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High-impedance fault (HIF) is always a threat and the biggest challenge in the
power transmission and distribution system (PTDS). For a PTDS to operate
effectively, HIF diagnosis is essential. However, given the HIF’s nature and the
involved complexity, detection, identification, and fault location are difficult. This
will be even more complicated in conventional PTDSs as they are inefficient and
highly vulnerable. Given the importance and urgent need for HIF diagnosis in
PTDS, this study reviews state-of-the-art HIF phenomenon and detection
techniques and proposes the use of “various signal processing techniques for
fault feature extraction” and “ different classifiers for identifying HIF.” First, HIF
current/voltage signals are analyzed using signal processing techniques, which
include the discrete wavelet transform (DWT), pattern recognition, Kalman
filtering, TT transform, mathematical morphology (MM), S transform (ST), fast
Fourier transform (FFT), principal component analysis (PCA), linear discriminant
analysis (LDA), and wavelet transforms, such as dual-tree, maximum overlap
discrete wavelet transform (MODWT), and lifting wavelet transform (LWT).
Second, the various HIF and non-HIF faults are classified using intelligent
classifiers. The intelligent classifiers include artificial neural networks (ANNs),
probabilistic neural networks (PNNs), genetic algorithms (GAs), fuzzy logic,
adaptive neuro-fuzzy interface system, support vector machine (SVM), extreme
learningmachine (ELM), adaptive resonance theory, random forests (RFs), decision
trees (DTs), and convolution neural networks (CNNs). In addition to the
comparative discussion of various classifier techniques, their evaluation
criterion and performance are prioritized. Third, this review also studied
different test systems, such as radial distribution network, mesh distribution
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network, IEEE 4 node, IEEE 13 node feeder, IEEE 34 node feeder, IEEE 39 node
feeder, IEEE 123 node feeder, Palash feeder, and test microgrid systems, to assess
the pertinence of various HIF detection schemes and the behavior along with
methods to locate the HIF. Overall, we believe this review would serve as a
comprehensive compendium of advanced techniques for HIF diagnosis in
different test systems.

KEYWORDS

high-impedance fault, power system protection, signal processing, artificial neural
networks, feature extraction, HIF detection, intelligent classifier, electrical test systems

1 Introduction

Faults are often observed in electrical power transmission and
distribution systems (PTDSs). The faults in a PTDS will distract
the current from the intended path (Ali et al., 2014; Russell and
Benner, 1995). The fault causes an irregular condition that
decreases the strength of insulation between the conductors
(Russell and Benner, 1995; Theron et al., 2018). There are
numerous fault types, among which high-impedance faults
(HIFs) are critical. HIF occurs when a conductor touches a
tree with a high impedance or when a broken conductor
touches the ground (Chen et al., 2013; Aljohani and
Habiballah, 2020a). The HIF draws non-predictable currents
from the distribution network, sometimes leading to arcing
(Chen et al., 2013). This is visually represented and shown in
Figure 1. Such faults can impose fire risks and cause an electrical
shock that endangers electrical system operators, engineers, live
stocks, and individuals' lives (Aljohani and Habiballah, 2020a;
Sultan et al., 1994). In industrial applications, HIF detection is
inevitable to ensure the safety of working persons and equipment
and continuity in the service for critical loads. Thus, HIF

detection and diagnosis are vital to ensure safety and
continuous PTDS operation. However, its detection is quite
challenging because HIFs are often not recorded as faults;
hence, the reported cases are fewer than the observed ones
(Ali et al., 2014). As the fault current draws less current, it
remains unnoticed and persists for days. Owing to small fault
currents, HIFs are difficult to detect using traditional protection
relays and should be addressed through algorithms. HIF depends
on various factors, such as the ground surface type, humidity,
type of conductor, environmental conditions, and voltage degree,
of which surface humidity and surface materials are the most
influenced (Sedighizadeh et al., 2010). Many HIFs have similar
features that can be represented because of differences in the arc
parameters, such as conductance and time constant (Vyshnavi
and Prasad, 2018; Chen et al., 2016). Low impedance fault (LIF)
(Kavaskar and Mohanty, 2019; Kannan and Rathinam, 2012) is
short-circuiting, followed by a high current that is sensed by a
breaker.

Arc type fault (HIF) usually occurs when a current-carrying
conductor touches the ground or with another conductor
through a high-impedance medium for a short time. HIF is a
disturbance in a power system of approximately 15–25 kV that
blocks the current required to trip the overcurrent relay (Ali et al.,
2014; Calhoun et al., 1982). The voltage–current characteristics
are highly dependent on various materials (Ali et al., 2014),
including tree branches, lawns, gravel, stout gravel, asphalt,
concrete, crushed stone, board blocks, and cement (Russell
et al., 1988). Furthermore, deteriorated insulators due to
cracks, dust, humidity, and ice, among others, are some of the
main triggers of HIF in PTDSs (Langeroudi and Abdelaziz, 2020).
The long-term persistence of HIF is undesirable for profitable
and smooth operations (Langeroudi and Abdelaziz, 2020).
Various faults and incorrect operations can cause blackouts
(Kjølle et al., 2006). Various vulnerable surfaces to HIF with
the corresponding fault currents as indicated by Sedighizadeh
et al. (2010) and Tengdin et al. (1996) are wet sand 15A, dry sod
20A, dry grass 25A, wet sod 40A, wet grass 50A, reinforced
concrete 75A, dry asphalt <1A, and dry sand <1A. HIFs are sub-
classified into active and passive faults (Jota and Jota, 1999).
Active faults possess fault currents below the threshold values of
protection relays accompanied by an electric arc. An electric arc
does not follow passive faults. They are challenging to detect as
there is no indication of the energization of the conductor and
can be detected by phase unbalance analysis. The studies
evaluated that approximately 10% of the distribution faults in
power systems are HIF, of which 25%–32% of the down

FIGURE 1
HIF in the downed conductor. (A) Arcing in the downed
conductor. (B) Source end and load end conductors (Roberts et al.,
2001; Suliman and Ghazal, 2019).
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conductors are not detected with overcurrent relays (Sultan and
Swift, 1992). Hence, the detection and isolation of HIF become
important. Studies show that conventional protection methods
identify only 17.5% of staged HIFs, but the introduction of hybrid
energies to distribution grids made the HIF detection demand
necessary. An efficient detection method of HIF became
necessary to eliminate false tripping and stabilize the power
supply. Unlike other faults that endanger electrical appliances,
HIF threatens human life. The formation of flammable gases after
a HIF interception, which is near flammable material, can cause a
fire or explosion. HIF can be caused by a broken or unbroken
conductor. Figure 2 shows ice and a tree causing HIF in unbroken
and broken conductors (Theron et al., 2018).

As shown by Gururajapathy et al. (2017), faults in power
systems can be broadly classified into symmetrical or
asymmetrical faults and balanced or unbalanced faults, among
which unbalanced loads are more frequent and can be
categorized as series and shunt faults. Series faults are caused
by broken conductors or otherwise unbalanced series
impedances. These faults can be recognized by an increase in
voltage and frequency and a reduction in the current of the faulty
feeder. However, in the shunt fault, there will be a fall in
frequency and voltage and a rise in current, which is common
in power systems. The percentage of occurrence in the power
system for a single-line-to-ground fault (SLGF) is 70% which, is
less severe. In line-to-line fault (LLF), it is 15%, and the severity is
less. In LLF, it is 10% and less severe, whereas the triple-line-to-
ground fault (LLLGF) is more severe, and occurrence is only 5%.
When any phase of the transmission system comes in contact
with the ground or neutral wire, an SLGF occurs due to wind and
tree falling, among others. In LLF, the occurrence can be due to
heavy wind or when two conductors contact each other, which
can happen in overhead and underground systems. The variation
of impendence spreads over a wide range in this case, and it is
difficult to predict the upper and lower limits. Double-line-to-
ground fault (DLGF) occurs when a tree falls on the two phases of
the transmission system connecting the ground, which is
considered asymmetric and a severe event if not cleared in a
certain time. LLLGF is symmetrical owing to equipment failure
or a tower falling on the transmission line. This is considered a
serious situation as the voltages become zero, and the current
may be too high. Low fault current resulting from contact with
the high-impedance surface, asymmetry (Sultan et al., 1994)
resulting from the presence of silica on the contact surface,

randomness (Benner et al., 1989) resulting from rapid
electrical discharges and floating conductors on the surface
of the field, and non-linearity resulting from the different
soil layer resistivity (Ali et al., 2014) are the key
characteristics of the HIF. The non-linearity results from the
fact that the HIF characteristic curve of the voltage–current is
non-linear. Low-frequency components are present in the
voltage and current waveform due to the non-linearity of
HIF, which can range up to 600 Hz for current and 300 Hz
for voltage. The fault current has different waveforms, and a
disparity in the peak value and shape is called asymmetry for the
positive and negative half periods. HIF is called an arcing fault
because it is preceded by an arc, producing a few cycles of
conduction followed by cycles of non-conduction. The current
HIF value increases for a few cycles and holds a constant value.
The current range changes over time, making it non-stationary.
Random values are both the current magnitude during
conduction and non-conduction periods. Arc results in the
present waveform’s high-frequency components, and because
of the non-linearity of the HIF waveform, it contains harmonics.
HIF normally occurs at medium voltages and becomes severe at
low voltages and less severe at a high voltage above 25 kV. HIF is
influenced by several factors, such as feeder configuration,
voltage level, weather conditions, and load type (Louis,
2015). HIF detectors find it hard to detect conductors in run-
out conditions or undergo severe weather conditions, tree
contacts, and a history of excessive breakage. Researchers
working on HIF detection concentrated on lab-based staged
fault studies. Owing to the critical nature of the faults, industry
and academia focus more on simulations and software studies.
Early and accurate fault detection will reduce interruption time
and increase the safety and reliability of the power system.
Advanced signal processing techniques depend on specialized
knowledge and the accuracy of the measured data. The modern
power system is currently challenged by the growing volumes of
data of different natures, the need for data storage, the
introduction of distributed generations, and technological
advancements. However, the simulation techniques are still
in their developing state. During the signal processing
analysis, the hidden characteristics of the measured data are
revealed, such as randomness, non-linearity, and asymmetry.
Machine learning techniques can acquire hidden data from the
measured data, thus providing a promising way to meet the
challenges in the power system. These fault characteristics are

FIGURE 2
(A) Ice and a tree causing HIF in unbroken conductors (Theron et al., 2018). (B) HIF arcing on grass (Sedighizadeh et al., 2010) and concrete
(Carpenter et al., 2005). (C) Unbroken conductors (Louis, 2015).
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used by the classifiers to discriminate HIFs from other
disturbances.

2 HIF detection

The power system network generally has a healthy state and a
faulty state. The fault identification task has three main steps:
measurements (current, voltage, current and voltage, and
magnetic field intensity), feature extraction, and classification
(Carr, 1981). Signal processing techniques are frequently used to
increase the effectiveness of HIF detection techniques. The signal
processing techniques’ characteristics extracted their hidden
characteristics and measured the three-phase voltage/current
signals for HIF detection, improving versatility, stability, and
economy. Based on these extracted features, the classifier
discriminates whether the HIF event occurred.

Figure 3 shows the basic steps involved in HIF detection using
signal processing techniques. The signal processing techniques
commonly used for HIF detection schemes are discrete wavelet
transform (DWT) (Elkalashy et al., 2007a; Elkalashy et al., 2008;
Elkalashy et al., 2007b; Ibrahim et al., 2010a), principal component
analysis (PCA) (Sarlak and Shahrtash, 2008), linear discriminant
analysis (LDA) (Sarlak and Shahrtash, 2008), continuous wavelet
transform (CWT), extended Kalman filter (EKF) (Soheili et al.,
2018), time–time transform (TTT) (Nikoofekr et al., 2013), dual-tree

complex wavelet transform (DTWT) (Moravej et al., 2015), S
transform (ST) (Routray et al., 2016), maximum overlap discrete
wavelet transform (MODWT) (Kar and Samantaray, 2017), fast
Fourier transform (FFT) (Bin Sulaiman et al., 2017), Stockwell
transform (Balser et al., 1982), mathematical morphology filters
(MMF) (Sekar and Mohanty, 2018), and lifting wavelet transform
(LWT) (Narasimhulu et al., 2020). The description of these signal
processing tools used in HIF detection techniques is discussed in
Section 2.3, emphasizing time-domain analysis, frequency-domain
analysis, and time–frequency-domain analysis. The selected features
are extracted from the input signal and then compared to a threshold
value in signal processing techniques for HIF detection. Setting the
threshold value is challenging because HIF would not be detected if
the threshold is set too high. If it is set to an extremely low value, the
relay will trip even with light disturbances. This issue can be resolved
by introducing intelligent classifiers along with signal processing
techniques.

Commonly used intelligent classifiers in signal processing-based
HIF detection techniques are probabilistic neural network (PNN)
(Samantaray et al., 2008), artificial neural network (ANN) (Baqui
et al., 2011), adaptive resonant theory (ART) neural network and
Fuzzy ARTMAP (Nikoofekr et al., 2013), extreme learning machines
(ELMs) (Reddy et al., 2013), genetic algorithm (GA) (Xie et al.,
2013a), support vector machine (SVM) (Bhongade and Golhani,
2016), adaptive neuro-fuzzy inference system (ANFIS) (Veerasamy
et al., 2018), decision tree (DT) (Sekar and Mohanty, 2018), random
forest (RF) (Sekar and Mohanty, 2020), convolution neural network
(CNN) (Fan and Yin, 2019), and fuzzy logic control (FLC) (Suliman
and Ghazal, 2019) explained in Section 4. These intelligent classifiers
improved the efficiency, speed, and accuracy of signal processing-
based procedures by detecting HIFs without the use of threshold
settings.

The practical detection of HIFs was explained by Kistler et al.
(2019), who used two relay-based HIF detection algorithms. The
former uses the odd-harmonic contents of phase current, whereas
the latter uses the inter-harmonic contents. The first algorithm uses
total odd harmonic content from phase currents using the FIR filter.
A threshold value was set, and the odd harmonic contents were
compared. If the difference is more significant than the threshold,
the counter increments, and the alarm is set. The second algorithm
uses the sum of the difference of inter harmonic content that uses a
reference and compares it to the measured sum of difference
currents to detect the increase in the sum of difference currents
during an HIF. The second algorithm was more successful for HIF
detection, mainly on grassy surfaces, and slightly less for fully
contact good insulators that do not cause an arc. The algorithm’s
performance was tested in a live conductor by the Electric Power
Research Institute and PPL electric utilities (SEL, 2007).

Mitigation of forest fires and human safety issues were addressed
by Gashteroodkhani et al. (2021) through the practical detection of
HIFs. Two strategies for fault current detection, one based on the
non-harmonic content of fault currents and the other on the odd-
harmonic content of fault currents, are explained and evaluated in a
hardware-in-the-loop (HIL) platform employing a real-time digital
simulator (RTDS). With 1,736 relay events reported, the first
algorithm detected 95% of the HIFs, whereas the second detected
only 5% of HIFs. The test system chosen was from a distribution
network in the Northern Nevada area with a 14.4-kV three-phase

FIGURE 3
Steps involved in pattern classification of HIF detection.
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three-wire feeder. Chakraborty and Das (2019) explained that smart
meters are installed for voltage measurements compared with a
threshold value to detect the presence of HIFs. It is tested in six
different situations of three broken and three unbroken conductors.
The method is implemented along with a single-phase energy meter
capable of detecting the presence of HIFs, voltage sag-swells,
capacitor/load switching (Panigrahi et al., 2018; Prasad et al.,
2022), transformer and feeder energization (Biswal et al., 2022),
power electronic loads, arc furnace loads, and distributed generators
(DG). The method gives satisfactory results in HIF detection. The
detection methods proposed in previous studies (Lima et al., 2018;
Yang et al., 2006; Sedighi et al., 2005a; Abdelgayed et al., 2017; Wang
et al., 2019) also experimented on real-time systems discussed in
the various sections of the manuscript. Discrimination of HIF
along with cross-country faults was explained by Ashok and Yadav
(2021). A simulation model of the IEEE 13-bus system is used to
obtain the three-phase current signals, and MODWPT is used for
feature extraction. The real-time field data from Chhattisgarh State
Power Transmission Network are collected and tested using the
same algorithm. Classification of HIF, non-HIF boundary fault
conditions, capacitor switching, reactor string switching, load
switching, power swing effects, the effect of noise, lightly load
conditions, and electric arc furnace effects in PTDSs is done. The
classification is conducted by setting a threshold value for the energy
envelop index. The response time of the proposed method for each
case is recorded, which is less than 14.3 m. When compared with
earlier studies (Ghaderi et al., 2017; Sedighizadeh et al., 2010;
Vyshnavi and Prasad, 2018, this study gives an insight into
various test systems used for testing various HIF detection
methods and studies the nature of HIF, which is discussed in
Section 3.

