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The lithium-ion battery is becoming a very important energy source for vehicles
designated as electric vehicles. This relatively new energy source is much more
efficient and cleaner than conventional fossil fuel. However, lithium-ion
batteries have a high risk of fire during a crash, where the large deformation
on the battery during the crash may cause thermal runaway. This research
explores that idea by studying the design and optimization of sandwich-
based auxetic honeycomb structures to protect the pouch battery cells for
the battery pack system of electric vehicles undergoing axial impact load using
machine learning methods. The optimization was done using Artificial Neural
Network (ANN), and Non-Dominated Sorting Genetic Algorithm Type II (NSGA-
II) combined with Technique for Order of Preference by Similarity to Ideal
Solution (TOPSIS). Artificial Neural Network predicted the sandwich
structure’s specific energy absorption (SEA) and the maximum battery stress
during deformation. NSGA-II combined with TOPSIS optimized the design using
both of the predictors. Both creations of the training data and validation were
done using the non-linear finite element method. The optimized design has a
geometric shape of Double-U, a length of 6mm, a width of 4.2mm, cross
section’s thickness of 0.6mm, and consists of 1 layer. The optimum design
has a specific energy absorption of 47,997.84 J and can maintain the battery’s
von Mises stress to a maximum of 43.16MPa, well below the designated battery’s
von Mises stress limit of 67.97MPa.
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1 Introduction

Lithium-ion batteries play a crucial part in the modern world, frequently used as power
components in consumer electronics, electric vehicles (EV), and battery-based energy storage
systems (BESS). It continues to develop rapidly in various aspects, such as energy density,
weight, and manufacturing processes. It is also being used in the transportation industry as an
effort to reduce its carbon footprint on the environment (Battery University, 2018) (Hertzke,
et al., 2018) (Li, et al., 2022).
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This new application area presents new safety risks and can lead to
accidents due to the variety of loads and conditions to which lithium-
ion batteries are exposed during the operation of a vehicle or mobile
BESS. Burning is the most common problem for Lithium-Ion batteries
in an accident involving car and airplane batteries. For example,
Boeing 787-8 from Japan Airlines at Logan International Airport in
January 2013, Boeing 787 from All Nippon Airways in January 2013,
and Boeing 787 from November 2017 (Sun, et al., 2020) (Drew &
Mouawad, 2013) (Drew & Mouawad, 2013).

Post-crash fires make up a large portion of the fires. Thermal
runaway in batteries causes post-crash fire (short circuits between
various components of the battery) (Battery Power, 2019). A short
circuit is created by physical contact between battery components due
to battery deformation during an accident (Bisschop, et al., 2019).
Lithium-ion battery fires can even pose a safety risk to emergency
responders, as they can reignite even after the initial fire has been

extinguished (Pietsch, 2021). According to Everyday Safety for Electric
Vehicles (EVERSAFE) project, the longitudinal scenario especially
rear-end collisions pose the highest risk due to limited regulatory
requirements (Wisch, et al., 2014). This case is classified as in-plane
impact loads, where layers of components within the pouch battery
buckle under the load. (Kermani, et al., 2021). With the growing
interest in lithium-ion batteries as energy storage in the transportation
industry, there is an urgent need to find optimal battery protection and
safety to reduce fire risk after an accident.

An optimum battery protector is characterized by high energy
absorption capacity and high strength to reduce the deformation of the
battery during impact. Also, the mass should be as light as possible to
keep the vehicle light and use less energy. (Shi, et al., 2019). Various
structures, such as a sandwich structure, are considered protection
devices for lithium-ion batteries. Sandwich structures are used
frequently in aerospace and construction because they are

FIGURE 1
Research flowchart.

FIGURE 2
New geometric parameters, from left to right: DA, DU, RE-A, RE-B.
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lightweight and have a high energy absorption capacity (Yazdani,
et al., 2018) (Campbell, 2006).

