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The accurate condition assessment of wind turbines greatly influences the refined
asset management and maintenance scheduling of wind farms. To address the
challenges of existing assessment methods in selecting the reliability value and
determining wind turbine status levels of being in transition, this study proposes a
wind turbine condition evaluation method based on asymmetric proximity. Firstly,
the state evaluation index system consisting of the wind turbine performance and
output state indices is constructed, and the weighting factors are calculated
comprehensively by integrating the subjective and objective weights. Then, the
membership function of the index layer is established based on the set pair
analysis, and the membership of the target layer is deduced by the weighted
average operator. Finally, the proximity degrees between status levels and target
membership degrees are calculated, and the wind turbine state is determined based
on the proximity principle. Case studies demonstrate that the accuracy rate of the
proposed method is up to 97%, which is 6% and 8% higher than the maximum
membership principle and the reliability criterion, respectively.
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1 Introduction

The amount of installed wind power generation is growing substantially in order to reduce
the fossil fuel consumption and carbon emission. In 2021, the global cumulative wind power
capacity has reached 837 GW (GWEC, 2022). However, the wind power generations often
operate in harsh environments and the maintenance and replacement costs are high. Therefore,
how to accurately evaluate the health condition of wind turbines to meet the refined operation
and maintenance needs of wind farms has become a hot issue (Peng et al., 2022).

The research on the condition evaluation of wind turbines is mainly divided into two
categories: single-component condition evaluation and the whole wind turbine unit evaluation.
The condition evaluation of a single component of a wind turbine is mainly focused on the fault
diagnosis or life prediction of the component. Du et al. (2015) and Huang et al. (2021) proposed
fault diagnosis methods for wind turbine gearbox based on sparse feature recognition and
convolutional neural network respectively. To address the bearing fault diagnosis, the methods
based on current-demodulated signals and SCADA data respectively were proposed in Gong
et al. (2013) and Encalada-Dávila et al. (2021). In Li et al. (2022), an Improved Anti-Noise
Residual Shrinkage Network was proposed to bearing fault diagnosis issue. Li et al. (2021)
proposed a data-driven approach to monitor and identify the wind turbine generator bearing
faults. Zhang et al. (2022) proposed a converter fault diagnosis method based on the relative
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current residuals and adaptive thresholds. Based on SCADA data, Wei
et al. (2022) proposed an information-fusion method for pitch system
aging evaluation, and Peter et al. (2022) proposed a novel wind turbine
generator prognostics method. In Effi et al. (2022), a failure detection
model for wind turbine gearbox was proposed based on cumulative
sum of multivariate time series data. The above literatures have made
an in-depth study on the state assessment of each single component of
wind turbines, and benefits the operation andmaintenance of the wind
turbine components. However, the wind turbine is a complex system
with multiple components coupled, and the overall state of the wind
turbine cannot be reflected comprehensively rely solely on a single
component condition assessment.

The whole wind turbine condition evaluation is to get
approximately reasonable or reasonable wind turbine state based
on SCADA data by using fuzzy inference, evidence theory, matter-
element theory, cloud theory or other evaluation methods.
Gonzalez et al. (2019) proposed a method for wind turbine
performance monitoring using high-frequency SCADA data.
Ding et al. (2021) presented a space-time analysis to quantify
changes in power production performance of several wind
turbines based on covariate matching method. Astolfi et al.
(2022) proposed a data-driven evaluation method of wind
turbine performance decline. Subsequently, Astolfi et al. (2022)
proposed a SCADA-based method to assess the wind turbine
performance. Ding et al. (2022) presented a brief overview of
the existing turbine performance assessment methods and
highlighted several important technical issues in turbine
performance assessment. The maximum membership principle
was applied to evaluate the abnormal operating state of the
whole wind turbine via output power correlation in Dong et al.
(2017). Set-pair analysis and evidence theory were proposed to
address the uncertainty of the information during the state
assessment of wind turbines in Zhou et al. (2017). Zhao et al.
(2017) proposed a cloud model to optimize the weight and
membership of the indices for wind turbine status assessment.
Li et al. (2017) proposed a health condition assessment method for
wind turbines considering information uncertainty by using Spark
stream processing technology. The above literature has achieved
good performance in processing the information uncertainty, and
the maximum membership principle and reliability criterion are
usually applied in decision-making of wind turbine state. However,
the maximum membership principle remains challenging to
determine the wind turbine status of being in transition because
it only uses the maximum membership while ignoring the second
largest membership which may dominates the wind turbine status
especially when the first two largest membership are close. On the
other hand, the accurate of the condition assessment result based
on reliability criterion depends on the selection of the reliability
value, inappropriate reliability value setting may lead to
inconsistent state assessment of the wind turbine.