2.1 Measurements

Measurements such as current measurement, voltage
measurement, and both current-voltage measurements extract
features for fault analysis. An HIF is accompanied by the
intermittence of arc (Chen et al., 2013). The arcing fault contains
low- and high-frequency components in the current frequency
spectrum. The low frequency-based technique results in lower-
order harmonics with even, odd, and intermittent harmonics
extracted for HIF detection. High frequency-based techniques
show short variations in the HIF current.

Voltage measurement is performed by extracting three-phase
voltage signals proposed by Ali et al. (2014) during the HIF
phenomenon in an underground distribution network. Bakar
et al. (2014) performed a voltage measurement at the primary
substation and compared fault features with the database
generated from the simulation. The method has a single
measurement and multiple branches that can detect multiple
faulty sections. Detection of HIFs by voltage measurement is
efficient only when there is a voltage drop between the relay and
fault location. The proposed method by Wang et al. (2018) used the
discriminant vector of negative and zero sequence current and
voltage in the substation.

Current and voltage measurement has improved reliability
compared to the latter measurements. Magnetic field intensity

measurement increases the cost and complexity of the detection
technique (Bahador et al., 2018).

2.2 Signal processing techniques and feature
extraction

Signal processing techniques are widely used to improve the
effectiveness of high-impedance defect detection approaches.
Signal processing techniques extract the hidden properties of
observed three-phase signals for HIF detection, enhancing
adaptability, stability, and cost-effectiveness. More informative
data are obtained using various analyses based on these extracted
data, such as time-domain analysis, frequency-domain analysis,
and time–frequency analysis (Chen et al., 1990; Sarlak and
Shahrtash, 2013). Table 1 gives a detailed comparison of
various signal processing techniques for HIF detection using
intelligent classifiers.

2.3 Domain analysis

2.3.1 Time-domain analysis
The time-domain analysis uses the measure of zero-sequence

voltage and current for feature extraction of HIF. The time-domain
analysis is based on arc current waveform. Time-domain takes out
the temporary irregularities in the HIF waveform, making the
system computationally complex (Lee and Bishop, 1985).

Nezamzadeh-Ejieh and Sadeghkhani (2020) proposed that
Kullback–Leibler divergence extracts the non-linearity and
asymmetry characteristics of two half-cycles of the current
waveform from the substation in a time-domain detection of
HIF. The method is tested in 13-node and IEEE 34 systems (the
Institute of Electrical and Electronics Engineers). Without any
harmonic component analysis or training set, the method can
identify an HIF by calculating the energization of feeders, voltage
swag, and swell.

Mathematical morphology (MM) is a signal processing
technique applied to issues in the power system illustrated in the
literature (Sekar and Mohanty, 2018; Panigrahi et al., 2018). MM
uses simple arithmetic operations, such as set theory and integral
geometry, and due to its simple calculations, the processing time
is less.

The basic functions in MM are dilation and erosion (Kavaskar
and Mohanty, 2019). MM is non-linear, and it is time-domain
processing of the signal widely used to extract high- and low-
frequency signals. Here, the proposed MM, along with data
mining DT, is used for HIF detection. Statistical features are
extracted, which serve as input to DT and RF for discriminating
with non-HIF conditions (load switching, capacitor switching, and
inrush current).

The morphology gradient filter extracts statistical features from
the features. A rule set is created using RF, which will accept the crisp
inputs using a fuzzy-based algorithm proposed by Sekar and
Mohanty (2020). This method detects HIFs and normal events
with high dependability. The chosen sampling rate was
60 samples/cycle, requiring less memory space and less
computational time.
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TABLE 1 Comparison of various signal processing techniques for HIF detection using intelligent classifiers.

Ref. No. Feature extraction
approach

Classifier Test system Year Remarks

Samantaray et al.
(2009a)

Adaptive extended
Kalman filter (AEKF)

Feedforward neural network
and PNN

i) Radial distribution feeder,
15 kV
ii) Mesh distribution network,
15 kV

2009 Detection time, 0.01 s

PNN classification rate is 99.11%, whereas
for FNN, it is 96.51%

Cui et al. (2017) Discrete Fourier
transform (DFT) and
Kalman filter

Pattern recognition Benchmark test system 25 kV 2017 An effective feature set algorithm is
introduced to the feature extracted and
compared with Naive Bayes, support vector
machine, KNN, J48, and RF, of which
J48 and RF give better results

Bhongade and
Golhani (2016)

DWT Support vector machine Radial distribution system,
400 kV

2017 The traveling wave method is used for
locating the fault. Good accuracy as the %
error is below 1.22%

Chen et al. (2014) DWT-MRA Simple detection criterion IEEE 13-node test 2014 Efficient and fast method. Economical since
voltage signal measurement is needed

Yeh et al. (2019) DWT Digital signal processor Distribution network at
Southern California Edison,
12 kV

2019 Detection time 32.9 m. Effective and
flexible method. Tested on real-time data

Akorede and
Katende (2010)

DWT Pattern classifier The radial distribution
network, 11 kV

2010 Moving window approach. Two-class
classification only

Baqui et al. (2011) DWT ANN Radial distribution, 13.8 kV,
Basque Country (Spain)

2011 Discriminates HIF, LIF, and switching
events. Multilayer perceptron network and
Levenberg–Marquardt backpropagation
algorithm are the learning algorithms used

Ali et al. (2014) DWT Short distance algorithm and
matching approach

38-Node underground
distribution, 132/11 kV,
Malaysia

2014 Locating time required is less compared to
conventional methods

Xie et al. (2013a) Dual-tree complex
wavelet transforms

PNN IEEE 34-node test feeder 2014 PNN requires no iteration. Detection time
1.5 m. The error of detection of 1.4%

Ibrahim et al. (2008) DWT Moving window-based pattern
recognition

JMARTYmodel 500 kV, Egypt 2007 Simple, accurate, and fast technique. EHV
transmission lines

Tag Eldin et al.
(2009)

DWT An algorithm based on a
recursive method (Clark’s
transformation)

ATP/EMTP model for real
CCVT, 500 kV, 150 km,
500 kV transmission line

2009 Accurately detect HIF detection in EHV
transmission lines. Independent of the HIF
model. Detects HIF in ¾th of a cycle

Lai et al. (2005) DWT and pattern
recognition

Nearest neighboring rule 25 kV power distribution
networks

2005 Error range 2.52% and 45.4%. It will not
indicate the physical properties of the
output coefficient

i) Distribution network with a
single branch of a non-linear
load

ii) Radial distribution network
iii) Meshed network

Xie et al. (2013b) Extended Kalman filter Support vector machine Radial distribution feeder,
13.8 kV

2009 Classification accuracy of 98%. Excellent
results under noisy conditions also

Wali et al. (2018) FFT Power spectrum (PS) technique Radial distribution feeder,
13.8 kV

2018 Detection accuracy of 100%, simple
technique, requires less time because
training is not needed

Tawafan et al. (2012) FFT ANFIS Radial distribution feeder,
13.8 kV

2012 Mean squared value of 0.084. ANFIS is
based on subtractive clustering. The
classification rate is above 96.4%

Yeh et al. (2014) FFT and
Walsh–Hadamard
transforms (WHTs)

Threshold and shape of the
magnitude and phase responses
of orthogonal transforms

Official websites of DOE/EPRI
National Database Repository
of Power System Events

2015 Detection time is 0.033 s. The performance
of the method is correct and precise

Narasimhulu et al.
(2020)

LWT ANN Radial distribution network,
400 kV

2020 Efficiency is 98%. Superior to GA-fuzzy,
GSA-ANN, and ALO

(Continued on following page)
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TABLE 1 (Continued) Comparison of various signal processing techniques for HIF detection using intelligent classifiers.

Ref. No. Feature extraction
approach

Classifier Test system Year Remarks

Sekar and Mohanty
(2017)

MM DT IEEE 13, IEEE 34-node feeder 2017 Detection time 30 m, accuracy 98.33%

Gautam and Brahma
(2013)

MM Implemented on overcurrent
relay

IEEE 13-node test feeder 2012 Detection time 1 s. The success rate of
detection and classification is 100%

Panigrahi et al.
(2018)

MM Detection algorithm IEEE PSRC Working
Group D15

2020 Detection time 0.8 s

Kavaskar and
Mohanty (2019)

MM Simple rule-based algorithm EPDS 11 kV radial
distribution, Chennai

2019 Detection time 80 m

Security and dependability 100%

HIF, LIF, load, and capacitor switching are
classified

Sarlak and Shahrtash
(2013)

MM SVM Palash feeder in southwestern
Tehran, radial distribution

2013 HIF indicator is introduced, which is based
on magnetic field strength signals

Sekar and Mohanty
(2018)

MM DT EPDS 11 kV radial
distribution system, Chennai

2018 Detection time 30.66 m

Accuracy 99.34%

Sekar and Mohanty
(2020)

Morphology
gradient (MG)

Fuzzy rule base EPDS distribution, Chennai,
33 kV

2020 Accuracy of 99.3%. Less computation time

Gadanayak and
Mallick (2019)

MODWT Knot-based EMD CERTS microgrid system 2019 Detection time is 0.12 s Accuracy of 100%.
The current from the proposed algorithm
cannot be used in a mesh network

Kar and Samantaray
(2017)

MODWT DT Test microgrid system 2017 Classification accuracy of 99.77%. Highly
reliable for microgrid distribution systems.
The test is also performed in islanded mode

Sarlak and Shahrtash
(2011)

Multi-resolution MG MLPNN Palash feeder in the southwest
of Tehran, simulation,
distribution

2011 Superior to other feature extraction
techniques like DWT, DFT, discrete
s-transform (DST), discrete time–time
(DTT) transform. Security 92.8%,
dependability 96.4%

Sarlak and Shahrtash
(2008)

PCA and LDA SVM IEEE four-node test feeders 2008 Better accuracy of 97.5% compared to
Bayes and Parzen classifiers

Samantaray et al.
(2009b)

S and TT transform PNN and FNN i) Three-phase radial
distribution feeder
ii) Three-phase mesh network.
Both have 15 kV

2009 The classification rate of PNN is 98.02% as
it is 94.04% for FNN for the radial network.
The testing time is 0.3 s for FNN and
0.01 s for PNN

Lima et al. (2019) Stockwell transform Probabilistic analysis Brazilian utility, 13.8 kV real
distribution

2019 Accuracy rate of 94.4%. Detection time is
166 m. Tested on six different surfaces, and
detection time is measured

Mishra et al. (2016) Stockwell transform ANN and SVM Radial and Mesh distribution
system, 138 kV

2016 Comparison of ANN with SVM. ANN in
the radial network gives 93.7% accuracy as
SVM with 86.25% in the mesh network

Naik and Yadav
(2018)

DFT Fuzzy interface system IEEE 15-bus system 2018 Effective classification of HIF, symmetrical
and unsymmetrical faults in less than
8.33 m

K. Chaitanya and
Yadav (2020)

EWT-SVD SVM Modified IEEE 13-node
system

2020 Classification accuracy of 99% for 60 dB
noisy environment

Chaitanya et al.
(2020)

Variational mode de-
composition (VMD)

SVM IEEE 13-node system 2020 Effective classification of HIF, LIF, and
non-faulty conditions with a classification
accuracy of 99% and response time for LIF
is 16.67 m, and that for HIF is 166.7 m

Routray et al. (2016) Stockwell transform ANN Radial distribution system,
138 kV

2015 Accuracy of 98.75%

(Continued on following page)
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The adaptive extended Kalman filter (AEKF) estimates the
harmonic components in fault currents for non-linear loading
conditions (Samantaray et al., 2009a). The harmonic components
estimated by the technique are fundamental, third, fifth, seventh,
eleventh, and thirteenth harmonics. Based on the Kalman filtering
principle, Girgis et al. (1990) built an approach based on the time-
varying existence of the fundamental and harmonic components to
obtain the best estimate of the time variations of the harmonic
components. Faridnia et al. (2012) presented a partial co-relation
function for HIF detection from voltage and current relays. The
method is tested in a radial feeder system with two HIF models in
PSCAD/EMTDC. Twelve indices-based correlation function is
implemented and tested on a wide data set to obtain accurate
results for HIF detection.

2.3.2 Frequency-domain analysis
Frequency-domain analysis extracts harmonics in the current

spectrum. In the current spectrum, an HIF event will produce low-
and high-frequency components. Low-frequency components are
based on non-linearity results, whereas high-frequency components
are based on sudden and random changes in a non-stationary HIF
current waveform. FFT extracts the current signal data after the
simulation is applied to a power spectrum (PS) technique that can
detect an HIF and distinguish it from non-faulty conditions, such as
capacitor banks, non-linear loads, and linear loads, which have the

same features (Wali et al., 2018). FFT is used to calculate the impulse
response of the frequency domain (Scott, 1994). Aucoin and Russell
(1982) utilized high-frequency current components to detect HIF.
The low-frequency spectrum is compared with the harmonics of the
current waveform measured in the primary substation over a week
(Emanuel et al., 1990).

2.3.3 Time–frequency domain
The wavelet methods are more potent as they extract the

frequency and instant or position for signal analysis.
Time–frequency analysis (TFA) could effectively detect
discontinuities, repeated patterns, and non-stationary aspects of
signals. It measures the energy of the signal at each moment of
time and frequency coordinates. TFA has been successfully applied
to various power system applications, such as the evaluation of
power efficiency, security of power systems, and pathfinding for
disturbances of capacitor switching.

Lima et al. (2018) proposed a method that uses a short-time
Fourier transform for feature extraction that extracts harmonic
components of phase current as of the magnitude and phase of
the third harmonic component and magnitude of second and fifth
harmonics to identify the presence of HIFs. The window length
chosen is directly proportional to frequency resolution and inversely
proportional to time resolution. The sampling frequency is
15.6 kHz. A Brazilian distribution feeder of 13.8 kV is used to

TABLE 1 (Continued) Comparison of various signal processing techniques for HIF detection using intelligent classifiers.

Ref. No. Feature extraction
approach

Classifier Test system Year Remarks

Ghaderi et al. (2015) Time freq. analysis SVM The test was conducted in a
real-time, high-current
research laboratory

2013 Simple, reliable, and efficient. Accuracy
of 93.6%

Nikoofekr et al.
(2013)

TT transform ART neural networks and Fuzzy
ARTMAP

Palash feeder in the southwest
region of Tehran

2013 Accuracy of 99.18%. Five-class
classification

Yang et al. (2006) Wavelet transform Pattern recognition-based ANN Tai-16 distribution feeder
system 11.4 kV from Taishi
substation

2006 Detection rate of 81%. More accurate than
unintelligent algorithms

Yunlin

Hubana et al. (2018) DWT ANN i) Two-bus test distribution
system of the city of Mostar
(Bosnia and Herzegovina), 35/
10 kV

2018 A two-bus system gives a classification
accuracy of 92.5%, and an eight-bus system
gives 90.19%. Highly effective with good
noise removal capability

ii) Eight-bus system with the
same specifications, including
underground cables,
substations

Lima et al. (2018) STFT Blackman–Harris window,
spectrogram analysis

Brazilian utility, 13.8 kV, real
distribution

2018 Tested in simulated data and real-time
oscilloscopic data, which gave the best
results

Gashteroodkhani
et al. (2020)

TT Deep belief neural network IEC microgrid 61,850-7-420,
25 kV

2020 Tested in grid-connected as well as an
islanded mode of operation. The accuracy
of the proposed system for fault detection is
99.8%, and fault classification is 99.32%

Abdelgayed et al.
(2017)

DWT DT and KNN CERTS microgrid system 2017 The experimental result of DT is 100%, and
that of KNN is 95%

Gashteroodkhani
et al. (2019)

TT and S transform SVM Transmission line, 230 kV 2019 Fault identification is 98%
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evaluate the methodology. A Blackman–Harris window with five
cycles is chosen for this method, and the spectrum analysis is
performed. The method was tested in sand, asphalt, gravel, grass,
cobblestones, and local soil. The detection time is less than 200 ms.