Meta-structures, a repeated arrangement of unit cell structures,
may be used to fill the core of a sandwich structure (Campbell, 2006).
It is lighter than equivalent solid structures and has some natural
examples, such as human bones and the honeycomb-like formations
seen in beehives. Meta-structure can be further divided according to its
form and property, such as auxetic, lattice, and chiral. The auxetic
structure is a meta-structure in which each cell structure has a negative
Poisson’s ratio (NPR). When bent out of plane, the auxetic structure
can produce a curved surface primarily distributed by positive
Gaussian curvature. It can also increase resistance to shear
deformation, improve indentation resistance at concentrated load
points, and have high energy absorption and damping while
remaining lightweight (Gibson & Ashby, 1997) (Cochrane, et al.,
n.d.) (Sakai & Ohsaki, 2021).

Auxetic property was first observed in artificial polyurethane foam
in 1987 (Lakes, 1987). Since then, different auxetic materials, including
crystal polymers, composites, metals, and ceramics, have been
produced in various ways. Auxetic structure’s unique properties in
many situations have been discovered through research into auxetic
material and its properties. The auxetic effect principally results from
some typical microscopic traits, including re-entrant, rotation, and

chirality characteristics, as shown in the micro-deformation modes of
NPR materials. These works have created auxetic cellular structures
made up of particular microstructures in recent years. These cellular
formations are typically collections of model cells, such as chiral, re-
entrant hexagonal, double arrowhead, and star-shaped units (Wang,
et al., 2018).

This research studied battery protector from in-plane impact loads
with sandwich-based auxetic honeycomb with in-plane impact. Four
auxetic shapes were analyzed: double arrow (Gao, et al., 2020) (Ma,
et al., 2018), double-U (Guo, et al., 2020), and two types of re-entrant
where they differed in two principal directions (Wu, et al., 2020) (Xiao,
et al., 2019) (Najafi, et al., 2020) (Wang, et al., 2018). This work uses
the non-linear dynamics finite element approach for all numerical
simulations (DYNAmore GmbH, 2021).

Machine learning methods are becoming very important in
designing and optimizing a new product. Designers working with
machine learning methods will have a tool to design faster and cheaper
due to the increased speed and efficiency (Philips, 2018). This
acceleration is specifically important in the market environment
that demands faster product development. Many businesses focus
on getting their latest products to consumers as fast as possible to stay
competitive. Priority on speed to market can mean the difference in
whether the public considers a company to be a leader or a follower
(Indeed Editorial Team, 2021).

Previous research has focused on improving the sandwich-based
auxetic structure to protect pouch batteries from out-of-plane impacts
(Biharta, et al., 2022), where the sandwich core in the battery
protection system might use an ideal 3D auxetic structure to
reduce battery deformation. Previous research has been done on
optimizing the sandwich-based lattice construction for battery
protection from out-of-plane impact (Pratama, et al., 2021), where
it has been successfully done to create a sandwich-based lattice
structure to protect the battery from ground impact load. Previous
research has been done on optimizing the tubular auxetic structure for
non-module battery packs to reduce impact and heat dissipation
(Wang, et al., 2021), where machine learning techniques have been
successfully used to develop a tubular auxetic construction to
safeguard the battery from impact stress and improve heat
dissipation. This study varies by optimizing pouch battery
protection based on sandwich-based auxetic honeycomb against in-

FIGURE 3
General configuration of battery validation model.

FIGURE 4
Comparison of force curve between reference and writer’s result.

Frontiers in Energy Research frontiersin.org03

Biharta et al. 10.3389/fenrg.2023.1114263

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1114263


plane impact loading using the machine learning method. The pouch
battery numerical model was based on Kermani et al. (Kermani, et al.,
2021). The four 2D auxetic honeycomb shapes are designed to be

easier to manufacture with conventional manufacturing methods.
This change is hoped to make this study’s data easier to implement
for another crashworthiness application.

2 Methodology

The design of experiment was made to be as continuous as
possible and distributed by Latin Hypercube Sampling (LHS),
where one hundred models were generated. The models created
from the experiment design were then analyzed using the non-
linear finite element method to produce the training data for
optimization. Optimization was done using Artificial Neural
Network combined with the NSGA-II method to find a
sandwich-based auxetic honeycomb with the highest specific

FIGURE 5
Battery’s von Mises stress on 10 mm deformation (all rigidwalls and impactor hidden).

FIGURE 6
General configuration of the system model.

TABLE 1 Parameters and levels of the design of experiment.