In view of the shortcomings of the above decision-making
methods, this paper introduces asymmetric proximity into the field
of wind turbine state assessment. Asymmetric proximity is a measure
that uses fuzzy mathematics to describe the closeness of two sets. In the
field of wind turbine state assessment, it is specifically shown as the
degree of mutual agreement between the membership degree of the
target layer and status level divided, and can avoid the disadvantages of
information loss of the maximummembership and strong subjectivity
of the reliability criteria (Wang et al., 2017).

In this paper, we propose a wind turbine condition evaluation
method based on asymmetric proximity. The proposed method
constructs the state evaluation index system consisting of the wind
turbine performance and output state indices, and calculates the
weighting factors comprehensively by integrating the subjective and
objective weights. Then, the membership function of the index layer is
established based on the set pair analysis, and the membership of the
target layer is deduced by the weighted average operator. Finally, the
proximity degrees between status levels and target membership
degrees are calculated, and the wind turbine state is determined
based on the proximity principle.

The contributions of proposed method are summarized as follows:

1) we proposed a condition assessment method for whole wind
turbine based on asymmetric proximity.

2) we take both wind turbine performance indices and output state
indices into consideration to construct he state evaluation index
systems, in which the advantages of the improved analytic
hierarchy process (IAHP) method and the inverse entropy
weighting method are applied simultaneously to calculate the
weighting factors comprehensively.

The rest of the paper is organized as follows. Section 2 describes
the assessment index system. Section 3 introduces the index weighting
method. Section 4 proposes the model for wind turbine condition
evaluation. Section 5 verifies the validity and accuracy of the proposed
method through case studies. The conclusion drawn from the study is
provided in Section 6.

2 Wind turbine condition assessment
index system

2.1 Principle of correlation

Since the active power output status can intuitively reflect the
health condition of the wind turbine (Gill et al., 2012), Pearson’s
correlation principle (Yang et al., 2016) is applied to analyze the
correlation of power outputs between two wind turbines and the
correlation related to wind speed and power output time series for the
same wind turbine to construct the wind turbine condition assessment
index system.

Cross-correlation coefficient refers to quantitatively describing
the correlation of the power output variation between two wind
turbines, which can effectively reflect the health condition of wind
turbine to some extent. The cross-correlation coefficient between
wind turbine i to be evaluated and the adjacent wind turbine j can be
described as

rt Pi, Pj( ) � ∑S
s�1

Pi,s − Pi,av( ) Pj,s − Pj,av( )�������������������������∑S
s�1

Pi,s − Pi,av( )2∑S
s�1

Pj,s − Pj,av( )2√ (1)

Self-correlation coefficient refers to quantitatively describing the
correlation between time series of the same variable. The difference
between the self-correlation coefficients of power output and wind
speed can reflect the operating conditions of wind turbines. As shown
in formula (2).
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ζ rt, rw( ) � rt Pt1, Pt2( ) − rw Vt1, Vt2( )| | (2)
Where

rt Pt1, Pt2( ) �
∑S
s�1

Pt1,s − Pt1,av( ) Pt2,s − Pt2,av( )����������������������������∑S
s�1

Pt1,s − Pt1,av( )2∑S
s�1

Pt2,s − Pt2,av( )2√ (3)

rw Vt1, Vt2( ) �
∑S
s�1

Vt1,s − Vt1,av( ) Vt2,s − Vt2,av( )����������������������������∑S
s�1

Vt1,s − Vt1,av( )2∑S
s�1

Vt2,s − Vt2,av( )2√ (4)

2.2 Establish an evaluation index system

In accordance with the principles of index independence,
applicability and appropriateness, indices of leading wind
turbine operation status are screened based on the historical
sample data of typical wind turbine condition and monitoring
projects. As shown in Figure 1, the evaluation index system consists
of two project layers: component performance and power output
status. The performance of important components of the wind
turbine is reflected by the selected index layer of the status of the
generator, gearbox, nacelle and pitch control system, and is applied
to mapped the overall state of the wind turbine from the intrinsic
component characteristics. The power output status indices are
applied to reflect the overall state from the external overall
characteristics. The constructed evaluation index system is

shown in Figure 1, in which indices R111-R143, wind speed and
unit output power are obtained by the wind farm SCADA system,
and indices R211-R222 is obtained by analyzing wind speed and unit
output power based on Pearson correlation principle.