The ST is an extended wavelet transform class based on
Gaussian window shifting and scalable localizing. The S
transform has absolute phase information and good
time–frequency resolution for all frequencies. Unlike wavelet
transformation, the ST is extremely resistant to noise (Mishra
et al., 2016). Morlet wavelet transform differentiates between
HIFs and regular switching events and investigates faults for
different surfaces, including Portland cement, wet soil, and grass
(Huang and Hsieh, 1999). DWT decomposes time-domain signals
into different harmonics in the time–frequency domain, and the
extracted features are used to train ANN (Baqui et al., 2011). The
mother wavelet of Daubechies is superior to others, such as Morlet,
symet, and rbior, as it can accurately detect low-amplitude signals.
The method was also verified on various wet and dry surfaces.

The proposed method uses DWT, and high- and low-frequency
voltage components at various system points are measured (Santos
et al., 2017). The energy spectrum of the detailed and approximation
coefficient is calculated. The method is evaluated using a 13.8-kV
Brazilian distribution feeder with a signal-to-noise ratio (SNR) of
60 dB, and the two-time varying resistances HIF model is used. The
method requires no monitoring devices and information about the
feeder and load parameters. The method is reliable and efficiently
identifies the HIF with a 70% search field reduction obtained.

Wavelet transform decomposes and extracts the features, PCA
performs feature selection, and the Bayesian classifier discriminates
the HIF with normal events (Sedighi et al., 2005a). Various tests were
conducted on wet and dry surfaces. A pattern recognition system is
proposed and is simulated using EMTP software. A real-time
experiment is performed in Qeshm island, Iran, and an HIF is
created in 8,209 m and 8,446 m locations from the site. The
sampling rate of the data is 24.67 kHz, and the classifier success
rate is 97.6%.

In (Li and Li, 2005) arc fault detection with automatically
modified time windows to differentiate arc fault from non-arc
fault is done using wavelet packet transform-based. At level
3 decomposition, db10 is used at a sampling frequency of
12.5 kHz. The window length in this study is 1/2 cycle (1.25 ms
in 400 Hz for an airplane). The size of the moving window is 1/
4 cycle (0.625 m in 400 Hz), such that Δt = 0.625 m. The proposed
method is powerful with simple calculations.

Michalik et al. (2006) proposed an approach in which a wavelet-
based measurement is performed for zero-sequence voltage and
current signals. This method gave fast and reliable HIF detection and
location and obtained better performance compared to conventional
methods. ANN is used for classification, and the decision module is
implemented in real-time using a single neuron. The proposed
method gives good results with low-impedance permanent
ground faults.

Lazkano et al.’s (2004) method is based on the decomposition of
three-phase unbalanced current data utilizing wavelet transform
techniques. Arc phenomena linked with an HIF can be detected due
to the WT’s time-frequency characteristic, and the signal is broken
down into frequency sub-bands. The Db4 mother wavelet was
chosen for the four-level decomposition of the arc current signal.

A 20-kV Tuejar feeder of Spain is selected and simulated to test the
proposed method, which gives satisfactory results.

De Alvarenga Ferreira and Mariano Lessa Assis (2019)
illustrated a novel approach for HIF detection in smart grids
using multi-resolution signal decomposition to decompose the
DWT coefficient. The HIF model used for testing is the Kizilcay
arc model. The IEEE 13-node test feeder simulated in PSCAD/
EMTP is used to evaluate the proposed method. Level
3 decomposition with db8 mother wavelet function is adopted
for the proposed work. Various conditions are illustrated with
HIF and non-HIF conditions, such as capacitor switching. The
method provides robust, fast, and reliable HIF detection.

Features of Earth faults due to leaning trees are extracted from
the phase currents and voltages using the DWT (Elkalashy et al.,
2007b; Elkalashy et al., 2007a; Elkalashy, 2007). The detailed
coefficient of current and voltage is used, whose product is taken
to compute power. A positive polarity of power gives a healthy
feeder, and negative polarity gives a faulty feeder. The method has
been tested on a leaning tree in a laboratory setup.

The wavelet-based algorithm is used to detect HIF detection
(Michalik et al., 2007). The algorithm works great for ground fault
currents above 3A, irrespective of phase and location. The method is
tested in the Next-Generation Power Technology Center and
KEPCo, South Korea. The sampling rate is 10k Hz, and the
detection time ranges from 0.2 to 0.7s depending on the distance.

Stockwell’s transform extracts the parameters in both the time
and frequency domains proposed by Lima et al. (2019) that select the
statistical features discussed in Table 1. The simulated data and real-
time field data (from the substation) provide the two databases for
the method validation that can discriminate an HIF with other
power system disturbances. The method is efficient and accurate in
action.

Balser et al. (1982) utilized Hilbert transform (HT) for HIF
detection in transmission lines in which an uncompensated line,
series compensated line, single-pole tripping situation, and a load
change are tested. The method is simulated in MATLAB/
SIMULINK, and the data sampling rate is 1 kHz. An HIF
detector is placed in certain locations that indicate whether a
fault occurred. The method gives good accuracy and consistency.
The HIF detection method using optimal transient extracting
transform (OTET) was proposed by Prasad et al. (2022) and can
be used in grid-connected and islanded mode systems, and is also
reliable in unbalanced and harmonic contaminated signals. Biswal
et al. (2022) reconstructed the features extracted from the current
signals using the Savitzky–Golay filter (SGF) using the matrix pencil
method (MPM), and the Teager energy of the error is estimated. The
proposed method is verified in the Aalborg test feeder and modified
IEEE 30-bus test systems and proven with an accuracy of 98.6%.

3 Test systems

In this section, various test systems are discussed for HIF
detection. The various standard test systems were selected and
simulated using MATLAB/SIMULINK, PSCAD, EMTP-RV,
EMTP-ATP, and a real-time laboratory setup to investigate the
performance of the different algorithms for HIF location and
detection. Faults at the distribution system are a priority because
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TABLE 2 Comparison of various test systems.

Test system with ratings Methodology used Remarks

IEEE PSRC distribution of radials 11 KV (Panigrahi et al.,
2018)

MM employs morphology gradient, and the statistical
features are obtained from dilation and erosion

Identify HIF occurrence in 0.08 s

Radial 13.8 kV distribution feeder (Wali et al., 2018) FFT extracts features, which are then subjected to power
spectrum analysis

Power spectrum identifies the HIF occurrence with
100% accuracy

Radial 13.8 kV distribution feeder (Tawafan et al., 2012) FFT extracts features, and the classifier used is ANFIS. The success rate of detecting HIF cases was 97.8%, and
that of non-HIF cases was 99%

Radial distribution system, 115 kV feeder (Wang et al.,
2018)

VCCP-based disturbance detection approach The wavelet correlation coefficient was calculated for
various surfaces and was less than 0.966 for a healthy
feeder

Radial distribution system, 138 kV (Soheili et al., 2018) Two approaches were compared. 1) Kalman filter and RF
and 2) DT with FFT

RF proved to be the best, with 93.56% accuracy and
94.56% dependability

Radial distribution network, 13.8 kV (Veerasamy et al.,
2018)

Feature extraction by CWT and DWT Accuracy 100%

Radial distribution system, 138 V (Routray et al., 2016) Stockwell transform with ANN Accuracy 98.75%

Radial distribution system, 138 kV (Mishra et al., 2016) Stockwell transform for feature extraction. ANN and SVM
as classifier

For the ideal case, ST with ANN and ST with SVM give
100% accuracy, whereas with SNR 30 dB, ST with
ANN gives 93.7% and ST with SVM gives 92.15%
accuracy

Radial distribution system, 15 kV (Samantaray et al.,
2008)

S transform and TT transform with PNN and FNN PNN with ST features provides a classification rate of
up to 98.06%. PNN with features from TT transform
provides a classification rate of up to 98.05%. FNN and
S transform combination gives 93.04%, and that with
TT transform gives 94.16% accuracy

Radial distribution system, 33 kV (Sarwagya et al., 2018) Measuring the residual voltage at the substation and
negative sequence current flowing through the feeders

The presence of the HIF is detected at 3 s

Distribution system, 12.5 kV (Shahrtash and Sarlak,
2006)

Pattern recognition-based algorithm and DT as the
classifier

For different values of the sampling frequency, data
window, and preprocessing time interval, the accuracy
of the method is 99.4%

Radial distribution network with 63 kV (Vahidi et al.,
2010)

DWT extracts the features, and ANN is the classifier used
along with the denoising method

Accuracy is 99%

Medium voltage distribution system from the city of
Mostar with two-bus and eight-bus systems of 33 kV
(Hubana et al., 2018)

Voltage phase difference algorithm and a combination of
DWT with ANN

Two-bus systems, the accuracy obtained is 92.5%,
whereas the eight-bus system is 90.19%

Electric power distribution system, Chennai, 33 kV
(Sekar and Mohanty, 2020)

MG with fuzzy rule base algorithm Accuracy is 99.3%, and the computational time
required is less

Mesh distribution network, 25 kV (Samantaray et al.,
2009a)

AEKF with PNN and FNN The accuracy rate of PNN is 99.11% compared to FNN
with 96.51%

Mesh distribution network, 138 kV (Soheili et al., 2018) Two approaches were compared. 1) Kalman filter and RF
and 2) DT with FFT

RF proved to be the best with 93.56% accuracy and
94.56% dependability

Mesh distribution network, 25 kV (Lai et al., 2005) DWT and pattern recognition Error range 2.52% and 45.4%. It will not indicate the
physical properties of the output coefficient

Mesh distribution network, 138 kV (Mishra et al., 2016) Stockwell transform for feature extraction. ANN and SVM
as classifiers

For the ideal case, ST with ANN and ST with SVM give
100% accuracy, whereas with SNR 30 dB, ST with
ANN gives 81% and ST with SVM gives 86% accuracy

Mesh distribution network, 15 kV (Samantaray et al.,
2008)

S transform and TT transform with PNN and FNN The accuracy of the mesh network with S transform
and FNN is 92.86%, and that with TT transform and
FNN is 93.55%. S transform and PNN combination
gives 97.85% accuracy, and TT transform with PNN
gives 97.09%

IEEE 13-node test systems, 4.16 kV (Fan and Yin, 2019) CNN and transfer learning algorithm The accuracy obtained was 95.06%

IEEE 13-node test systems, 4.16 kV (Silva et al., 2020) Wavelet packet-based feature extraction along with
EuFNN classifier

97.14% accuracy

(Continued on following page)
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TABLE 2 (Continued) Comparison of various test systems.

Test system with ratings Methodology used Remarks

IEEE 13-node test systems, 4.16 kV (Sarwar et al., 2020) PCA, Fisher discriminant analysis, binary and multi-
class SVM

Security and dependability of 100%

IEEE 13-node test systems, 4.16 kV (Soheili et al., 2018) FFT approach and harmonic analysis of the sum of all
three-phase currents

Detection time is 1.5 s

IEEE 13-node test systems, 4.16 kV (Sekar and Mohanty,
2017)

MM and DT The detection time is 30 m. Performance indices are
99%. Accuracy is 98.33%

IEEE 13-node test systems, 4.16 kV (Gautam and
Brahma, 2013)

MM that can be implemented on a conventional over
current relay

The success rate of detection and classification is 100%

IEEE 13-node test systems (Chen et al., 2014) DWT with MRA Fast, economical, and efficient

IEEE 13-node test systems (Wang et al., 2019) Variational mode decomposition (VMD) and
Teager–Kaiser energy operators (TKEOs)

Calculation time is 0.0028 s

IEEE 34-node test system, 24.9 kV (Moravej et al., 2015) Dual-tree complex wavelet transforms for feature
extraction and PNN for classification

PNN requires no iteration. Detection time 1.5 m. The
error of detection is 1.4%. The proposed algorithm
gives an accuracy of 98.88%

IEEE 34-node test system, 24.9 kV (Fan and Yin, 2019) CNN and transfer learning algorithm The accuracy of CNN obtained is 99.52%

IEEE 34-node test, 24.9 kV (Sekar and Mohanty, 2017) MM and DT The detection time is 30 m. Performance indices are
99%. Accuracy is 98.33% at lightly loaded conditions

IEEE 34-node test, 24.9 kV (Wang et al., 2019) Variational mode decomposition (VMD) and
Teager–Kaiser energy operators (TKEOs)

Calculation time is 0.0028 s

IEEE 13-node test systems (Chen et al., 2014) DWT with MRA Fast, economical, and efficient

IEEE four-node test feeder, 12.47 kV (Sarlak and
Shahrtash, 2008)

PCA and LDA with SVM Accuracy is 97.5% compared to Bayes and Parzen
classifiers

IEEE-123 distribution feeder, 4.16 kV (Tonelli-Neto et al.,
2017)

DWT with a fuzzy interference system and Fuzzy
ARTMAP neural network combination based on
Dempster–Shafer evidence theory

The accuracy of FANN is 97.69%, and that of FIS is
99.25%

Palash feeder, Tehran, 63 kV (Sarlak and Shahrtash,
2011)

TT transform, ART neural networks, and Fuzzy
ARTMAP

Accuracy of 99.18%. Five-class classification

Palash feeder, Tehran, 63 kV (Sarlak and Shahrtash,
2013)

MM and SVM Security of 96.9% and dependability of 97.2%

Palash feeder, Tehran, 63 kV (Nikoofekr et al., 2013) Multi-resolution MG and MLPNN Superior to other feature extraction techniques, such as
DWT, DFT, DST, and DTT. Security of 92.8%,
dependability of 96.4%

Palash feeder, Tehran, 63 kV (Soheili et al., 2018) FFT approach and harmonic analysis of the sum of all
three-phase currents

Detection time is 1.13 s

CERTSmicrogrids, 480 V (Gadanayak andMallick, 2019) MODWT and Knot-based EMD Classification accuracy of 99.77%. The mean detection
time is 0.12 s

Test microgrid system, 120 kV (Kar and Samantaray,
2017)

MODWT and DT The detection time is 0.12 s. Accuracy of 100%

IEC standard microgrid,
25 kV (Gashteroodkhani et al., 2020)

Deep-belief neural network with time–time transform Accuracy of 99.74% and 99.46% radial network with
grid-connected and islanded modes, respectively, and
100% for mesh topology in both modes of operation

Test microsystem (CERTS), 13.8 kV (Abdelgayed et al.,
2017)

DWT, DT, and k-nearest neighbor The experimental result of DT is 100%, and that of
KNN is 95%

JMARTY model test system, 500 kV (Eldin et al., 2007) DWT and moving window-based pattern recognition Simple, accurate, and fast technique for EHV
transmission lines. The algorithm can be applied to an
already existing digital relay microprocessor

JMARTYmodel test system, 500 kV (Ibrahim et al., 2008) DWT and moving window-based pattern recognition Simple, accurate, and fast technique for EHV
transmission lines. The algorithm can be applied to an
already existing digital relay microprocessor

Tai-16 feeder, 11.4 kV (Yang et al., 2006) Wavelet transforms and pattern recognition-based feature
extraction with backpropagation ANN

The detection rate is 81%

(Continued on following page)
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the risk is greater relative to HIFs at the transmission level. An
acceptable test system is selected for a suitable case study for
simulation purposes and performance validation of the proposed
methods. Proper data signals from the power system must be
obtained under various possible operating scenarios to validate
the proposed approaches. For technological and economic
reasons, field fault testing on actual power systems is known to
be difficult, with field test findings often having certain limitations.
PDS must be correctly modeled because of these reasons. Table 1
gives a detailed discussion of various signal processing techniques
for HIF detection using intelligent classifiers with various test
systems used. Table 2 gives a comparison of various test systems
used in HIF detection.