Parameters Level

1 (or min) 2 3 4 (or max)

Length (L, mm) 6 10

Ratio Width/Length (Wr) 0.7 1.2

Cross Section’s Thickness (t, mm) 0.4 0.6

Number of layers (n) 1 2 3 4

Geometry DA DU RE-A RE-B
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energy absorption (SEA) and results in enough battery deformation
or the equivalent to not fail under in-plane impact loading within
a limited space. The research follows the flowchart shown in
Figure 1.

2.1 Design of experiment

The Design of Experiment (DoE) was created using Latin
Hypercube Sampling (LHS) methodology. On each one-
dimensional projection, LHS is based on stratification and provides
good homogeneity (Hou, et al., 2012).

The geometric parameters will highly influence the DoE’s
parameters, so new ones must be developed to accommodate all
geometric shapes and simplify the optimization process. Five
parameters were chosen: length (L), width (W), bending’s height
(H), cross section’s thickness (t), and the number of layers (n). The
number of layers explains how many auxetic cells were stacked on top
of each other in the “L” direction. An illustration of the new geometric
parameters is shown in Figure 2.

Five parameters were then chosen for the DoE’s parameters,
consisting of three continuous and two categorical parameters,
shown in Table 1.

The value for each level was selected based on several
considerations. The minimum and maximum lengths were chosen
to keep the whole system small but still can protect the battery. The
minimum andmaximum ratio of width/length were chosen to provide
enough variety to the shape of individual auxetic honeycomb while not
taking too much space. The minimum and maximum cross section’s
thickness were chosen to keep within the geometrical constraint while
stable enough during the numerical simulation. The number of layers
was chosen to observe the significance of the number of layers. The
bending’s height (h) was set at a fixed ratio of 0.3 of the length for all
geometry. Each parameter was rounded to two decimal places to ease
the data input. The 3D plot of the first three parameters (all
continuous parameters) is shown in Supplementary Figure S1.

A total of 103 different models were generated, 100 models using
the LHS method, and three models (model no. 101, 102, 103) were
generated from failed optimization attempts to fill the three failed
numerical analyses from the original design of experiment (model no.
9, 24, and 88).

2.2 Battery numerical modeling

Pouch batteries are employed as the test subject. A homogenized
macro model by Kermani et al. (Kermani, et al., 2021) serves as the
foundation for the numerical model for pouch batteries.

The battery cell was axially squeezed with a flat impactor that
moved uniformly downward, much like in the reference (see Figure 3).
A rigid wall (brown) was used to restrict the cell in the machine (in-
plane) direction. Two rigid walls (turquoise and violet) were utilized to
confine the cell in the through-thickness (out-of-plane) direction. The
impactor was sized to be twice the length and thickness of the battery
to compensate for any deformation during the compression.

The battery’s dimension in this study is 60 × 34 × 5.35mm with
an element size of 1 × 1 × 0.486mm. The battery’s cell was modeled
using constant stress solid element (ELFORM = 1), Flanagan-
Belytschko stiffness hourglass form, and anisotropic honeycomb
(MAT_126) material model with a material property that is
summarized in Table 2 and Supplementary Figure S2.

The simulation is carried out in a quasistatic mode, with the
impactor’s velocity applied as a prescribed motion velocity, with a final
velocity of 0.1m/s in the direction of Y − (DOF � 2). Every node of
impactor elements’ movement is restricted in all directions bar the Y
direction to ensure that the impactor moves without deflection.

There are three types of contact in battery simulation: Automatic
Single Surface applied to the battery, One Way Surface to Surface
applied between the battery and the impactor, and Interior applied to
the battery.

The displacement of the battery was measured by the distance
between the node right in the center of the battery. The load was
measured by measuring the load between the battery and the rigidwall
behind the battery. This was done because, despite the writer’s best
efforts, there is still small penetration between the battery and the
impactor, so no measurement was taken on the impactor.

It was found that the risk of a short circuit is much higher on this
pouch battery when it is compressed at about 12mm (See Figure 4).
However, to add more challenges to the optimization process, we have
decided to limit the battery deformation to about 10mm.

Battery’s von Mises stress was used to measure exactly when the
battery in the system model failed. This is done because the load

TABLE 2 Material property of battery’s foam (Sahraei, et al., 2012) (Kermani,
et al., 2021).