Since the units and magnitudes of indices are different. In order to
effectively analyze the mapping relationship between indices and the
overall state of wind turbine, the data of indices are pre-processed by
Max-Min normalization (Nan et al., 2021), and all the indices are
discrete distributed into the interval [0,1]. The closer the normalized
data is to 1, the better the reflected state is.

2.3 Status classification of wind turbine

There is no basis for the classification of wind turbine condition
state in the existing wind turbine state evaluation models.
Therefore, referring to Zhou et al. (2017), this paper divides the
condition of wind turbines into four status levels, i.e., Z = [ z1, z2, z3,
z4]. Where z1 indicates “normal state”, z2 indicates “attention
state”, z3 indicates “abnormal state”, and z4 indicates “fault
state”. The state descriptions and corresponding index
thresholds are shown in Table 1.

3 Weighting of the condition evaluation
indices

The existing methods on determining index weights are
generally divided into subjective weighting method and objective

FIGURE 1
Hierarchical structure of wind turbine evaluation index.
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weighting method. The subjective weighting method is generally
based on expertise to calculate index weights to reflect the decision
maker’s intention but is more subjective. The objective weighting
method has strong mathematical theoretical support based on high
data quality, however, the poor data will result in unreasonable
weights. Aiming at the lack of the single index weighting method,
this paper applies a comprehensive weighting method which takes
expert experience and mathematical theory simultaneously into
consideration.

3.1 Subjective weighting of index layer

In this paper, IAHP (Ge et al., 2019) is applied to subjective
weighting for index layer as follows. Firstly, the indices of
Rx,y,1,Rx,y,2, . . . ,Rx,y,n at Rx,y layer are ranked in descending
order of importance. Then the relative importance of Rx,y,i and
Rx,y,i+1 is compared to determine the scale value gi (Zhao et al.,
2019). and so on to obtain the scale values g1, g2, .., gn-1 between all
neighboring indices. Finally, the judgment matrix X as shown in (5)
is obtained according to the transferability of the importance. Since
the judgment matrix constructed by the scale values satisfies the
consistency check, the subjective weights of the indices are
calculated by (6).

X �

1 g1 g1g2 / ∏n−1
i�1

gi

1
g1

1 g2 / ∏n−1
i�2

gi

1
g1g2

1
g2

1 / ∏n−1
i�3

gi

..

. ..
. ..

.
1 ..

.

1∏n−1
i�1

gi

1∏n−1
i�2

gi

1∏n−1
i�3

gi

/ 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5)

wsub
i � ∏n

j�1
xij

⎛⎝ ⎞⎠ 1
n/∑n

i�1
∏n
j�1

xij
⎛⎝ ⎞⎠ 1

n (6)

3.2 Objective weighting of index layer

After the normalization of index data pretreatment, this paper uses
the inverse entropy weighting method to calculate the objective
weights of the indices. The basic steps are as follows.

1) Calculating inverse entropy.

For the evaluation indexmatrixR � [r*ij]m×n including n data for each
index 1, 2, . . ., m. The inverse entropy of index i is named as hi in (7).

hi � −∑n
j�1
vij ln 1 − vij( )

vij � rij
*/∑n

j�1
rij
*

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩ (7)

2) Determine objective weight wobj
i

wobj
i � hi/∑m

i�1
hi (8)

3.3 Calculation of the comprehensive weight

Based on the subjective weight wsub
i and objective weight wobj

i

obtained above, the comprehensive weight W*
i could be obtained by

solving the model as follows.

min J W*
i( ) � ∑n

i�1
W*

i ln
W*

i

wsub
i

+W*
i ln

W*
i

wobj
i

( )
∑n
i�1
W*

i � 1,W*
i ≥ 0

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩ (9)

The comprehensive weight value is equal to the optimal solution of
(9) as follows.