3.1 Radial distribution network

Shahrtash and Sarlak (2006) used a pattern recognition-based
approach for HIF detection with DT as the classifier. The power
distribution system is illustrated in which the system voltage is
12.5 kV, the short circuit level (at the infinite bus) is 866MVA, and a
time constant of 45 ms is shown in Figure 4A. The following data
about transmission lines are given inductance of transmission line of
825 nH/m, resistance of transmission of 313Ω/m, and line length of
33 km. The loads connected are a capacitor load rated 4.08 MVAr,
transformer (10/0.4 kV) connected in delta-star, three-phase
thyristor converter as harmonic load, and nominal load current
of 630 A. The best results are obtained in even, odd, and in-between
harmonics below 400 Hz. The classification factor is based on
entropy, which is the effectiveness of an attribute in classifying
data. A total of 2,583 and 1,331 cases were used for training and
testing purposes, respectively. For different values of the sampling
frequency of 2 kHz, a data window size of 2 cycles, and a pre-
processing-time interval of 30 cycles, the accuracy of the proposed
method was 99.4%.

Vahidi et al. (2010) used the DWT technique to extract the
features, and ANN classifies the faulty cases with other power system
disturbances. A three-phase radial distribution network is modeled
using the PSCAD/EMTDC software used as the test system. The
power system frequency is 50 Hz, and the power is supplied at 63 kV
from a 30-MVA transformer (wye/delta). The transformers and line
parameters are shown in Figure 4C. Line currents during the HIF
have high-frequency components and are used for feature
extraction. The extracted features are decomposed into two levels
of detailed and approximation coefficients at six cycles. The
performance of the DWT-based denoising technique depends on
the threshold value γ, which can be divided into hard thresholding
and soft thresholding. A large value of γ will shrink most of the

coefficients to zero and for small values, denoising outcomes are
inefficient. The extracted data are trained and compared with six
different types of mother wavelet transforms: haar, coif2, dmey, db9,
bior2.6, and sym8. Sym8 gives the best performance and accuracy.
The sampling rate chosen is 20 kHz. Amulti-layer perceptron neural
network (MLPNN) with a Levenberg–Marquardt algorithm is used.
The effect of SNR on the proposed algorithm is also studied. The
HIF model is introduced to buses 2 and 3 to mimic the HIFs that
exist on different ground conditions, such as sand, wet soil, dry soil,
asphalt, and grass, giving an accuracy of 99%.

The system tested by Tawafan et al. (2012) is a 115-kV
distribution feeder comprised of a substation, and three radial
network distribution feeders are shown in Figure 4B. The
generator is 30 kV and 10 MV connected to the 30/13.8-kV and
10-MV transformers. The 6-pulse rectifier is used for the
representation of the non-linear load. The simulation models are
created using PSCAD, and the sampling rate is 15.36 kHz. FFT is the
feature extraction technique used, with an algorithm based on the
adaptive neural Takagi–Sugeno–Kang (TSK) fuzzy modeling
scheme, where the HIF detection is performed by taking the
amplitude of the ratio of the second and odd harmonics to
fundamental harmonics of the current signals that serve as input
to ANFIS. The fundamental harmonics are decreased when the fault
has occurred. A total of 570 cases are taken, among which 138 cases
are HIFs and 432 are non-HIFs. The mean squared error value of the
model is 0.1163, and based on the output of ANFIS, if the HIF
current is greater than 0.6 it indicates HIF conditions and if it is less
than 0.4; it is non-HIF conditions. The detection accuracy of HIF
cases is 97.8%, and non-HIFs is 99%. The method was proposed by
Soheili et al. (2018). The harmonic components of the third, fifth,
seventh, eleventh, and thirteenth HIF current are preprocessed in an
EKF, and 12 features are extracted. These features of one-, two-, and
three-cycle windows are considered the input to train the RF. RF is
trained with 20,580 and 8,820 data sets. The SNR chosen is 20 dB.
Two separate, three-phase sources are connected through
transformers to a transmission line of length 100 km. The
transmission lines are 138 kV, and the transformers are 50 MVA,
supplying at 138/25 kV to the distribution network (Figure 4D).

The distribution feeders (pi sections of 20 km each) work at
25 kV and are connected with shunt capacitors, linear loads, and a 2-
MVA 6-pulse rectifier load (non-linear load). The resistance,
inductance, and capacitance of positive and zero sequences of
transmission lines are as follows: R1 = 0.01273 Ω/km, X1 =
0.9337 mH/km, C1 = 0.0012 lF/km and R0 = 0.3864 Ω/km, X0 =
4.1264 mH/km, and C0 = 0.0075 lF/km, respectively. The resistance,
inductance, and capacitance of distribution lines (pi-section) are
R1 = 0.2568Ω/km, X1 = 2.0 mH/km, and C1 = 0.0086, respectively.
The total percentage impedance of the transformers is 6.75%. The

TABLE 2 (Continued) Comparison of various test systems.

Test system with ratings Methodology used Remarks

Benchmark system, 25 kV (Cui et al., 2017) The signal processing technique of DFT and Kalman
filtering estimation and classifiers such as Native Bayer’s,
SVM (Gaussian kernel), KNN, RF, and J48 are compared

RF and J48 proved to be the best, with 99% accuracy
for both

Test system, 38 nodes, 132 kV (Ali et al., 2014) DWT for feature extraction and matching approach
technique is used for classification

Identify the faulty section in four or five iterations
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simulation models are developed using PSCAD (EMTDC), and the
sampling rate chosen is 1.0 kHz on a 50-Hz base frequency
(20 samples per cycle). RF proved to be the best, with 93.56%

accuracy and 94.56% dependability. A multi-feeder radial
distribution system was proposed by Sarwagya et al. (2018) to
detect and segregate HIFs. It consists of a 30-MVA, 33-kV

FIGURE 4
(Continued)
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substation, and five numbers of 11 kV radial distribution feeders.
The positive-sequence impedance of the distribution line is 0.3 +
j0.25 Ω/km. The discrimination of the HIF is performed based on
two criteria. The first is based on the maximum value of the one-
cycle sum of superimposed components of negative-sequence
current for faulty feeder identification, and the second is based on
the one-cycle sum of superimposed components of residual
voltage for HIF detection. The substation bus provides the
residual voltage. The negative sequence current of all the
feeders is compared, and the maximum value of the negative
sequence will be for the feeder where HIF has occurred. The HIF
is accurately detected in 3 s with the proposed method. The
performance of the method with HIF during unbalanced loading,
unbalanced loading conditions, capacitor switching, and
occurrence of an HIF in various feeders is analyzed. Sarlak
and Shahrtash (2011) compared two approaches for HIF
identification: the voltage phase difference algorithm and a
combination of DWT and ANN. The test system chosen is
from Bosnia and Herzegovina, a distribution system like in
Europe. The article includes two test systems: a two-bus feeder
system and the other is an eight-bus system. The two-bus system
is a simple one with a main transformer of 35/10 kV, whereas the
latter one is more complex, consisting of 8 feeders fed from 35/
10 kV, with underground cables and a transformer at the end
consumers rating at 10/0.4 kV. Figures 4E, G represent two- and
eight-bus systems, respectively. The sampling frequency is
3.2 kHz. The first method DWT is applied to the measured
voltage signals. Each voltage has four detailed coefficients and
one approximation coefficient. An algorithm is proposed in

which DWT signals are combined, representing a signature for
symmetrical and unsymmetrical faults. These data are then used
to train and test the ANN. A total of 1,600 cases are simulated,
including non-faulty conditions and three types of fault
conditions. The method gives an accuracy of 100% for the
20–600 Ω range of fault resistances and at different fault
locations. In the second method, a voltage measurement is
performed, and the Hilbert transform is applied to obtain the
best features. The best feature is an instantaneous frequency,
which represents the time rate of change of the instantaneous
phase angle. The phase difference is calculated by the difference
between the instantaneous phases of voltage signals. The voltage
phase difference algorithm calculates the PD during normal and
fault conditions. At normal working operation, the phase
difference will be 1200, and during each fault condition, the
phase difference will be different. This parameter is used to
detect and classify the fault. With 2,000 cases in two-bus
systems, the accuracy obtained is 92.5%, whereas the eight-bus
system showed 90.19%. Panigrahi et al. (2018) used the IEEE
Power System Relaying Committee Working Group at medium
voltage levels. A simple 11-kV radial distribution feeder with
eight nodes is shown in Figure 4F. MATLAB/SIMULINK
program is selected and modeled, and the line impedance
(positive sequence) is chosen as 0.3 Ω/km + j 0.25 Ω/km. At a
distance of 5 km, nodes are isolated from each other, in which
nodes 1, 3, 5, and 7 are connected to linear capacity loads of
1 MVA each at power factor 0.9/phase, and nodes 2, 4, 6, and
8 are linked to linear capacity loads of 2 MVA each at power
factor 0.9/phase. The method discussed the MM gradient for HIF

FIGURE 4
(Continued). (A) Radial 12.5 kV distribution feeder. (B) Three-phase distribution feeder. (C) Radial distribution network with three buses. (D) Single-
line diagram of radial distribution 138 kV Feeder. (E) Single-line representation of a 2-bus system from the city of Mostar. (F) Typical IEEE PSRC radial
distribution. (G) Single-line representation of an eight-bus system from the city of Mostar. (H) Radial 13.8 kV distribution feeder single-line diagram. (I)
Single-line diagram of EPDS Chennai. (J) Radial 115 kV distribution feeder. (K) Representation of a 20-kV typical radial feeder system in Qeshm
Island, Iran.
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detection and classified HIF, LIF, capacitor switching, and load
switching (balanced and unbalanced).

The proposed method measures the three-phase voltage at a
relay location and evaluates the residual voltage. The
morphology gradient is used to extract the irregularities in
the voltage signal. The extracted feature index is determined
from the zero-energy index at NC and compared with a
predefined threshold value. The extracted feature index value
will jump slightly for HIF, LIF, and other disturbances for faulty
conditions. An HIF is created at nodes 1, 4, and 9, and the
occurrence will be for 1 s. The method accurately detects HIF
occurrence in 0.8 s. The test system model proposed by Wali
et al. (2018) is a 13.8-kV radial distribution feeder simulated by
MATLAB/SIMULINK under different scenarios, such as linear
load, non-linear load, and several other conditions. Figure 4H
shows a single-line representation, a three-phase transformer,
and a 13.8-kV distribution network. The non-linear load is
represented by a 6-pulse rectifier that creates non-linear
features in the feeder. The method used for HIF detection is
FFT for feature extraction, and the power spectrum technique is
used to identify the fault, which gives an accuracy rate of 100%,
the time required is less, and that does not require any level of
training. FFT extracts the feature of the current signal from the
faulty feeder, and the power spectrum of the time signal is
determined using the function FFT. If PS is less than 0.005,
then a HIF occurs. HIF of 250 cases and other power system
disturbances of 750 cases have been analyzed in this study. The
method distinguishes events due to capacitor banks, non-linear
loads, linear loads, and HIF.

The test system used for HIF detection (Veerasamy et al., 2018)
consists of a grid source of 50 MVA/30 kV, a distribution
transformer (12 MVA, 30 kV/13.8 kV), a common bus of
13.8 kV, and five radial type distribution feeders, integrated into
the load facility. An Emanuel two-diode model consisting of two
variable DC voltage sources of 1–10 kV connected to anti-parallel
diodes by non-linear resistors of 50–500 Ω is considered an HIF
model with non-linear arc characteristics. The method is proposed
by extracting the features using CWT and DWT and classifying the
extracted features by ANFIS. CWT gives the region at which the
fault has occurred, and DWT can locate it by calculating the
standard deviation (SD) using a five-level decomposition. The
extracted SD values of different fault conditions with different
values of fault resistance from the detailed and approximation
coefficients are obtained, which are used to train classifiers FLS
and ANFIS. Various faults, such as symmetrical, unsymmetrical,
and HIFs, were tested using MATLAB/SIMULINK. The
classification rate of ANFIS is 100%, which proved more effective
than FLS. Wang et al. (2018) proposed that an HIF detection
algorithm identifies the non-linear voltage–current characteristic
profiles (VCCP) for identifying an HIF in the MV distribution
system. During HIF, the zero-sequence current is less than the
positive-sequence current. The slope of the VCCP is the numerical
difference between voltage data from current sample data, and the
least square linear fitting method is proposed. The wavelet
correlation coefficient (WCC) is considered to improve the
reliability of the algorithm. If WCC is greater than 0.966, the
metered data are from a faulty feeder, and if less than the value,
it is a healthy feeder. The radial distribution system is the test system

in Figure 4J that uses EMTP/ATP program. The typical Mayr arc
model is simulated and drawn in series with constant resistance
using a switcher and parallel branches. The simulation time stage
was set at 2 μs field-metered data from KEPCo, South Korea, and
HIF experiments were performed on a 22.9-kV no-load overhead
feeder to check the simulations. As it is a no-load feeder, the zero-
sequence current and phase voltage were used at a faulty feeder
outlet to correctly estimate the fault point voltage and fault branch
current. The faults have been tested on various dry surfaces. The
algorithm showed excellent results in real-time digital simulator
tests. The test system proposed by Sedighi et al. (2005b) for HIF tests
and data collection is a radial feeder of 20 kV at Qeshm Island, Iran,
as shown in Figure 4K. The feeder is energized from another 20-kV
feeder by two distribution transformers (20/0.4 kV, 100 kV A)
connected back-to-back. The HV and LV connections of the
transformers are delta/star connected. The HV sides of the
transformers are connected to feeders, and the LV sides are
connected to the low-voltage switch. Three-phase voltages and
currents were monitored and recorded using Hall effect current
transformers, potential transformers (PT), power analyzers, and
computers. The sampling rate of the recorded data was
24,670 kHz for each test, and the overall recorded time was 15 s.
The method used for HIF detection uses WT for feature extraction
with a three-level decomposition of current signals. The first method
uses GA for feature vector reduction, and the Bayes classifier is used
for classification. In the first method, coefficients of three-level
decomposition are used for feature extraction. They are divided
into 10, 5, and 5 segments. In GA, each segment is mapped to a 20-
dimensional space. A space with 20 dimensions is mapped to a space
with five dimensions. The Bayes classifier is used to classify the
mapped space. In the second method, WT transforms are also
applied for the current signals, PCA is used for feature vector
reduction, and NN is the classifier. The coefficients of three-level
decomposition are used for feature extraction, divided into 10, 5, and
5 segments. Means of the absolute value of each segment were
chosen as features, and the extracted signals were mapped to a 20-
dimensional space. Using PCA, space was reduced to a 7-
dimensional space. A perceptron NN using backpropagation
discriminates between HIF, isolator leakage current, and other
power system transients. Sekar and Mohanty (2020) stated that
morphology gradient extracts the features of which a rule is set by RF
and then fed to a fuzzy rule-based algorithm for HIF detection. The
electric power distribution system (EPDS) was modeled using
MATLAB/SIMULINK. A three-phase shunt capacitor of 1 Mvar
has been connected to the busbar to improve power quality and
output. The inrush current of a transformer produces an
asymmetrical current signal that may serve as a transient signal
generated by switching that may be like the HIF current waveform.
An induction motor is connected as a load to study the motor
operation impacts. The EPDS uses linear and non-linear loads to
simulate the loading scenario, as shown in Figure 4I. One cycle
window length of the current signal is measured, the impulsive
feature of the signal is extracted, and a rule set is created from the
statistical features of RF. The sampling frequency is 1,000 Hz, and
the signal length is 0.5 s. The periodic signal has third- and fifth-
order harmonics, and other harmonics that are negligible make the
filter closer to HIF detection. The method effectively detects an HIF
from other power system disturbances.
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3.2 Mesh distribution network

The test system proposed by Lai et al. (2005) consists of two
50 MVA generators with 25 kV lines, two transformers, and linear
and non-linear loads. In DWT, db4 was chosen as the mother
wavelet, with a downsampling frequency chosen as 9,600 Hz, used to
extract the detailed and approximation coefficients from the signals
of the HIF and non-fault. The current and voltage signals at a
targeted circuit breaker are measured. The RMS values of the
measured quantities at various frequencies are analyzed and
given as input to the nearest neighbor to classify fault signals.