Variable Value Unit

Density (ρρ: ) 1.7409 × 10−6 (Kg/mm3)

Poisson’s Ratio (v) 0.01 —

Relative Volume (VF) 0.7 —

Elastic Modulus (EAAU, EBBU, ECCU) 0.5 GPa

Shear Modulus (GABU, GBCU, GCAU) 0.2273 GPa

Elastic Modulus (E) 1 GPa

Yield Stress (σy) 0.18 GPa

FIGURE 7
Exploded view of the battery housing system, consisting of
6 battery packs (pink), the support structure (blue), and the plate
structure (green).
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condition in system modeling is dynamic load, where the stress
distribution during deformation will not be as uniform as in the
validation model. Furthermore, multiple battery configurations were
used in the systemmodeling, complicating the measuring process. The
von Mises stress when the battery is compressed at about 10mm is
67.97MPa (shown in Figure 5).

2.3 System numerical modeling

2.3.1 General configuration
The general configuration for the system modeling is based on

Audi Q4’s battery system. Crash structures were reinterpreted as thick
plate structures that still functions to hold the battery in place and
transfer load during a crash, now called support structure. Lower
protection and housing cover were reinterpreted as thin plate
structures that sandwich the battery packs and crash structures,
now called plate structures. In many electric vehicles, including
Audi Q4 e-tron, the battery frame consists of extruded tubular cells

(Aluminum Extruders Council, n.d.). This part was reinterpreted as a
sandwich-based auxetic honeycomb structure designed to protect the
battery pack. The result can be seen in Figure 6, with the battery
housing system detailed in Figure 7 and the sandwich structure
detailed in Figure 8.

2.3.2 Impactor and wall
Impactor was designed from Moving Deformable Barrier (MDB)

for side impact according to FMVSS No. 214, Dynamic Side Impact
Protection (Smith, 2005). New Car Assessment Program (NCAP) for
the 2019 Audi e-tron quattro 5-Door SUV was used to obtain the
velocity of the MDB (Fischer, 2019). Both impactor and wall were
modeled as a rigid plate with twice the area of the battery, 1mm of
thickness, 3mm of element size, and using fully integrated shell
element (ELFORM = 16), Eq. 8 hourglass form that is only
applicable to the type 16 fully integrated shell element, and rigid
(MAT_020) material model.

The total mass of MDB is 1, 367.60Kg and a total velocity of
61.68Km/h or 17.13m/s. The bumper area was assumed to be the only

FIGURE 8
Sandwich structure, consisting of plate sandwich (red and green) and auxetic honeycomb (yellow).

FIGURE 9
Support structure (A), Plate structure (B).
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MDB part directly contacting the battery system. The mass was scaled
according to the area of the battery that was impacted. With the area of
the bumper of 1, 676 × 203mm, the density of the impactor for the
simulation is 2.01 × 10−3 Kg/mm3. The material property of Al 2024-
T3 was used for other material properties. The material property of the
wall and impactor is summarized in Table 3.

Instead of the total velocity of the MDB, normal velocity was used
as the initial velocity for the impactor. Because the MDBmove in a 27°
direction, the normal velocity for the impactor is 15.27m/s. The initial
velocity is applied to every impactor node in the direction of Y−
(DOF = 2). Every node of the wall nodes is restricted in all directions,
and every node of the impactor nodes is restricted in all directions but
the Y direction.

2.3.3 Battery housing system
The battery housing system consists of six battery packs, support

structure, and plate structure (see Figure 9). Battery packs are taken
from the validation model (see Chapter 2.2) with the same dimension,
mesh, element formulation, material, and hourglass formulation.
These battery packs were placed within the available spaces of the
support structure (see Figure 7).

The support structure was modeled as 3mm thick plates with
5.35mm height (the same as the thickness of the battery pack) and
2mm element size. The plate structure was modeled as a
189 × 74 × 1mm plate; 2mm element size. Both support and plate
structure were modeled using a fully integrated shell element
(ELFORM = 16), Eq. 8 hourglass form that is only applicable to
the type 16 fully integrated shell element, and piecewise linear
plasticity (MAT_24) material model with Al 2024-T3 material
property (summarized in Table 4; Supplementary Figure S3).