W*
i �

�������
wsub

i wobj
i

√ /∑n
i�1

�������
wsub

i wobj
i

√
(10)

4 The proposed model for wind turbine
condition evaluation

4.1 Set pair analysis

Set pair analysis is a method for quantitative analysis of
uncertainty. The basic idea is to study the certainty and

TABLE 1 Wind turbine state levels and the normalized index interval thresholds.

State Division Status description Threshold

Normal state Normal operation of wind turbine, no signs of deterioration of each index (0.8,1)

Attention state No significant deterioration trend of wind turbine indices (0.5,0.8)

Abnormal state The trend of deterioration of each index of wind turbine is obvious (0.2,0.5)

Fault state The wind turbine indices have basically deteriorated, making it difficult to continue safe operation (0,0.2)

TABLE 2 Relationship between status level and interval threshold.

Status level Normal Attention Abnormal Fault

Threshold (s3,1) (s2, s3) (s1, s2) (0, s1)
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uncertainty of two objects from three aspects of identity, difference
and contrary to describe the relationship between the two objects
(Zhang et al., 2019).

For the set pairs H= (B1, B2) composed of two sets B1 and B2, the
correlation degree of B1 and B2 can be expressed as (11).

μH � a + bi + cj (11)
In order to meet the multiple correlation requirements in some

cases, coefficient b is expanded to obtain D-element correlation degree
as (12).

μH � a + ∑D−2

t�1
btit + cj

s.t. a + ∑D−2

t�1
bt + c � 1

(12)

4.2 Calculation of state membership based on
set pair analysis

In this paper, the set pair analysis is used to quantify the degree to
which each index belongs to the state level, and then the weighted average
operator is used to push forward the degree to which the whole wind
turbine belongs to the state level, i.e., the degree of membership of the
target layer. Suppose a certain subproject layer set is Rx,y = {rx,y,1, rx,y,2,...,
rx,y,n}, and the status level set Z = {z1, z2, z3, z4}. If a set pairH = {Rx,y, Z}is
composed of the set Rx,y and set Z, then the 4-element correlation degree
μx,y,l between the lth index in Rx,y and Z can be expressed as (13).

μx,y,l � ax,y,l + bx,y,l,1i1 + bx,y,l,2i2 + cx,y,lj (13)

If the relationship between the status level and the threshold value of
the index interval is shown in Table 2. The correlation degree between the

FIGURE 2
Schematic diagram of correlation degree and threshold.

FIGURE 3
Standardization process of membership degree of target layer.
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normalized values of rx,y,l and the 4-level status, i.e., the membership
degree between the index layer and the status levels, can be determined
based on the fuzzy attribute rule as (14).

μx,y,l �

1 + 0i1 + 0i2 + 0j, rx,y,l < s1

s1 + s2 − 2rx,y,l
s2 − s1

+ 2rx,y,l − 2s1
s2 − s1

i1 + 0i2 + 0j, s1 ≤ rx,y,l ≤
s1 + s2

2

0 + s2 + s3 − 2rx,y,l
s3 − s1

i1 + 2rx,y,l − s1 − s2
s3 − s1

i2 + 0j,
s1 + s2

2
< rx,y,l ≤

s2 + s3
2

0 + 0i1 + 0i2 + 1j, rx,y,l ≥ s3

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(14)

After obtaining the comprehensive weights and the
membership of the indices, the membership of the subproject
layer can be calculated by using the weighted average

operator as (15). The schematic diagram of the membership
degree of the indices is shown in Figure 2. Similarly, the
membership degree of subproject layer and target layer in
Figure 1 can be calculated.

μx,y � ∑n
i�1
W

x,y,l

*ax,y,l +∑n
i�1
W

x,y,l

*bx,y,l,1i1

+∑n
i�1
W

x,y,l

*bx,y,l,2i2 +∑n
i�1
W

x,y,l

*cx,y,lj

(15)

4.3 Overall status level decision of wind
turbine based on asymmetric proximity

Different from the maximum membership principle that only
the maximum membership component is used to evaluate the wind
turbine status, the asymmetric proximity method takes all
membership components into consideration to evaluate wind
turbines comprehensively. In addition, the asymmetric
proximity method can avoid the setting of the reliability value
which may lead to failure in wind turbine evaluation based on
reliability criterion. Therefore, this paper applies he method of
asymmetric proximity to calculate the closeness of status level and
membership, and the wind turbine condition is determined
according to the proximity principle.