The HIF and non-HIF cases (1,000 cases each) were simulated
with HIF and LIF models. The range of total error corresponding to
the RMS value of the voltage wavelet coefficient is from 2.52% to
45.4% and will not indicate the physical properties of the output
coefficient.

Samantaray et al. (2008) reported that S transform and TT
extract the features, and FNN and PNN classify the faulty and non-
faulty conditions of the HIF. The ST features are extracted from the
HIF and normal fault current signals for half-cycle current signals
after fault inception. The energy and SD of time and frequency
information are considered feature sets. These features are used to
train and test the FNN for radial and mesh networks. TT transform
also extracts energy and SD of the TT-counter and time index after
fault inception for the first half-cycle of the fault current. A total of
500 cases are simulated for training and testing the classifier. The
system is modeled in MATLAB/SIMULINK, and the sampling rate
chosen is 1 kHz. The PNN classification is based on the distribution
values of the probability density function. The classification rate of a
radial network with PNN using ST features is up to 98.06%. PNN
with TT transform features gives a classification rate of up to 98.05%.
The accuracy of the FNN and S transform combination is 93.04%,
and the accuracy of the TT transform is 94.16%. The proposed
method is also tested in a mesh network. The accuracy of the mesh
network with S transform and FNN is 92.86%, and that with TT
transform and FNN is 93.55%. The S transform and PNN
combination gives 97.85% accuracy, and the TT transform and
PNN combination gives 97.09% accuracy.

The HIF detection method used by Samantaray et al. (2009a) is a
combination of AEKF with FNN and PNN. The schematic diagram
of the test system chosen is given in Figure 5. The base voltage of the
distribution network is 25 kV, and the generator is 10 MVA, 15 kV
capacity. The harmonic components estimated by the AEKF are
fundamental, third, fifth, seventh, eleventh, and thirteenth
harmonics for the HIF and NF under non-linear loads. The
AEKF calculates the harmonic component within half a cycle of
the fault occurrence, with the peak of the estimated harmonic
component considered that inputs to PNN and FNN. The PNN

FIGURE 5
Three-phase meshed network.

FIGURE 6
Palash feeder single-line diagram.
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classification is based on the probability density function’s
distribution values. PNN is analyzed using a data set with an
SNR of 20 dB, 300 data sets for training, and 200 data sets for
testing. For the classification, PNN takes 0.1 s time, whereas FNN
takes 0.2 s. Fault and non-fault conditions with non-linear switching
(a six-pulse rectifier is used) are checked using various models of
MATLAB/SIMULINK, and the sampling rate chosen is 1.6 kHz. The
accuracy rate of PNN is 99.11% compared with FNN having 96.51%.

The detection of HIF described by Routray et al. (2016) uses a
test system with a generator of 50 MVA supplying 138 KV of
voltage to the utility sector through a transmission line 100 km
long, and a 138/25-kV star/delta transformer is considered for
testing the method. The method uses ST for feature extraction

and ANN for discriminating the HIF with load switching,
capacitor switching, and NC. The time and frequency
information is extracted from the S matrix, and the amplitude
factor is calculated from current signals. A total of 4,010 cases
were considered, of which 60% is used for training and 40% for
testing. The overall accuracy of classifiers for normal fault is
98.75%, 96.4%, 94.06%, and 92.60% for normal (without noise)
and noisy conditions.

Samantaray (2012) studies two test systems: one with a radial
feeder mentioned in Figure 5 and the other with a mesh feeder given
in Figure 7C. The test system studied is connected to a 50-MVA
generator and a transformer of 138/25 kV from a transmission line
of 138 kV and a length of 100 km. Loads are connected with linear

FIGURE 7
(A) Single-line diagramof the IEEE 13-node system. (B) Single-line representation of the IEEE four-node test system. (C) IEEE-123 distribution feeder.
(D) IEEE 34-node test system.
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and non-linear loads. The resistance, inductance, and capacitance of
positive and zero sequences of transmission lines are R1 =
0.01273Ω/km, X1 = 0.9337 mH/km, C1 = 0.0012 lF/km and R0 =
0.3864 Ω/km, X0 = 4.1264 mH/km, and C0 = 0.0075 lF/km,
respectively. The resistance, inductance, and capacitance of
distribution lines (pi-section) are R1 = 0.2568 Ω/km, X1 =
2.0 mH/km, and C1 = 0.0086, respectively. The total percentage
impedance of the transformers is 6.75%. The simulation models are
developed using PSCAD (EMTDC), and the sampling rate chosen is
1.0 kHz on a 50-Hz base frequency (20 samples per cycle). RF
proved to be the best, with 93.56% accuracy and 94.56%
dependability. On the distribution feeder, the HIF faults are
generated at 25 kV, 20 km, pi section. Different simulation
conditions are also considered, such as three-phase loadings,
single-phase loadings, transformer energizations, shunt capacitor
switching, and HIF by varying DC voltage sources. Two
combinations of the HIF detection technique are proposed: the
first is an EKF and RF and the latter is DT with FFT. The harmonic
components of the third, fifth, seventh, eleventh, and thirteenth HIF
current are preprocessed in an EKF, and 12 features are extracted.
These features of one-, two-, and three-cycle windows are
considered in this work. Considering the two-cycle window and
with SNR set at 20 db. The simulation models are developed using
PSCAD (EMTDC), and the sampling rate chosen is 1.0 kHz. RF is
trained with 20,580 data sets, and 8,820 data sets are tested. RF
proved to be the best, with 93.56% accuracy and 94.56%
dependability compared with DT.

Mishra et al. (2016) used S transform with ANN and SVM to
discriminate the HIF from other power system disturbances. A total
of 4,000 cases, including HIF, normal, load switching, capacitor
switching, and normal faults, are taken. Features are extracted from
three-phase currents measured from the bus, and the best feature
vector is selected. MLPNN with backpropagation NN and SVM
along with ST is used, with 60% data for training and 40% for testing.
The distribution model with a radial pattern of a 50-MVA generator
is connected to a 100-km-long transmission line and a 138/25-kV
star/delta transformer to supply 138 kV voltage to the utility sector.
For the ideal case, ST with ANN and ST with SVM give 100%
accuracy, whereas with SNR 30 dB, ST with ANN gives 93.7% and
ST with SVM gives 92.15% accuracy. For the ideal case with the
mesh network, ST with ANN and ST with SVM give 100% accuracy,
whereas with SNR 30 dB, ST with ANN gives 81% and ST with SVM
gives 86% accuracy.

3.3 Palash feeder, Tehran

Detection of the HIF using a combination of MLPNN based on
multi-resolution morphological gradient features of the current
waveform is described by Sarlak and Shahrtash (2011). The
MMG features of the current signals (for three half-cycles) of
broken and unbroken conductors are considered, and the
features from DFT, DTT, DST, and DWT are compared. The
morphology gradient is the difference between the dilation and
erosion functions. Data acquisition is performed using the
ION7650 meter, and the input port of the meters is connected to
the outputs of the current transformers at the 63/20-kV substation.
The sampling rate of the current waveform is 1.6 kHz. A disturbance

detection module is based on MMG-extracted features of any
subwindow with a predefined threshold. Three MLPNNs (A, B,
and C) are trained individually by applying the time-based features
obtained from the first, second, and third sub-windows. Then, their
decisions are concatenated to make the final decision. The proposed
algorithm gives security of 96.3% and dependability of 98.3%.

Nikoofekr et al. (2013) used a test system from Tehran, Iran,
which has a 63/20-kV transformer feeder with 30 MVA apparent
power, and the HV side has been grounded with a zigzag
transformer and variable resistance adjusted at 29.5Ω. Moreover,
two 2.4-MVAR capacitor banks are connected through the HV
circuit breakers. The ION 7,650-meter tests the HIF current and
non-HIF current signals, such as insulator leakage current (ILC) and
harmonic load current, with a sampling rate of 64 samples per cycle
at the site. The method uses ST for phase correction in CWT, which
localizes the phase and amplitude spectrum. TT transform extracts
the features of the measured signals. Five different ART neural
networks are used to classify the HIF and tested with broken
conductors in asphalt, concrete, gravel surfaces and unbroken
conductor on trees and under no fault conditions. This study
uses five types of ART networks, namely, ART1, ART2, ART2-A,
Fuzzy ART, and Fuzzy ARTMAP. The different features extracted
were energy, SD, and median absolute deviation. The performance
of the ART network is based on the vigilance parameter ρ whose
value ranges from 0 to 1. For lower values of ρ, the classification is
rough, and categories are less, and for higher values of ρ the
categories are more, and classification is fine. In the basic ART
training process, the input pattern is delivered to the input layer,
which activates F2 neurons via bottom-up weights. Because the
F2 layer is a competitive layer, the neurons compete with each other
to learn the input vector, and the larger neuron wins. All other
F2 units’ activations (outputs) are set to zero. Then, the top-down
weights of the winner neuron are sent back to the F1 layer. Figure 6
shows the Palash feeder in Tehran. From the total 6,437 data taken,
60% were used for training and 40% for testing. The result of the
network shows an accuracy of ART1 of 91.61%, ART2 of 98.65%,
ART2-A of 99%, Fuzzy ART of 99.18%, and Fuzzy ARTMAP of
99.18%.

MMG is the feature extraction used by Sarlak and Shahrtash
(2013) and tested on the Palash feeder in the Southwestern Tehran
distribution network, as shown in Figure 6. An HIF indicator is
installed in various poles that detect HIF at various locations. The
HIF indicators are installed in the feeder based on the processing of
the magnetic-field strength signal. The fitness evaluation combines
three goals: accuracy, number of training samples, and the weighting
factor. The impulse response of magnetic response in the frequency
domain is calculated in terms of the electric hertz vector. By
simulation, a 978-feature vector for the HIF and 852 non-HIF is
calculated. The dependability and security of the proposed system
are best above the 20 db SNR. To evaluate the proposed method,
MMG extracts a magnetic field strength signal, which is given to
SVM for classification. The proposed algorithm has 96.9% security
and 97.2% dependability.

The real-time experiments are performed in the Palash
feeder, Tehran (Soheili et al., 2018). The modified FFT
approach is used to detect the HIF concerning non-linear
loads. In the proposed method, the measured three-phase
current is analyzed by FFT. These currents are continuously
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monitored for non-linear loads, abnormal conditions, and HIF
detection. HIF currents during non-linear loading conditions
and different ground types are recorded. The proposed
algorithm has divided the output into three levels: 0, 0.5, and
1. NC, pickup, and HIF, respectively, are represented by these
levels. Various scenarios in the simulated data are considered,
including high current three-phase feeder, low current three-
phase feeder, low current single-phase feeder, and capacitor
switching events. The distribution network is energized via a
63-kV/20-kV three-phase transformer with a rated power of
30 MVA. Data recording has been conducted using the ION
7650, with a sampling rate of 64 samples per cycle (3.2 kHz).
The various surfaces where real-time experiments are
conducted are concrete with 20 cm in no-load conditions,
concrete with 10 cm in 55% full load conditions, and asphalt
with 2 cm under 55% full load conditions. The HIF detection
time of the proposed method was 1.13 s.

3.4 IEEE test systems

There are various IEEE test systems, such as the single-line
diagram of the IEEE 13-node system (Figure 7A), the single-line
representation of the IEEE four-node test system (Figure 7B), the
IEEE-123 distribution feeder (Figure 7C), and the IEEE 34-node test
system (Figure 7D).

3.4.1 IEEE 13-node systems
The illustration given by Gautam and Brahma (2013) used an

HIF detection tool using MM that can be implemented along with
the conventional overcurrent relays in the substation. Both IEEE
13- and IEEE 34-node test feeders are used to validate the
approach. Closing Opening Difference Operation effectively
detects a disturbance in waveforms. A low sampling rate of
3,840 Hz (64 samples per cycle) was chosen to reduce
computing time. The dilation and erosion function of MM
and its difference will effectively detect the disturbance in the
waveform. Voltage waveforms measured at substations are used
in the procedure. The fault detection time is less than 1 s, and the
method is fast and reliable. The two-test system gives 100%
accuracy in detecting and classifying unbroken, broken
conductors, capacitor switching, and load switching. A
modified FFT approach based on HIF detection is proposed
by Soheili et al. (2018), in which non-linear loading
conditions are also considered. At node 630 of the IEEE 13-
node system, the type of feeder, point of common coupling
(PCC), and the current rate are considered, and the recording
devices are installed at this node to resemble the real-world
scenario. The feeder connected between 650 and 632 is
considered the three-phase high current feeder with 300 A,
606 m long. The feeder between 692 and 675 is considered a
low-current three-phase feeder with 80 A. The main factors
considered include high and low three-phase currents and low
current single-phase feeders. The scheme successfully
distinguishes the HIF with load switching and capacitor bank
switching in 1.15 s. Wang et al. (2019) used variational mode
decomposition (VMD) and Teager–Kaiser energy operators
(TKEOs) to identify the HIF. The method is tested in radial,

IEEE 13-node, IEEE 34-node, and test microgrid systems, as well
as experimental field tests. Three-phase current signals are
measured, and VMD is performed on transient zero sequence
currents (TZSCs) to obtain the intrinsic mode functions (IMFs).
Then, the IMFs with the largest kurtosis value were selected as the
characteristic IMFs. Second, the characteristic IMFs are
calculated to obtain TKEOs and divided into subintervals of
TKEOs waveform to calculate the time entropy values. The
HIF detection criterion is when the time entropy value is 0;
then, CS or LS has occurred. When the entropy value is not 0, it is
judged as an HIF. The calculation time taken is 0.0028 s.

