

As shown in Table 5, the optimization results based on the two
strategies of setting risk preference, DARP, and FRP, are

significantly different, where the risk preference of the FRP
strategy takes the value of 1 (ember-climate.org, 2022), and the
other parameters are the same.

Compared with the FRP strategy in the literature
(Moghaddam et al., 2013), the DARP strategy proposed in this
paper increases the income of the energy allocation portfolio by
5.8% and reduces the CVaR value by 14.5%. The time taken to
complete the desired minimum income (TCM) is 7.9% faster
than the FRP. In addition, the average energy of hydropower
plants during the new energy boom periods (AEHN) is
significantly lower, indicating that hydropower plants can
allocate more of their energy to periods with higher electricity
prices. That provides favorable conditions for the system to
increase new energy consumption. The DARP strategy also
increases the water level during electricity consumption peak
periods (WLP), which allows hydropower plants to generate
more energy during peak periods and supports the safe
operation of the system. Generally speaking, the price of
electricity during peak load periods is higher than in other
periods. Hence, a higher water level during peak load periods
benefits hydropower plants to obtain more economic benefits.

In summary, the DARP strategy proposed in this paper is relative to
the FRP strategy in the literature (Moghaddam et al., 2013). The DARP
strategy directs hydropower plants to use reservoir capacity more
rationally and allocate runoff-converted electricity in the high-value
market as much as possible through the dynamic adjustment of risk
preference. The DARP strategy not only improves the energy portfolio
performance (EPP) and the time taken to complete the expected
minimum income (TCM) compared to the FRP strategy but also
optimizes the average energy of the hydropower plant during the
rich new energy generation periods (AEHN) and the water level
during electricity consumption peak periods (WLP). That is
mutually beneficial for regulable hydropower plants, new energy
generators, and systems.

TABLE 5 Performance comparison of Risk measurement methods.

Proportion of new energy generation (%) Mathuria and Bhakar (2014) This page

Income rate CVaR Income rate CVaR

20 0.2636 0.11612 0.2692 0.11736

25 0.2549 0.12193 0.2688 0.12456

30 0.1957 0.11926 0.2671 0.13330

35 0.1784 0.11751 0.2659 0.13439

40 0.1571 0.11892 0.2702 0.13686

TABLE 6 Performance comparison of DARP and FRP.[40].

Strategy AEHN (MWh/d) WLP (m) EPP TCM (d)

Income rate CVaR

DARP 18,037.5 1182.5 0.2754 0.1964 27

FRP 19,737.8 1178.3 0.2601 0.2268 29
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6 Conclusion

In this paper, we study the energy allocation of regulable
hydropower plants considering the impact of new energy
generation. First, a regulable hydropower plant’s energy
allocation model participating in multiple market transactions is
established. Then a risk measurement method considering the
impact of new energy generation on the energy portfolio income
is proposed based on this allocationmodel. And an energy allocation
optimization method to maximize the joint utility function of energy
portfolio income and risk is constructed. In the optimization stage, a
dynamic adjustment risk preference strategy that considers inflow
and water level to adjust the risk aversion parameter in the objective
function is proposed to improve the performance of the energy
allocation optimization method.

The following conclusions are drawn from analyzing the
simulation example’s result.

(1) The risk measurement method proposed in this paper can
portray the income risk of new energy generation to the
energy portfolio more accurately than the traditional risk
measurement method based on the price prediction. As the
proportion of new energy generation in the system increases, the
performance advantage of this paper’s proposed method
becomes more obvious. In a scenario where the proportion
of new energy generation is 40% in the system, the risk
measurement method proposed in this paper can increase
the income of the energy portfolio by 12%.

(2) The DARP strategy proposed in this paper can improve the
income of the energy portfolio by 5.8% compared to the FRP
strategy while reducing its CVaR value by 14.5%. Also, the time
required for the energy portfolio to complete the expected
minimum income is 7.9% faster than the FRP strategy.

(3) The energy allocation method proposed in this paper shifts the
energy of hydropower plants from a period of rich new energy
generation to a period of meager new energy generation
providing favorable conditions for the system to improve the
level of new energy accommodation. At the same time, the
hydropower plant has a higher water level when new energy
generation is meager, increasing the amount of energy the
hydropower plant can generate during that period, which
provides favorable conditions for safe system operation.

(4) The increase in new energy penetration is an important trend in
China’s future energy development. With the help of the energy

portfolio optimization method proposed in this paper, regulable
hydropower plants can provide strong support for the economical,
clean and safe operation of the system while taking into account
their economic benefits. And that is conducive to the realization of
the “double carbon” goal of the power system.

The construction of China’s electricity market is steadily
advancing, and the models and algorithms described in this
paper all contain certain assumptions and simplifications. As the
electricity market improves, subsequent studies will continue to be
in-depth according to the actual situation.
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