Define the fuzzy sets Kp (∀p = 1,2,3,4) representing status levels
of wind turbine as K1= (1, 0, 0, 0), K2= (0, 1, 0, 0), K3= (0, 0, 1, 0),
K4= (0, 0, 0, 1), respectively. Then the membership degree μ = {μ1,
μ2, μ3, μ4} of the target layer and the fuzzy set Kp corresponding to
the status level should be standardized. The standardization
process of μ is shown in Figure 3, and the following steps to
evaluate wind turbine condition based on asymmetric proximity
are as follows.

1) Given Q = {q1,q2, q3,q4} = {1,2,3,4} and initialize p = 1.
2) ∀i,j∈Q and i≠j, reorder the elements of μ according to the size of |

qi-p | and | qj-p | to construct a new vector μ p.

FIGURE 4
Diagram of wind turbine state evaluation process.

FIGURE 5
Output cross-correlation coefficients of adjacent wind turbines.
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μp � μp1 , μ
p
2 , μ

p
3 , μ

p
4( ) (16)

3) Compare whether the current p satisfies p = 4. If yes, the
standardization process ends, and output μ1, μ2, μ3, μ4. If not,
make p = p+1, and return to step 2).

Similarly, Kp is standardized to obtain Kp’.

Kp′ � kp′1 , k
p′
2 , k

p′
3 , k

p′
4( ) (17)

Based on the standardized result above, the asymmetric proximity
between the membership degree of the target layer and the status level
zp can be expressed as (18).

N μp, Kp′( ) � 1 − 1
D
∑D
r�1

μpr( )v − kp′r( )v∣∣∣∣∣ ∣∣∣∣∣r (18)

After obtaining the asymmetric proximity degree between the
membership degree of the target layer and all status levels through

(18), the status level zp corresponding to max N (μp, Kp’) is the status
level evaluation result of the overall wind turbine (Li et al., 2008). If the
evaluated wind turbine status level is abnormal or fault, the component of
wind turbine to bemaintenance could be found by the fuzzy fault Petri net
model (Huang et al., 2022) according to the condition monitoring
information of pitch system, generator and gearbox, et al.

The state evaluation process of the whole wind turbine is shown in
Figure 4.

5 Case studies

In this section, the validity of the proposed method was verified by
using SCADA data from a wind farm built in December 2011. There
are 32 wind turbines with the type of 1.5 MW double-fed induction
generator in this wind farm. The SCADA system collects data every
minute from May 2016 and has accumulated a big data to assess the
wind turbines up to now.

FIGURE 6
Self-correlation coefficient differences between unit output and wind speed.

TABLE 3 Mapping between the difference of self-correlation coefficient and the state of the whole machine.

Delay time (min) Range Degree of relevance Status

1 (0, 0.035) strong Normal/Attention

(0.035,1) weak Abnormal/Fault

5 (0, 0.04) strong Normal/Attention

(0.04,1) weak Abnormal/Fault

TABLE 4 Mapping of output cross-correlation coefficients and wind turbine states.

Cross-correlation coefficients range Degree of relevance Possible operation status

(0.85,1) Strong Normal/Attention

(0.5, 0.85) Medium Normal/Attention/Abnormal/Fault

(0, 0.5) Weak Fault
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5.1 Correlation analysis ofwind turbine output

Figure 5 shows the output cross-correlation coefficients of the four
adjacent wind turbines in normal or attentional state for 7 days from

1 October2021 to 7 October2021. It can be found that the cross-
correlation coefficient of adjacent wind turbine power outputs in
normal or attentional condition are above 0.85, and the output
power correlation is very strong.

Figure 6 shows the statistical data of the difference between the self-
correlation coefficients of the output and wind speed with the
corresponding self-correlation delay of 1min and 5min. The statistical
data is derived from the SCADA data which dates from 1October2021 to
7 October2021. The values corresponding to 1min and 5min delay are
below 0.035 and 0.04 respectively, and it can be concluded that there is a
strong correlation between wind turbine power output and wind speed in
normal or attentional state.

The output state of wind turbine can reflect the operating state of
the whole machine to a certain extent. The mapping relationship
between the output characteristics of wind turbine and the operating
state of wind turbine is defined based on the statistical samples from
August 2019 to October 2021, as shown in Table 3 and Table 4.