A data-driven technique includes PCA, Fisher discriminant
analysis, and binary and multi-class SVM for HIF detection.
Compared with PCA, FDA can classify and locate the HIF
successfully (Sarwar et al., 2020). PCA utilizes Hotelling’s T2

statics for HIF discrimination (see Eq. 1). The IEEE 13-node
system is used for testing:

T2
α �

m n + 1( ) n − 1( )
n n −m( )Fα m, n −m( ), (1)

where Fα (m, n-m) is the F distribution withm; (n–m) is the degree of
freedom; T2 ≤ T2

α means no-fault condition; and T2 > T2
α means

faulty condition.
The SVM uses a discriminant function to differentiate

various classes. Non-linear classification is based on a kernel
function from kernelized SVM. Figure 7A shows the single-line
diagram of the IEEE 13-node system. Multiclass SVM gives the
best results, with dependability and security at 100%. Silva et al.
(2020) performed a wavelet packet-based feature extraction with
a three-level decomposition of signals at 2.5 kHz along with the
EuFNN classifier. The IEEE 13-bus system is considered for
testing the method, which is a highly charged compact feeder
with a rating of 4,053 kV A and a power factor of 0.85, and an
extension of approximately 1.5 km from bus 650 to bus 680.
Several line configurations, such as three-phase and single-phase
lines, overhead, and underground sections, are considered.
Different families of wavelet transform, namely, Haar, Symlet,
Daubechies, Biorthogonal, and Coiflet, used to extract features
from a one-cycle time window of current signals were chosen.
The RMS and the entropy values calculated for Daubechie-8 give
the best discrimination rate. Various WPT families, the MLP,
learning vector quantization (LVQ), SVM, and EFuNN classifiers
were compared, among which MLPNN gave the least accuracy,
and all other classifiers gave an average of 97.14% accuracy.
Nezamzadeh-Ejieh and Sadeghkhani (2020) performed the time-
domain HIF detection algorithm by analyzing the substation
current employing Kullback-divergence that measures the
similarity between asymmetry and non-linearity of two
consequent half cycles. Both IEEE 13-node and IEEE 34-node
feeders are used to test the approach. The amplitude of the fault
current of 15 A is approximately 3% of the normal feeder current.
An intelligent electronic device samples the signals at 4.8 kHz
and measures the current in each phase. The current vector
measurement is formed by

Mj � ij t0 + Ts( ) ij t0 + 2Ts( ) ij t0 + KTs( )[ ]
T
, (2)

Mij � ij t0 + Ts( )∣∣∣∣
∣∣∣∣ . . . ij t0 + K/2( )Ts( )∣∣∣∣

∣∣∣∣[ ]T, (3)
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Mij � ij t0 + K/2( )Ts( )∣∣∣∣
∣∣∣∣ . . . ij t0 + K/Ts( )

∣∣∣∣
∣∣∣∣[ ]T, (4)

DKL,j M1,j

����M2,j( ) � ∑N

r�1M1,j r( ) logM1,j r( )
M2,j r( ). (5)

During normal operation, there is no change in the waveforms
of two consecutive half-cycles DKL = 0, and during a fault
occurrence, there will be asymmetry and non-linearity in the
half-cycles and DKL ≠ 0. During the HIF, the third harmonic
current will be greater than the fifth harmonic current. The
occurrence of an HIF is when > ξth, where ξth is the disturbance
detection threshold. A small threshold will decrease the accuracy of
the system and a high value will reduce the detection speed. The
method effectively detects the presence of an HIF.

3.4.2 IEEE 34-node test system
Moravej et al. (2015) used an IEEE 34-node test feeder for

testing, as given in Figure 7D, and simulated it in EMTP-RV
software. There are four different conductors, in which the
system is characterized by heavily and lightly loaded with a
feeder voltage of 24.9 kV. Two-line regulators and one
transformer (24.9/4.16 kV) are present in the feeder. There are
single-phase and three-phase feeders and two shunt capacitors in
the system. Dual-tree complex wavelet transforms is used for feature
extraction and PNN for classifying the faulty and healthy conditions.
In the method, various steps involved in HIF detection include

disturbance detection, disturbance feature extraction, HIF detection,
frequency tracking, over-current protection, and the main feeder
break detection. In the first step, the fundamental frequency current
of the three-phase current is calculated using the DFT algorithm.
The post-disturbance and pre-disturbance data windows are saved
in memory, and both are decomposed into five levels by DT-CWT.
The detailed components of the post-disturbance data window are
subtracted from those of the pre-disturbance, and after obtaining the
detailed component of the disturbance signal, the proper feature is
selected. The SD and normalized energy of the detailed coefficients
of level 2–level 5 three-phase currents and residual current were
selected as the features for the HIF detection algorithm. The
algorithm is fast and detects the disturbance in 1.88 ms, giving
an accuracy of 98.88%. Sekar and Mohanty (2017) proposed that
MM extracts features, such as energy, mean, and SD, which train the
DT (data mining based). The three-phase current signal is pre-
processed by a dilation and erosion morphological filter. The data
mining-based DT using software package “R” is used, as well as post-
disturbance data window length of current signals at feeder
processed through the MM filter and chosen data window. The
IEEE 34-node test system with light loads is also used. The total
number of cases considered is 300, of which 70% are used for
training and 30% for testing. The accuracy is 98.83%, dependability
is 98.88%, and security is 100%, with a detection time of 30 ms. The
proposed method is also tested using the IEEE 13-node system, in

FIGURE 8
(A) Test microgrid system. (B) Representation of CERTS microgrid system structure. (C) Single-line representation of IEC microgrid.
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which the total cases considered are 300, of which 70% are used for
training and 30% for testing. The accuracy is 98.83%, dependability
is 98.88%, and security is 100%, with a detection time of 30 ms.

Fan and Yin (2019) used a convolutional neural network and
transfer learning-based approach for HIF detection. The method is
tested with 5,000 data sets, of which 2,500 are HIF data and 2,500 are

non-HIF conditions in an IEEE 34-node feeder. From the data set,
80% was taken for training and 20% for testing. The sampling rate
was 15 kHz, and there were 300 samples in the input data. Among
the four layers of the CNN, each layer of the CNN model has
convolution, rectified linear unit (ReLU), and max-pooling
functions. The accuracy of the CNN obtained was 99.52%, and

FIGURE 9
(A) Single-line representation of the JMARTY model transmission line test system. (B) Single-line representation of TAI-16 feeder distribution
networks. (C) Single-line diagram of the 38-node test system. (D) Single-line representation of the benchmark system.
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the computational cost was low compared with the traditional
MLPNN (91.13%). Fewer data sets (<300) were in the IEEE 13-
node system with 50% training and 50% testing data. The accuracy
obtained for the CNN was 95.06% compared to CNNs, with 74.69%.

3.4.3 IEEE four-node test feeder
The test system used is the IEEE four-node system, as shown in

Figure 7B. Three-phase load switching, capacitor switching, no-load
transformer switching (energizing and de-energizing the
transformer at various cycle times), harmonic loads (e.g., an
unregulated four-pulse rectifier and induction motors), arc
furnaces, and down-conductor and undowned conductor HIFs
are discriminated using this method. The method of HIF
detection (Sarlak and Shahrtash, 2008) uses PCA and LDA and
is used along with SVM to detect the HIF, which gives 97.5%
accuracy. PCA refers to the linear feature extraction method that
computes m eigenvectors corresponding to n-dimensional patterns.
PCA extracts uncorrelated features. Hence, it is more appropriate
compared to other classification techniques. LDA measures the
Fisher criterion that finds the m eigenvectors of the scatter
matrix that discriminates HIFs from non-HIFs. The extracted
features are sampled at the rate of 12.5 kHz. The feature set is
divided into a training set of 66% and a testing set of 34%. The
polynomial and radial bias function of SVM is used, in which the
linear kernel function has the best classification accuracy.

3.4.4 IEEE-123 distribution feeder
An IEEE-123 distribution feeder as a test system is illustrated,

characterized by unbalanced phases modeled with EMTP-RV
software. Figure 7D displays the IEEE-123 distribution feeder.
Some of the feeder buses are connected to smart meters in three-
phase sections and not in single- and two-phase sections. Tonelli-

Neto et al. (2017) found that the method uses WT along with
ANN and fuzzy interference systems for HIF detection. Three-
phase current signals are analyzed and sampled at a frequency of
15.36 kHz. An application of DWT, multi-resolution analysis
extracts the features from the current signals using Daubechies
mother wavelet with fourth-order filter (db4). An energy concept
is applied to the features to increase efficiency and minimize the
number of coefficients. The energy concept is used for the third-
level detail coefficients because of the high number of coefficients
created in MRA. Fuzzy ARTMAP neural networks and fuzzy
interface systems are used for HIF classification. Each bus, where
the signals are obtained, has a FIS responsible for identifying and
qualifying the feeder operating condition in the detection based
on FIS. The results combine a normal case, HIF phase a, HIF
phase b, and HIF phase c. The detection method based on the
fuzzy art neural network (FANN) is as follows: the vectors
obtained are normalized for use as inputs to multiple neural
networks. This normalization is performed by identifying the
maximum current value of each analyzed vector. Comparing
both FANN and FIS, the accuracy of FANN is 97.69%, and that of
FIS is 99.25%.

3.5 Test microgrid system

The test microgrid system is used for HIF detection (Kar and
Samantaray, 2017), as shown in Figure 8A. The base power of the
test system is chosen as 10 MVA. The rated short-circuit of the
utility is 1,000 MVA with f = 60 Hz, rated 120 kV. Distribution
generations, DG1 and DG3, are rated as follows: synchronous
generator rated at 9 MW and rated voltage of 2.4 kV, and DG2 is
a wind farm consisting of three wind turbines (2 MW each), rated
kV = 575 V. The transformer ratings used in this study are as
follows: Transformer 1: 15 MVA, 120/25 kV. Transformers 2 and
4 are rated at 12, kV = 2.4 kV/25 kV, while Transformer 3 is rated
at 2.5, kV = 575 V/25 kV. The distribution lines (DL) are DL1,
DL2, DL3, and DL4: PI-Section, 20 km each. The total load is
20 MW, 10 MVAR, a sum of L1–L5. The MODWT is the feature
extraction technique, and DT is the classifier used. The proposed
method is tested in both grid-connected and islanded modes. The
MODWT scaling filter and the wavelet filter related to the DWT
filter are calculated, and the scaling coefficients of MODWT are
obtained. The detailed approximation coefficient is obtained
from the MODWT, and DT does accurate classification. The
total cases are 1,493, of which 973 are HIF cases and 520 are faulty
conditions. In the method proposed, 12 feature sets are
considered, among which five were taken for classification.
The training set (70%) and testing (30%) assess the
performance. The software package “R” generates data mining
for the DT. The detection accuracy, dependability, and security
are 100% for the grid-connected mode, whereas for the islanded
mode, the accuracy is 99.23%, security is 98.23%, and
dependability is 100%.

Microgrid is considered while integrating distributed energy
systems (Abdelgayed et al., 2017). The Consortium for Electric
Reliability Technology Solutions (CERTS) was used for the case
study of microgrids in this article. The microgrid system has two
modes of operation: grid-connected and islanded mode of

FIGURE 10
Emmanuel arcmodel of HIF. The Vn, Vp, Rn, and Rp values of wet
sand are 4.5 V, 2.5 V, 400 ± 5 Ω, and 350 ± 5 Ω, respectively. For dry
sod, the values are 4 V, 2 V, 300± 5 Ω, and Rp 250± 5 Ω. Thewet grass
Vn, Vp, Rn, and Rp values are 2.75 V, 1 V, 150 ± 5 Ω, and 125 ± 5 Ω,
respectively. The Vn, Vp, Rn, and Rp values are 2.5 V, 0.75 V, 100 ± 5 Ω,
and 75 ± 5 Ω, respectively, for reinforced concrete.
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operation. CERTS microgrid consists of a distribution system fed
from three-phase distribution transformers rated at 13.8/0.48 kV,
consisting of two solar photovoltaic sources and one battery
energy storage source. Four loads are considered long in the
distribution system. The method employs a semi-supervised
machine learning strategy to handle labeled and unlabeled
data. DWT extracts the hidden properties of voltage and
current and applies them to a harmony search algorithm to
find the HIF parameters. The DT and KNN classifiers are used
to discriminate the HIF events. The overall accuracy of the DT is
100%, and that of the KNN is 95%.

The test system is a CERTS microgrid with two inverter-
interfaced DG units and one synchronous generator-based DG
unit (Gadanayak and Mallick, 2019). The representation CERT
microgrid system is shown in Figure 8B. For HIF detection, the
test system consists of five distribution lines and five relay units.
MATLAB-SIMULINK is used to simulate the model, with a
simulation sampling rate of 0.5 MHz. The MODWT approach for
feature extraction and knot-based empirical mode decomposition is
included in the methodology. The program recognized 855 cases of
HIFs and 801 cases of non-HIFs. The average time to detect a fault was
0.12175 s. The test system used by Gashteroodkhani et al. (2020) was
performed in a 25-kV IEC standardmicrogrid that gave high accuracy
and robustness in noisy environments. The single-line representation
of the IECmicrogrid is represented in Figure 8C. A deep-belief neural
network with TT-transform is employed where an intelligent relaying
scheme-based real-time digital simulator is used, integrated with
MATLAB. The process involves the measurement of three-phase
currents at both ends and the feature extraction by Clark’s
transformation and TTT, which is sent to the DBNN. Six features
are used for feature extraction, including energy, SD, and median
absolute deviation. Microgrid models with grid-connected, islanded,
radial, and mesh topologies are used to test the approach. With
3,600 fault situations and 3,125 no-fault cases, the sampling rate was
set to 1.2 kHz. The proposed method gives 99.74% and 99.46%
accuracy for a radial network with grid-connected and islanded

modes, respectively, and 100% for mesh topology in both modes
of operation.

3.6 JMARTY model test system

Eldin et al. (2007) considered the JMARTY model with
Egyptian transmission line parameters, such as a transmission
line length of 125 km and a resistive load of 600 MW, as shown in
Figure 9A. DWT’s feature extraction technique with classifier
moving window pattern recognition is used in HIF detection in
extra-high voltage transmission. The sampling rate is
250 samples/cycle at 50 Hz. In order to distinguish HIF from
non-HIF events, the proposed technique uses high-frequency
information from wavelet analysis db4. The effect of fault
location, fault interception angle, fault type, switching of
loads, switching of the HIF, and sudden load rejection is
studied. The algorithm can be added to the existing digital
relay microprocessor; it is fast, accurate, and simple.

Ibrahim et al. (2008) described two approaches: the first uses
DWT analysis and the second analyses three-phase voltages
using a high-frequency tap coupling capacitor voltage
transformer. The chosen sampling rate is 20,000 Hz. A 100-
m-long 345-kV double-end transmission line system is
considered. The effect of fault location, fault type, fault
interception angle, switching of loads, and switching of HIF
are studied. The method is independent of load variations and
unbalanced conditions. The algorithm is fast, accurate, and
simple; it can be added to an existing digital relay
microprocessor (Eldin et al., 2007).

3.7 TAI-16 feeder

In Yang et al.’s method (2006), the HIF was tested in a real-
time Tai-16 feeder, Taishi substation near Mailiao, as shown in

TABLE 3 Performance evaluation of classifiers.

Criterion Equation Function

Accuracy (A) Overall precision

Dependability (D) Faulty state detection precision

Security (S) Healthy state detection precision

Safety (S) Safety-related criterion

Sensibility (SN) Sensitive load-related criterion

Speed (v) Detection speed

Note: TP, true positive; TN, true negative; FN, false negative; FP, false positive; Tonecycle, time for one cycle; TDetection, time for detection.
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Figure 9B. The fault was staged at pole #61 under grounded and
ungrounded conditions, with dry and wet ground conditions.
Data from the Shand-Ding substation and the She-Zi substation
were considered to train the NN. The analog-to-digital recorder
ADX-3000 was installed to monitor the neutral line current of the
faulted feeder in the substation. A cross-linked polyethylene-
covered conductor, a bare copper conductor, and ACSR
conductors are used. A wavelet transform and pattern
recognition-based feature extraction scheme is used and
applied to backpropagation ANN for HIF detection. The
detection of the HIF is carried out by introducing an
intelligent HIF detector applied to a neutral line current,
giving an 81% detection rate. A self-tuning algorithm based
on the chi-square algorithm is applied to find the variations in
neural current. A statistical confidence scheme is applied for
neutral current estimation. For calculating the threshold of
neutral current, a 95% confidence interval is applied.

3.8 Test system—38 nodes

A typical 11-kV distribution network in Malaysia is
composed of 38 nodes serving 34-line sections, as shown in
Figure 9C, displaying the single-line diagram of a 132/11-kV
distribution network. The test unit has a frequency of 50 Hz, with
a sampling frequency of 6.4 kHz, and delivers 128 samples/cycle.
The feeder bus is simulated using the PSCAD program. Ali et al.
(2014) proposed that DWT-based MRA is the feature extraction
technique, and a matching approach technique is used for
classification in the underground distribution system. The
simulation tests of the three-phase voltage signal are obtained
at a measurement point using the DWT-based multi-resolution
technique. The voltage signal was decomposed into 128 samples
and analyzed by Daubechies fourth order of DWT. The first level
of the detailed coefficient, d1, detects the HIF by observing
changes in the characteristics taken from three-phase voltage
data. The sum of the first-level approximation coefficients
obtained from the normal cycle, known as the approximation
ratio, is divided by the sum of first-level approximation
coefficients obtained from the normal cycle to classify the fault:

Approximation Ratio � ∑a HIF( )
∑a normal( ). (6)

The approximation ratio is considered for distinguishing
SLGF, LLGF, LLLF, and LLF. If the ratio is less than 1 for one
phase and greater for the other two phases, then an SLG fault has
occurred. The three-phase ratios will be the same for LLLF. For
locating the HIF, a matching technique based on the shortest
distance is used. For each line section, the SD between the
measured signal and the line section is computed. The
summation of the detailed coefficients of voltage signals is
done in three coordinate systems and represented in three-
dimensional space. The SD of each section is calculated, and
the average value is calculated. The average value is compared
with the SD values of each section. Each section is then arranged
in ascending order of its SD values, which list the possibility of a
faulty section. The method successfully located the fault after
four or five iterations.