2.3.4 Sandwich structure
The sandwich structure consists of two plate sandwich and an

auxetic honeycomb as the core of the sandwich structure. The plate
sandwich was modeled as a 189 × 6.35 × 1mm plate and 2mm
element size. The auxetic honeycomb numerical model was further
developed from Carakapurwa et al. (Carakapurwa & Santosa, 2022)
with changes in the contact and control cards. It was modeled as a
plate structure that is configured according to the design of experiment
(see Chapter 2.1) with 6.35mm height and 0.5mm element size.

Both plate sandwich and auxetic honeycomb were modeled
using fully integrated shell element (ELFORM = 16), Equation
8 hourglass form that is only applicable to the type 16 fully
integrated shell element, and piecewise linear plasticity (MAT_
24) material model with Al 2024-T3 material property
(summarized in Table 4; Supplementary Figure S3). The auxetic
honeycomb was placed directly between the two plate sandwiches
(see Figure 8).

2.3.5 Contact and control
There are five types of contact in system simulation.

- Automatic General applied to the sandwich structure in this
simulation.

- Automatic Single Surface applied to the battery packs, support
and plate structure.

- Automatic Surface to Surface applied between battery–support
and plate structure, support and plate structure–impactor,
support and plate structure–plate sandwich (front), and
impactor–both plate sandwiches.

- Tied Shell Edge to Surface Beam Offset applied between support
structure–plate structure, wall–support and plate structure,
auxetic structure–both plate sandwiches, and plate sandwich
(back)—support structure, and Interior applied to all battery
packs.

The simulation’s control parameters are contact, energy,
shell, termination, and timestep. Termination time of the
simulation was calculated by Eq. 1. The simulation result
was then rounded up to 2 decimal places. We found that
this method is sufficient for most models except model
no. 13, for which we have to add another 0.2ms to the
termination time.

Termination Timei � YTotal Geometryi

VIntial
+ 2ms (1)

Where, Termination Timei is the termination time for model i,
YTotal Geometryi is the total length of the auxetic structure in Y
direction for model i, and VInitial is the initial velocity of the
impactor, which has been set to 15.27m/s in the previous part (see
Sub-Chapter B above).

TABLE 4 Material property of Al 2024-T3 (Chen & Ingraffea, 2002).

Variable Value Unit

Density (ρ) 2.78 × 10−6 Kg/mm3

Elastic Modulus (E) 72.39 GPa

Poisson’s Ratio (v) 0.33

Yield Stress (σy) 0.29 GPa

TABLE 3 Material property of wall and impactor (Chen & Ingraffea, 2002).

Variable Value Unit

Density (ρ) 2.01 × 10−3 Kg/mm3

Elastic Modulus (E) 72.39 GPa

Poisson’s Ratio (v) 0.33

FIGURE 10
Impactor’s kinetic vs. auxetic honeycomb’s internal energy of
model no. 1.
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2.3.6 Post-processing
Data output from numerical simulation of model no. 1 will be used

to demonstrate the post-processing of the simulation result. These
steps were done to all numerical models to standardize and ensure the
accuracy of the result.

SEA data was obtained by dividing the internal energy of the
auxetic honeycomb when the impactor’s kinetic energy is
minimum by the mass of the auxetic honeycomb (The
comparison between the internal energy of the auxetic
honeycomb and the impactor’s kinetic energy of model no. 1 is
shown in Figure 10). This data was then inversed to obtain SEAinv
data for optimization.

From now on, the battery’s von Mises stress will be abbreviated
as Battery Stress. Battery stress data were obtained by picking the
maximum von Mises stress of all battery packs at any time, where
each battery’s location can be found in Figure 7. In the case of model

FIGURE 11
Battery’s von Mises Stress vs. time of system model no. 1.

FIGURE 12
Neural network architecture for SEAinv prediction.

FIGURE 13
MAPE in ANN training of SEAinv predictor vs. Epoch.
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no. 1, the maximum battery’s von Mises stress happened at 1.41ms
from the start of the simulation (shown in Figure 11). This data was
called Stress data for optimization.

The energy state and the detailed sum slave/master sliding energy
were also checked to ensure the accuracy of the data (energy state of
model no. 1 shown in Supplementary Figure S5).