The following section combines the condition monitoring
information of each subsystem and sets up different cases to
accurately evaluate the wind turbine monitoring data.

5.2 The validity analysis of the proposed
method for wind turbine condition evaluation

In order to verify the feasibility and advantages of the proposed wind
turbine evaluation method in this paper, three groups of historical
SCADA data set of a 1.5 MW double-fed induction generator in the
farm (as shown in Table 5) are selected as the test data sets. From the
operation and maintenance log, the actual condition of the wind turbine
corresponding to data1, data2, and data3 is “attention state”, “attention
state” and “fault state” respectively in which the gearbox inlet oil
temperature R131 in data one deviate slightly from its benchmark, the
generator rotor temperature R122 in data two is higher than that in normal
state since the overload operation of the wind turbine which leads to a
slightly tendency to deteriorate, and the screen inlet oil and inlet oil

TABLE 5 SCADA data of a 1.5 MW wind turbine.

Evaluating index SCADA data

Data 1 Data 2 Data 3

R111/° 15 8 88.97

R112/°C 40 59 61.49

R113/°C 36.9 38.26 28.45

R121/rpm 1,500 1,200 800

R122/°C 47 52 70.5

R123/°C 34.1 48 41.03

R124/°C 36 49 55.18

R131/°C 25.2 24.8 24.9

R132/°C 58.52 58.6 50.15

R133/bar 7.1 6.9 0.04

R134/bar 3.56 3.5 0.03

R141/°C 10.4 10 11

R142/°C 11 8 12

R143/°C 19 20 26

R211 0.71 0.70 0.34

R212 0.70 0.72 0.30

R221 0.031 0.032 0.08

R222 0.035 0.036 0.18

TABLE 6 Comparison of the evaluation results in different cases.

Data Case Status level Evaluation results

z1 z2 z3 z4

Data 1 Case 1 0.1921 0.5138 0.2940 0 Attention

Case 2 0.1921 0.5138 0.2940 0 Attention

Case 3 0.1921 0.5138 0.2940 0 Attention

Case 4 0.8380 0.9704 0.8239 0.6296 Attention

Data 2 Case 1 0.2722 0.3333 0.3336 0.0609 Abnormal

Case 2 0.2722 0.3333 0.3336 0.0609 Attention

Case 3 0.2722 0.3333 0.3336 0.0609 Abnormal

Case 4 0.8344 0.8995 0.8701 0.7631 Attention

Data 3 Case 1 0.0034 0.1588 0.3071 0.5307 Fault

Case 2 0.0034 0.1588 0.3071 0.5307 Fault

Case 3 0.0034 0.1588 0.3071 0.5307 Fault

Case 4 0.5961 0.7349 0.8979 0.9735 Fault
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pressure of gearbox in data3 are too low, which lead to poor gearbox
lubrication and serious gearbox gear wear. On the basis of comprehensive
weighting, four cases are presented for detailed comparative analysis.

Case 1. wind turbine condition evaluation method based on the
maximum membership principle (Li et al., 2013).

Case 2. wind turbine condition evaluation method based on
reliability criterion, in which the reliability value is set to be 0.6
(Liao et al., 2010).

Case 3. wind turbine condition evaluation method based on
reliability criterion, in which the reliability value is set to be 0.7.

Case 4. the proposed method in this paper.
The comparison of wind turbine condition evaluation results in

four cases are listed in Table 6.
Case 1 has a good performance when evaluating the status of wind

turbine based on data one and data 3. However, the evaluated status of
wind turbine corresponding to data two is “abnormal” deviating from
the actual status “attention”. The reason that case 1 fails to evaluate the
wind turbine status corresponding to data two accurately is that the
maximum membership component of data2 is 0.3336 and the sub-
maximummembership component is 0.3333. The maximum and sub-
maximum membership components are too close to comprehensively
assess the status of wind turbines relying solely on the maximum
membership component especially when the health condition of wind
turbine is of being in transition.
Case 2and Case 3 both apply the reliability criterion to determine the
status of the wind turbine, but the reliability value settings are different.

By comparing the results of case 2 with case 3, the evaluated result of
case 3 on data 2 is abnormal which deviates from the actual attention
state due to the improper setting of the reliability value.