3.9 Benchmark system

In Cui et al. (2017), the test system chosen is a benchmark system
in a remote Canadian community with 25 kV 60 Hz, distribution
feeders that serve an 11-MW load built by McGill Power Laboratory,
as shown in Figure 9D. An L-G HIF at t = 0.3 s is implemented in a
hybrid distribution system. The feeder’s PCC (CB-1) will collect all the
data where the HIF detector is located, two DGs at locations A and B,
respectively. Three types of distribution systems are also possible to
model: 1) the synchronous generator (SG) system is constructed by
connecting the SG to location A without DG in location B; 2) the
inverter-interfaced system is connected to location B with only type
4 wind turbines at location A and without DG; and 3) the hybrid DG
system has an SG connected to location A and wind turbine
generators at location B. The rated voltage is 4.17 kV for the SG,
and 9 MVA is the power. Three wind turbine generators provide wind
power, each rated at 575 V and 2.2 MVA. The proposed method was
tested in hybrid systems, and inverter-based systems are grounded, as
well as ungrounded conditions. HIF and non-HIF events of
1,944 cases each have been considered for testing and training.
The method proposes an algorithm to rank the effective feature
sets using a signal processing technique of DFT and Kalman
filtering estimation. The effective feature set is derived from
information gain or entropy. The information gain of each feature
is calculated, and a calculation variable is obtained. Such calculated
variables are compared and then ranked for further assessment inHIF
detection. By measuring the currents and voltages at the point of the
common coupling, 246 electrical features are obtained. Classifiers,
such as Native Bayer’s, SVM (Gaussian kernel), k-nearest neighbor
(KNN), RF, and J48, are compared, among which RF and J48 proved
to be the best with 99% accuracy for both.

3.10 Modeling of HIF

Researchers provide numerous HIF models because of
stochastic behavior and complicated properties. In order to
acquire a good representation of the HIF, it is necessary to
develop a model that specifies the features and the harmonic
content of the HIF. Because arcing, which has yet to be fully
modeled, is involved in most HIF events, an HIF is a difficult
example to model. HIFs are non-linear and asymmetric,
according to some earlier studies, and random and dynamic
arcing features should be used in modeling (Zamanan and
Sykulski, 2014). The arc is a continuous luminous discharge of
electricity in which many free electrons and ions in an insulating
medium are converted into a conducting medium. The arc was
first studied as a continuous luminous discharge of electricity
through an insulating medium that becomes a conducting
medium due to the presence of a large number of free
electrons and ions. The arc was first researched about circuit
breaker disruption capabilities, with arc models used to improve
circuit breaker testing (Elkalashy, 2007). The Emanuel model
replicates zero periods of arcing and asymmetry by connecting
two DC sources anti-parallel with two diodes (see Figure 10).
Variable resistors vary the fault resistance, and a voltage supply
with random values mimics HIF unpredictability. Some of the
other HIF models are, two-time varying series resistors with
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different characteristics (Nam et al., 2001), Kizilcay’s model
(Zhang et al., 2016; Mishra and Panigrahi, 2019) and
Matthews arc model (Gammon and Matthews, 2001).

4 Classifiers for identifying the healthy
and faulty conductors

This section discusses classifiers, which distinguish between
faulty and non-faulty conditions. Classifiers set a boundary
between healthy and faulty conductors. In the classification
process, two types of data are to be considered: training data
consisting of information relating to known patterns and testing
data, which are a collection of information relating to unknown
patterns. Table 3 presents the performance evaluation of various
classifiers with various criteria, such as accuracy, dependability,
security, sensibility, speed, and safety.

The appropriate classifier is chosen depending on the
application where it is being used. The various classification
conditions are capacitor switching, load switching, noises
(Christie et al., 1993), disturbances (Russell and Benner, 1995),
and voltage spikes. Faulty conditions include L-L, L-G, L-L-L, LIF,
HIF (Barnard and Pahwa, 1993), and non-linear load conditions
(Sultan and Swift, 1992). A knowledge-based system (Sedighizadeh
et al., 2010), microprocessor (Kwon et al., 1991), signature-based
detection (Wester, 1998), mechanical detection (Balser et al., 1986),
burst noise signals (Aucoin and Russell, 1987), and DSP were
previously used in classification. Different classifiers, such as
neural networks (Vyshnavi and Prasad, 2018), SVM (Mishra
et al., 2016), fuzzy logic, ANN (Baqui et al., 2011), GA
(Zamanan et al., 2007), PNN (Samantaray et al., 2008), ELM
(Reddy et al., 2013), ANFIS (Abdel Aziz et al., 2011), and DT
(Kar and Samantaray, 2017) are compared and discussed.

4.1 Neural networks

NN (Snider and Yuen, 1998) models are grouped according to
their architecture (Sultan et al., 1992) (which gives the neural
connection), processing (describes the production of output
corresponding to weight and input), and training (explains the
adaption of NN weight for every training vector). The
architecture consists of the input, hidden, and output layers. The
processed information of the NN is obtained at the output layer. NN
architecture types are single-layer networks, such as an MLPNN
(Sarlak and Shahrtash, 2011), a Hopfield network, and a Kohonen
network (Ebron et al., 1990). ANN implementation is easy but is
subject to the amount and quality of trained data. The ANN
algorithm needs to be re-trained when there is a change in the
data set, and the number of neurons and learning rate are found by
the trial-and-error method.

An NN using a relay mechanism with HIF detection is described
by Sharaf et al. (1993). The approach of a feed-forward network with
backpropagation of one hidden layer and 15 neurons is used, which
employs the discriminant vector of negative and zero sequence
current and voltage in the substation. Twenty-two cases were
taken for training and 10 cases for validation. They are noise-
tolerant, require less detection time, and are economical. NN

algorithm-based relaying scheme, implemented using NN
hardware chips or software, promptly detects HIFs using Fourier
analysis of lower-order harmonic vectors of measurements used as
the input to the perceptron feed-forward network (Snider and Shan,
1998). The Emanual arc model is used as the HIFmodel. Logsigmoid
hidden layers of three numbers with 10 neurons make the structure.
As only lower-order harmonics are utilized for detection, the scheme
is more feasible and flexible and has a high detection rate. The
scheme is tested using simulation and real-time field measurements.
A microprocessor-based pattern recognition technique is developed
(Al-Dabbagh and Al-Dabbagh, 1999), which uses DFT to analyze
signals. The scheme describes a sensitive Earth fault protection that
is comparatively slow but gives better performance. The scheme is
not tested with real-time data; only relaying current and voltage
signals from the ATP simulation package are tested. Keyhani et al.
(2001) used a subband decomposition method for current, which
uses the energy of the subband to feed the input vector to the NN.
The system is less noise-sensitive and can detect HIFs efficiently at
high noise levels. The SNR chosen was 0–14 db. Emanuel and
Gulachenski’s HIF model is used for testing. A total of 800 cases
were taken, and 16 neurons were used for fault analysis. Two NNs,
namely, perceptron and FNN, are used; both give similar results with
close to 100% accuracy. The scaling and translation characteristics of
DWT are used to discriminate the transient and stable features of
current signals (Yang et al., 2004). The extracted features of voltage
and current signals and dissimilarity of wavelet component
coefficients are calculated, which is used to train the NN and
determine HIFs from the switching operations. The SD and
mean are the features considered, with 20 neurons in the first
hidden layer and 10 in the second hidden layer. A total of
600 events were taken, of which 500 are used for training and
100 for testing. The combination of the NN with DWT gives a good
performance. Bansal and Pillai (2007) explained that FFT is the
feature extraction technique used for 320 events taken. The
magnitude of the third and fifth current harmonics is used for
feature vector LVQ network classifiers for HIF detection. The output
layer of LVQ contains two linear neurons. In comparison with the
feed-forward network with backpropagation, LVQ gives a quicker
response. LVQ gives the best results in random and selected
subclasses if the subclass chosen is 10.

ANN and DWT are used for HIF detection (Vahidi et al., 2010).
Distorted waveforms similar to fault current waveforms are generated,
and DWT is used to denoise the signal and obtain signals with a high
SNR. Sym8 wavelet function is used for detection, which gives 99%
accuracy. The Levenberg–Marquardt algorithm is used for training
the network, with 8-5-3-1 Baqui et al. (2011). The method is robust; it
uses modified HIF models and discriminates between a wide range of
signals, such as HIFs. The PNNmodel uses a probabilistic model, such
as Bayesian classifiers and a supervised learning network, a type of
feedforward network (FFN) that uses exponential activation
functions. The PNN structure has four layers: the input layer,
pattern layer (hidden layer), summation layer, and output layer. In
the network used, the initial weights and the learning process are not
required (Chen et al., 2016). Fan and Yin (2019) used the
convolutional neural network that overcomes the disadvantages of
conventional MLPNN; for example, the spatial structure of data is not
considered, and large data sets are not required for training purposes.
The four layers of CNN are convolution, rectified linear unit, and

Frontiers in Energy Research frontiersin.org25

Varghese P et al. 10.3389/fenrg.2023.1114230

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1114230


max-pooling functions. Here, the classic HIF model with two anti-
parallel DC sources, diodes, and variable resistors is used. Two
separate conditions were studied using the proposed system: the
first was tested with 5,000 data sets, of which 2,500 are HIF data
sets and 2,500 are non-HIF conditions in an IEEE 34-node feeder.
From the data set, 80%was taken for training and 20% for testing. The
sampling rate was 15 kHz, and the input data contained 300 samples.
The accuracy of the CNN obtained was 99.52% compared with the
traditional MLPNN of 91.13%. The second case was performed with
fewer data sets (<300) in the IEEE 13-node system with 50% training
and 50% testing data. The accuracy obtained was 95.06% compared to
conventional neural networks, with 74.69%. ELM is extracted from
neural networks that improve feed-forward neural networks’
efficiency. ELM is a single-layer neural network, which is hidden
and does not need be tuned. In ELM, input weights and biases of
hidden layers are selected randomly, and the output weights are
chosen analytically (Mishra et al., 2017). FFT extracts the third and
fifth harmonics current and voltage magnitudes and trains the ELM
(Reddy et al., 2013). The number of events is 320, and 20 neurons with
unipolar sigmoidal activation functions are used for training the
algorithm. Here, ELM is used for fault classification and section
identification. The scheme is faster with less human intervention
and gives accurate classification and less training time compared to
neural networks such as LVQ andMLP.DWT is the feature extraction
technique that studies the cross-countryside HIF detection applied to
the transmission and distribution systems (AsghariGovar et al., 2019).
Three-phase current signals are extracted at both ends of the line for
fault detection and identification. The Emanual arc model is used as
the HIF model, and the IEEE 13-node system is tested. The hidden
layer contains 20 nodes, with the number of inputs and outputs as one.
Faulty conditions and other power system disturbances are classified
by ELM. The novel protection algorithm is independent of
interception angle, power swing, fault location, power system
topology, and noise.

4.2 Genetic algorithm

A GA is an intelligent technology that detects faults (Kim et al.,
1990). The behavior of the HIF is affected by many environmental
parameters, and hence, a parameter-based generic technique
method can be used. Detection of the HIF in a distribution
system using a real coded genetic algorithm (RCGA) to analyze
the tracking harmonics and current phase angles of the fault current
signals was proposed by Zamanan et al. (2007). A fitness function is
used by the GA that differentiates the performance between different
strings. The scheme gives accurate results in differentiating
harmonics and current angles of HIF. For GA, the simulation
time is high, and as the processes are random, this cannot be
used for fault location. GA cannot be used for online analysis
because there is a possibility of inaccurate results.

Two methods for HIF detection have been compared (Sedighi
et al., 2005b): the first method is the GA and Bayes classifier, where
GA is used for feature vector reduction and Bayes for classification.
The second method uses PCA and a NN for HIF identification. PCA
and wavelet transform are used for feature extraction, for which GA
gives the best results compared to the NN. The mother wavelet used
is rbior3, with a sampling frequency of 24.67 kHz. It discriminates

HIFs from non-HIFs, such as isolator leakage current, capacitor
switching, and load switching. The tests were conducted 8.20 and
8.44 km from the source at different types of surfaces. The overall
success rate of the Bayes classifier is 98.33%.

4.3 Support vector machine

SVM is a significant classifier commonly used in issues related to
different power systems and environmental fields that find
application in regression analysis, prediction, and classification.
SVM is a non-linear kernel-based function that maps data from
one space region to another (Veerasamy et al., 2018). Different types
of kernel functions are the linear kernel, polynomial kernel, radial
basis kernel, and sigmoid kernel. SVM provides a distinctive training
algorithm to optimize the boundaries between different groups.
Optimal parameter selection is highly important to obtain successful
classification outcomes. The classifier of the support vector is mainly
a binary linear classifier. Theoretically, SVM was derived from the
principle of statistical learning. The linear classification algorithm
for the SVM applies the training set to find the segregated
hyperplane. The SVM algorithm calculates the number of
support vectors for SVM (no training is required), which makes
SVM a better algorithm for classification than ANNs
(Gururajapathy et al., 2017). The elements of the training sets
that characterize the dividing hyperplane are support vectors.
Even for a large data set, SVM is quick in classification with
fewer heuristics. Gashteroodkhani et al. (2019) proposed a
method that uses TT transform and ST for feature extraction
from the transient voltage signal measured at one end. The
classification is conducted using SVM optimized by a particular
swan optimization and is tested over the headline and underground
cable. Bewley’s lattice diagram identifies the fault location. The total
number of cases was 2,376, of which 70% were used for training and
30% for testing the SVM. Compared with ST, the TT transform
achieves 99.8% accuracy. Sahoo and Baran’s method (2014) uses the
DWT technique for feature extraction, which considers the SD and
is tested in the radial distribution feeder at 138 kV. Maximum value
and energy are decomposed into two parts. Mary’s model for HIFs is
used. Various classifiers, such as fuzzy, Bayes ANFIS, SVM (Kernel
trick function is used), and MLPNN, are compared, among which
ANFIS and SVM give the best results. A data-driven technique
includes PCA, Fisher discriminant analysis, and binary and multi-
class SVM for HIF detection. Compared with PCA, FDA can classify
and locate HIFs successfully (Sarwar et al., 2020). PCA utilizes
Hotelling’s T2 statistics for HIF discrimination. The IEEE 13-node
system is used for testing. Diode-resistance source is the HIF model
used, with opposite polarity. Vp = 1 kV and Vn = 0.5 kV with ±10%.
Rp and Rn range from 1,000 to 1,500Ω, with random variation. In
the proposed method, multiclass-SVM gives the best results. MM is
the feature extraction (Sarlak and Shahrtash, 2013) and was tested
on the Palash feeder in the Southwestern Tehran distribution
network. An HIF indicator is installed in various poles that
detect HIFs at various locations. The dependability and security
of the proposed system are best above the 20 db SNR. To evaluate
the proposed method, a DST, DTT is used along with PNN, as well
as DWT along with SVM. The proposed algorithm has 96.9%
security and 97.2% dependability.
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4.4 Adaptive neuro-fuzzy inference system