2.4 Artificial neural network modeling

Two kinds of codes were used to develop the ANNmodel. The first
kind is called optimization code, and the second kind is called
validation code. The optimization code was used to help find the
rough hyperparameter for the validation code using the Keras Tuner
package (Keras Tuner, 2019). The validation code was used to fine-
tune and develop the final ANN model for each output using the
Tensorflow package with a callback mechanism (Abadi et al., 2015).
Both were written in Google Colab.

The loss function was evaluated using the mean square error
(MSE) equation, as written in Eq. 2.

MSE � 1
m

∑ ypred − yact( )
2

(2)

The model’s performance is also assessed using maximum
absolute percentage error (MAPE), which is written in Eq. 3.

MAPE � 1
m

∑
ypred − yact

yact

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣ (3)

2.5 NSGA-II and TOPSIS modeling

The optimization code was written in Google Colab using the
Platypus package (Platypus, n.d.) with TOPSIS.

The NSGA-II part of the optimization code was set with 11
decision variables, 2 number of objectives, and 4 number of
constraints. The decision variables are L, Wr, t, 4 geometrical
shapes (DA, DU, RE-A, and RE-B), and 4 options of layers (1 to
4). The objectives are SEAinv and Stress. The constraints are only one
kind of geometrical shape allowed, only one number of layers allowed,
and battery stress must be a positive number.

The TOPSIS part of the optimization code was set with the
assumption that the weight of SEA inversed and battery stress are
50% and 50%, respectively, the minimum amount of SEA inversed
preferred for the optimum design, and the battery stress is preferred to
be as close to the limit of the battery stress according to Chapter 2.2.
Those weights were chosen because the vehicle safety (represented by
Battery Stress) cannot be compromised. However, the maximum

FIGURE 14
Neural network architecture for Stress prediction.

FIGURE 15
MAPE in ANN training of Stress predictor vs. Epoch.

TABLE 5 Input parameter and output prediction of the optimum design.

L 6mm

W 4.2mm

T 0.6mm

Geometrical Shape DU

Number of Layers 1 Layer

Mass 8.86 × 10−3 Kg

SEA (Prediction) 3.70 × 104 J/Kg

Battery Stress (Prediction) 38.30MPa
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amount of SEA (or, in this case, the minimum amount of
SEA inversed) is preferred for two things: to maximize the
energy absorption from the impact and to minimize the
structure’s mass.

The NSGA-II algorithm processed the combination of SEAinv and
Stress predictor to obtain the Pareto Front curve, which shows the
relation between SEAinv and Stress. Data points were generated by the
NSGA-II algorithm and then fitted with regression to obtain the
relation function between SEAinv and Stress.

3 Result and discussion

3.1 Predictor result (ANN)

3.1.1 SEAinv prediction
The neural network model for SEAinv prediction is pictured in

Figure 12. The model consists of 3 hidden layers, with all hidden layers
consisting of eight hidden nodes with bias. The activation function is
ReLU before all hidden layers and Linear before the output layer. The
training process was done by the ADAM algorithm, the learning rate is
0.01, and the batch size is 64. The mean-square-error equation was
used to evaluate the loss function for the neural network training
model.

The training was done until a maximum of 20, 000 epochs with an
early stopping mechanism that monitored the validation loss function
and 5, 000 patience. The training was stopped at 10, 513 epochs by the
early stopping mechanism. Figure 13 shows the training process of the
SEAinv predictor, where the final validation MAPE of the predictor is
around 4.53%.

3.1.2 Stress prediction
The neural network model for Stress prediction is visualized in

Figure 14. The model consists of 6 hidden layers, consisting of
8, 1, 8, 8, 1, and 1 hidden nodes respectively, with bias. The
activation function is ELU before the hidden layer and Linear
before the output layer. The training process was done by the
ADAM algorithm, the learning rate is 0.005, and the batch size is
64. The mean-square-error equation was used to evaluate the loss
function for the neural network training model.

The training was done until a maximum of 20, 000 epochs with an
early stopping mechanism that monitors the validation MAPE
function and 5, 000 patience. The training was stopped at 10, 180

FIGURE 16
Pareto Front curve for battery stress vs. SEA inversed.

FIGURE 17
CAD of optimum design.

FIGURE 18
Impactor’s kinetic vs. auxetic honeycomb’s internal energy of the
system with optimum design.
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epochs by the early stopping mechanism. Figure 15 shows the training
process of the Stress predictor, where the final validation MAPE of the
predictor is around 22.22%.