ANFIS includes the benefits of ANN and fuzzy logic principles
in a single platform. ANFIS trains the fuzzy inference system to
create fuzzy rules for IF-THEN and evaluate membership features
for input and output variables. A NN trains the membership
functions to minimize the error in fault classification. Tawafan
et al. (2012) and Abdel Aziz et al. (2011) used the FFT for
feature extraction, which was then tested in a radial 13.8-kV
distribution feeder. Third harmonics, the magnitude of current,
and phase of current are extracted, of which the first parameter is
essential for HIF detection and the latter for HIF classification. It is
noted that the HIF current is < 0.05 for NCs and >0.9 for HIF
conditions. The main disadvantage is determining the global
minimum using the membership function and enhancing feature
extraction using the algorithm. The SD values drawn from the DWT
are used to train fuzzy, Bayes, MLPNN, ANFIS, and SVM and
compare the performances in Veerasamy et al. (2019). DWT with
ANFIS and SVM classifiers discriminates between HIFs, SLGF, LLF,
and DLGF, giving superior results. Apart from this, certain
performance indices, such as absolute error, root mean square
error, kappa statistic, success rate, and discrimination rate, were
compared. In Veerasamy et al. (2018), DWT extracts SD features
from a three-phase current and is used to train ANFIS. For fault
analysis, a sampling rate of 20 kHz is considered. The mother
wavelet used is Daubichies’s wavelet (Db9). A radial distribution
system is used for testing in MATLAB/SIMULINK. The fuzzy
logic system discrimination rate is 66.6%, but ANFIS gives 100%.
When discrimination rates of the fuzzy logic system and ANFIS
are compared, ANFIS proves to be superior by 33.3%. The
fundamental component (e.g., magnitude and phase) of
current is used (Aziz et al., 2012; Abdel Aziz et al., 2012) for
HIF detection, classification (LG, LL, LLG, LLLG, and HIF), and
location. The fundamental component, such as third harmonics,
plays an essential role in HIF detection and location. The ANFIS
classifier unit gives correct output for faulty and non-faulty
conditions. In fuzzy logic, the concept of possibility is used
rather than the concept of probability. Jota and Jota (1999)
explained the application of neo-fuzzy neurons trained to
identify the SD responses where FFT is used for feature vector
extraction. After the training, the neuron set becomes a decision
core of the supervisory system. The method identifies the HIF in a
real-time feeder, which works better for not very close fault
instants. The correction index is 100% for very close faults
and 81% for faults at a distance of less than 10 m. The field
chosen is Caratinga in Brazil for data analysis. Silva et al. (1995)
explained the HIF testing in both real-time feeders and
simulation. The real-time feeder chosen was Caratinga in
Brazil. The method is based on the traveling wave technique.
Detection with fuzzy rules in normal and faulty cases was carried
out, and faults within 10 m were identified. The SD of noise was
identified to input the fuzzy. The method is focused on passive
faults, which effectively work with harmonic frequencies. The
feature extraction technique DWT (Silva et al., 2020) with neuro-
fuzzy classifier is tested in the IEEE distribution test 13-bus feeder
and the IEEE distribution test 34-bus feeder, which incorporates
an evolving fuzzy neural network (EuFNN) that has an “adapt
itself” ability and is excellent in terms of accuracy and robustness.

Wavelet packet-based feature extraction is used with a neuro-
fuzzy classifier. Different families of wavelet packet transform,
namely, Haar, Symlet, Daubechies, Biorthogonal, and Coiflet,
were used to extract features from a one-cycle time window of
current signals. LVQ, MLP, SVM, and evolving fuzzy neural
networks are compared with RMS and entropy values
coefficients. Apart from other advantages, EuFNN gives a
membership function for the possibility of fault occurrence.
The method will not identify the fault location. DWT with a
fuzzy interference system and Fuzzy ARTMAP neural network
combination based on Dempster–Shafer evidence theory is tested
in the IEEE-123 distribution feeder (Tonelli-Neto et al., 2017).
The classification results show that the system is robust, efficient,
and reliable. The Emanuel arc model is used for HIF modeling,
where Vp ranges from 500 to 2,000 V and Vn from 2,000 to
2,500 V. Any new type of fault can be included in the classifier
with ease. The method gives a classification efficiency of 97.69%.
FFT extracts features from the signal, and fuzzy logic classifies
HIF and non-HIF events (Suliman and Ghazal, 2019). The
detection is performed by analyzing the third and fifth
harmonics of magnitude and phase angle. The method is
tested in three phase-4 wires of a 400-V radial distribution
feeder in a downed conductor and wet sand. The third and
fifth harmonics are extracted to train the classifier. The
classifier is trained with real-time data from the practical test
performed in the laboratory. By using a neuro-fuzzy interference
system, tuning of the algorithm is performed.

4.5 Decision tree

DT represents the learned function in DT learning, which is a
technique for approximating discrete-valued target functions. One
of the possible values of this attribute corresponds to each branch
that descends from the node. The DT-based method uses phase
current (in RMS) and second, third, and fifth harmonic magnitudes
to detect HIF (Samantaray, 2012). Shahrtash and Sarlak (2006) used
pattern recognition with the DT algorithm, which has efficient
training time and gives excellent results in even, odd, and
between harmonics up to 400 Hz. Two cases are considered for
HIFs: the first is when a broken conductor touches the ground and
the other is when an energized conductor touches another object.
The specified tree is constructed using the J48 algorithm in WEKA
software. The classification factor is considered based on entropy
that gives the variations in the data set. This study concludes that a 2-
kHz sampling frequency and 30-cycle time interval using a small
energy DT can give accurate results. EKF is used for feature
extraction and ensemble DT (RF) for fault classification,
compared with the DT algorithm (Samantaray, 2012). The
method is tested in radial and mesh networks. The reliability and
accuracy of RF is compared and is best in the two cycle window. The
method is also tested in one- and three-cycle windows. For data with
SNR 20, the reliability is more than 99%. The DT algorithm (Sheng
and Rovnyak, 2004) can differentiate between the HIFs from normal
switching, such as capacitor switching and transformer inrush
currents. FFT is used for feature extraction and is tested in a
radial distribution feeder. DT discriminates the extracted features
for classification, which, compared with other pattern recognition
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tools, gives better results. Current signals of each phase are sampled
at 1,920 Hz, with a total number of cases of 5,700. The Emmanuel
arc model is used, and the system is simulated in EMTP.

4.6 Miscellaneous HIF detection schemes

Several other HIF detection schemes, aside from these methods,
play a crucial role in HIF detection. Using signal processing and
pattern recognition techniques in the device relaying architecture
with expert systems, Don Russell (1990) explained low current
faults. Mamishev et al. (1996) suggested using fractal geometry to
analyze the chaotic properties of high-impedance defects and RMS
current values are used to classify the behavior of the temporal
system, resulting in a relatively short time series usable for study.
Sharaf et al. (1996) used a relay-based mechanism for HIF detection.
The scheme utilizes the ripple frequencies and sub- and super-
harmonics usually associated with the HIF phenomenon. Eldin et al.
(2007) introduced two methods for detecting HIFs in extra-high-
voltage transmission lines. Both approaches investigated the origins
and dynamics of HIF-related arcing. The former employs DWT
analysis, whereas the latter employs the coupling capacitor voltage
transformer’s high-frequency tap. The effects of fault location,
interception angle, fault type, switch-off, and operations are
analyzed. Both approaches are accurate and require less time.

5 Locating high impendence faults

HIF detection and identification are essential, and locating the
fault accurately is the next step. Many methods are used for locating
HIFs, such as the matching technique (Ali et al., 2014), intelligent
algorithms (Chen et al., 2016), synchronized harmonic phasors
(Farajollahi et al., 2017), phase shift measurement of a high-
frequency magnetic field (Bahador et al., 2018), the advanced
distortion detection technique (Bhandia et al., 2020), smart
meters (Radhakrishnan, 2019), power line communication
systems (Milioudis et al., 2012), and power line carriers (Chen
et al., 2010), which will be elaborated in this section. A transient
power direction-based method is used for locating HIFs in MV
distribution systems, as proposed by Elkalashy et al. (2008). DWT
extracts the features of the residual current and voltage of the
measuring nodes. The product of DWT detailed coefficient d3 of
residual current and voltage will give the polarity of the frequency
band power (12.5–6.25 kHz). Wireless sensors placed at the
measuring nodes will process the detailed coefficients of DWT in
the distribution network. Daubechies wavelet 14 (db14) is effectively
located at the fault. An unearthed 20-kV distribution system is
simulated using ATP and HIFs because leaning trees are mimicked
using a universal arc model to test the proposed method. Ali et al.
(2014) used the matching technique and analyzed the three-phase
voltage signals using DWT-basedMRA. Approximately 128 samples
are taken and analyzed using Daubechies’ fourth order (Daub4). The
fault location is identified by the smallest SD values. By iteration, the
exact location can be found. A surge generator is used to pinpoint
the exact location that injects a high-voltage DC pulse of 30 kV. The
highest amplitude flash over with acoustic noise gives the exact
location of a fault.

HIF detection by measurement of voltage imbalance in primary
distribution feeder by smart energy meter was illustrated by Leite
(2019). The proposed method is tested in a typical distribution
feeder of 13.8 kV that gave accurate and robust results when tested
in broken and unbroken conductors at the load or source side. The
faulty section is identified by a parameter “K” factor when a situation
of voltage unbalance threshold is crossed. The three-phase smart
meters will calculate the voltage imbalance and locate the presence of
the HIF. The voltage across the distribution feeder is measured by
Thomas et al. (2016), as well as the voltage sequence components.
Three HIF models were investigated (a high resistance model, a
simpler two-diode model, and an arcing model), as well as several
grounding options, such as a securely grounded network, a resistive
grounded network, an ungrounded network, and a resonant
grounded network. The method is tested in two identical feeders
of 16 km in length and divided into four identical sections. The
detection is based on the positive sequence voltage drop and the
percentage of negative and zero sequences voltage
drop. Chakraborty and Das (2019) found that the detection is
based on the even harmonics present in the voltage waveform
using smart meters called the even harmonic distortion index
and evaluated in a PSCAD simulation and experimental
setup. The communication interface of the smart meter will
inform the detection of the HIF to the nearby substation. The
two-diode model of the HIF is used, and the test system used is
IEEE 13-node feeder. The performance of the proposed system is
compared with the existing schemes based on MM, wavelet
transform, and harmonics-based detection, in which the
proposed method gives satisfactory results with an execution
time of 3.98 ms. A two-terminal-based numerical algorithm for
location estimation and arcing voltage calculation with
synchronous phasors is proposed by Balser et al. (1986). Phasor
measurement units are installed at either end of the transmission
lines at a distance of 100 km. In the study, a 10-km fault distance
along with an arcing voltage of 4.5 kV is calculated, and after 20 ms
of fault inception, the synchronous phasors detect the location. ETP
simulation is used for testing the algorithm. Ibrahim et al. (2010b)
located the fault by computing the system offline zero and negative-
sequence impedance as a function of fault location, which is
dependent on the unsynchronized root mean square (RMS) value
of the sending and receiving end zero-sequence currents for ground
faults or the RMS value of the sending and receiving end negative-
sequence currents for line faults. The method is independent of any
HIF model, and the test system for evaluation chosen is a 345-kV
double-end transmission-line system. The accuracy error does not
exceed ±2% for accurate line parameters with different fault
conditions, such as LG, LLG, LL, and LLLG. Radhakrishnan
(2019) proposed installing smart meters for locating HIFs in the
distribution system, including distribution systems, power electronic
loads, and electric arc furnaces. Smart meters are introduced in each
load point that measures the load current and second harmonic
content of load voltage. The method is tested on the LV 906-bus
European distribution network and IEEE 39-bus system using
PSCAD simulation to evaluate the performance of the smart
meters under various grid conditions. The method proposed
gives satisfactory results in all the investigated conditions. As an
HIF alarm is generated, test signals are fed into the power grid, and
the location of the fault can be calculated using impulse responses
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recorded by PLC devices (Milioudis et al., 2012). A frequency range
of 3–95 kHz is used, and the method accurately locates the fault
throughout the line. Lin et al. (2004) used a phasor measurement
unit-based detection and locating system for permanent and arcing
nature faults. PMUs installed on both terminal sides simultaneously
monitor three-phase voltage and current phasors. The study
proposes a communication link from the fault location. The
measured phasors are communicated via communication
channels to a central computer. However, only harmonic phasors
are transmitted to the central computer after fault detection to
reduce the burden of the communication channels. Santos et al.
(2013) proposed the traveling wave method, which sends a high-
frequency signal from one end of the terminal and is received at the
other end. The amount of equipment required is high, and the
method is expensive. A 90-bus feeder is used to test the proposed
method.

6 Conclusion

This study reviewed most of the methods for feature
extraction, classification, location, and test systems that have
been produced over time, repeatedly, and the latest research
developments used to detect HIFs in power distribution
systems. Approximately 161 studies from the major referenced
journals in the field of HIF detection have been discussed with
primary importance on various test systems with different signal
processing techniques and classification techniques. The feature
extraction techniques using signal processing techniques include
FFT, DWT, LWT, MODWT, LDA, PCA, MM, CWT, EKF, TT,
DTWT, ST, and MODWPT. Different classifiers used to
discriminate the HIF from non-HIF events, such as ANN,
SVM, GA, ELM, PNN, FLC, ART, ANFIS, DT, RF, and CNN,
are discussed. Various test systems, such as radial and mesh
distribution networks, IEEE 4-, 13-, 34-, 39-, 123-node systems,
Palash feeder, test microgrid, JMARTY, and Tai-16, are discussed
in Section 3, with IEEE standards. Fault locating techniques are

discussed, such as the traveling wave method, phasor
measurement unit method, and the matching technique. This
review also highlighted the basic principles, advantages, and
disadvantages of frequently used works related to HIFs. We
also highlight that the conventional HIF detection methods
are simple, have easy measurement setups, and consume less
computation time. Still, they are inaccurate when used in large
power system networks. Overall, we suggest a combination of
signal processing techniques along with an intelligent classifier
for the HIF detection scheme as they improve system reliability
and power quality in distribution systems.
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Nomenclature

ANFIS Adaptive neuro-fuzzy inference system

AEKF Adaptive extended Kalman filter

ANN Artificial neural network

CWT Continuous wavelet transform

CNN Convolution neural network

CERTS Consortium for Electric Reliability Technology Solutions

DLGF Double-line-to-ground fault

DWT Discrete wavelet transform

DTWT Dual-tree complex wavelet transform

DG Distributed generators

DT Decision tree

ELM Extreme learning machines

EKF Extended Kalman filter

FFT Fast Fourier transform

FFN Feedforward network

FLC Fuzzy logic control

FANN Fuzzy art neural network

GA Genetic algorithm

HT Hilbert Transform

HIF High-impedance fault

HIL Hardware-in-loop

ILC Insulator leakage current

IMF Intrinsic mode functions

KNN k-Nearest neighbor

LLF Line-to-line fault

LDA Linear discriminant analysis

LWT Lifting wavelet transform

LVQ Learning vector quantization

MODWT Maximum overlap discrete wavelet transform

MMF Mathematical morphology filters

MG Morphology gradient

MLPNN Multi-layer perceptron neural network

MWT Morlet wavelet transform

PNN Probabilistic neural network

PCA Principal component analysis

PTDS Power transmission and distribution system

PCC Point of common coupling

RTDS Real-time digital simulator

RF Random forest

RCGA Real coded genetic algorithm

ReLU Rectified linear unit

SLGF Single-line-to-ground fault

ST S transform

SVM Support vector machine

SNR Signal-to-noise ratio

SD Standard deviation

STFT Short-time Fourier transform

SG Synchronous generator

TFA Time-frequency analysis

TSK Takagi–Sugeno–Kang

TZSCs Transient zero sequence currents

LLLGF Triple-line-to-ground fault

TTT Time–time transform

VCCP Voltage–current characteristic profiles

WCC Wavelet correlation coefficient

WHTs Walsh–Hadamard transforms
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