3.2 Optimization result (NSGA-II and TOPSIS)

The Pareto Front curve shows the relation between SEAinv and
Stress, shown in Figure 16. Data points in Pareto Front were fitted with
regression function as shown in the black curve in Eq. 4. The
regression fitted the data points with R2 � 0.9447.

Stress � 6 × 1010 SEAinv2( ) − 5 × 106 SEAinv( ) + 127.77 (4)
Figure 16 also shows the optimum point obtained by the TOPSIS

method, with SEA of 37, 037.04 J/Kg (inversed of the obtained data)
and Stress of 38.30MPa. The input parameter of the optimum
configuration is shown in Table 5. The CAD of the optimum
configuration is shown in Figure 17.

This result is better than every model simulated in the design of
experiment in Chapter 2.1.Model 71, which has the highest SEA over all
other models that successfully protect the battery, has a SEA of
37, 074.20 J/Kg and Stress of 52.77MPa, which is worse in battery
stress and equal in SEA than the optimum design.

The optimum configuration was then numerically simulated with
the same configuration in Chapter 2.3 to validate the optimization
result, as shown in Supplementary Figure S6.

The comparison between prediction and numerical simulation results
is shown in Table 6. The comparison shows that the error between
prediction and validation results is still pretty big. It was found that the
SEA of the optimum design is even higher than the prediction, but the
maximum battery stress is lower than the prediction. However, the
maximum battery stress of the optimum design is well within the safe

limit of 67.91MPa. The comparison between the internal energy of the
auxetic honeycomb and the impactor’s kinetic energy of optimum design
is shown in Figure 18 and battery’s vonMises stress vs time of systemwith
optimum design is shown in Figure 19.

Supplementary Figure S7 shows that the crash mechanics of the
optimum design follows classical crash mechanics during vehicle
impact, where there are zero crossing time of 1.39ms and rebound
velocity of 2.50m/s. Mean crushing force (Pm) of the whole system
was calculated in Eq. 5.

Pm � EA

δ
� 427.84 J
10.68mm

� 40.05 kN (5)

Just as with every other numerical model done for the design of
experiment, the energy state and the detailed sum slave/master sliding
energy were checked on the optimum design’s validation result to
ensure the accuracy of the obtained data, shown in Supplementary
Figure S8. The total energy is almost in constant value over time, with
the value ranging between 917.10 J to 917.17 J, which is almost exactly
the same as the initial kinetic energy of the impactor (917.13 J). The
hourglass energy is very small compared to other forms of energy, and
the sliding energy is below 10% of the internal energy. The sum salve/
master sliding energy for each contact is almost always positive
throughout the simulation. These indications show that the
simulation is accurate.

4 Conclusion

The research shows that the machine learning methods work well
for battery protection design and multiple objective optimization, with
small training data, limited computing power, and pretty accurate
results.

FIGURE 19
Battery’s von Mises Stress vs. time of system with optimum design.

TABLE 6 Validation and comparison of optimum design.

Baseline (model 71) Prediction (NSGA-II) Validation (numerical result) Error (%)

SEA (J/Kg) 37,074.20 37,037.04 47,997.84 22.84

Battery Stress (MPa) 52.77 38.30 43.16 11.26
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The optimization results in a protector with an auxetic honeycomb
that has a geometric shape of Double-U, length of 6mm, width of
4.2mm, cross section’s thickness of 0.6mm, and consists of 1 layer.
These parameters were obtained using machine learning methods
such as artificial neural network and NSGA-II algorithms combined
with TOPSIS. The protector has SEA of 47, 997.84 J and can maintain
the battery’s von Mises stress to a maximum of 43.16MPa (validation
result from non-linear numerical analysis), well below the designated
battery’s von Mises stress limit of 67.97MPa.

During impact, the auxetic structure (the core of the sandwich
structure) has absorbed 425.15 J as internal energy out of 917.13 J (the
initial energy of the impactor). During the crash, it was also found that
the reaction of the whole structure follows classical crash mechanics
during vehicle impact, with zero crossing time of 1.39ms, rebound
velocity of 2.5m/s, and mean crushing force of 40.5 kN.
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