The evaluation results of case 4 corresponding to data 1, data 2, and
data three are all consistent with the actual status of the wind turbine.
Case 4 not only makes full use of the information of each component to
avoid the limitations of the maximummembership principle that fail to
evaluate status of wind turbine during state transition period, but also
avoids the issue of the improper setting of the reliability value which
may lead to the failure of the state assessment of wind turbine.

We verify the effectiveness of the method proposed in this paper
further by using 100 data sets similar to Table 5 from the wind farm. The
data sets were collected from 32 wind turbine SCADA data in the wind
farm fromAugust 2019 to October 2021 consisting of 25 SCADAdata sets
for each state (normal, attention, abnormal and fault state) recorded in the
operation and maintenance log. The overall state of the wind turbine is
evaluated by case 1, case 2 and case 4 respectively. The comparison results
of the positive judgment rates of different cases are shown in Table 7.

As can be seen from Table 7, the average positive judgment rate of
the case4 is 97%, which is 6% and 8% higher than case 1 and case 2,
respectively. In the state of transition process, case 1 fails in some
samples due to the maximum membership component approximately
equaling to the second maximum component. The accurate of case
2 depends on the setting of reliability value. That is why the reliability
criterion method encounters failure in assess some samples of wind
turbine status. Case 4 can overcome the limitations of the subjective
selection of reliability value and the maximum membership principle.
Although the method proposed in this paper is relatively complex, it
has a higher positive judgment rate and is more suitable for evaluating
wind turbines of being in transition state. It should be pointed out that
the proposed method will still face the limitations of failing to evaluate
the wind turbines accurately when the maximum proximities of the
evaluated sample data to different states are approximately equal.

5.3 Analysis of influence of different
weightingmethods onwind turbine condition
evaluation results

In order to illustrate the effectiveness of the weighting method
used in this paper, we using the data sets in Table 5 to present a
detailed analysis and comparison of the following two weighting
methods to evaluate the status of wind turbine base on asymmetric
proximity.

TABLE 7 Compare the positive judgment rates of different cases.

Actual state Number of samples Positive judgment rate

Case 1 Case 2 Case
4

Normal 25 92% 92% 100%

Attention 25 92% 84% 96%

Abnormal 25 88% 88% 92%

Fault 25 92% 92% 100%

Total 100 91% 89% 97%

TABLE 8 Comparison results of different weighting methods.

Data Case Status level Evaluation results

z1 z2 z3 z4

Data 1 Case 1 0.7820 0.9785 0.8387 0.6336 Attention

Case 2 0.8380 0.9704 0.8239 0.6269 Attention

Data 2 Case 1 0.7724 0.8871 0.8975 0.8149 Abnormal

Case 2 0.8344 0.8995 0.8701 0.7631 Attention

Data 3 Case 1 0.6336 0.8595 0.8069 0.9289 Fault

Case 2 0.6381 0.8597 0.8241 0.9279 Fault
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Case 1Subjective weighting based on AHP method (Liu et al., 2022).
Case 2Comprehensive weighting based on IAHP- inverse entropy
method.

Table 8 shows the results of the wind turbine condition assessment
in two cases. Case 1 only uses AHP to calculate index weights
subjectively ignoring weighting from an objective perspective. As a
result, the evaluation result of data2 in case 1 deviates from its actual
state. However, the evaluation results of data1~data three in case2 are
the same to the actual state. As can be seen from the comparison, the
comprehensive weighting method that takes subjective and objective
weights into consideration is more reasonable and effective in the
weighting process of wind turbine state assessment.

6 Conclusion

This paper proposes a wind turbine state evaluation method based
on asymmetric proximity. The correctness and effectiveness of the
proposed method are verified by using 2 years data from 32 wind
turbines in the same wind farm. The conclusions are as follows.

1) The comprehensive weights not only reflect the influence of
experts’ subjective experience but also have a strong
mathematical theory support to reflect the objectivity of the
weighting process, it is more reasonable and contributes to
accurate assessment of wind turbine status in the proposed
wind farm.

2) The wind turbine condition evaluation method based on
asymmetric proximity proposed in this paper not only makes
full use of the information of each component, but also avoids
the limitations of the subjective setting of the reliability value for
the reliability criterion. The proposed evaluation method has a
better performance in wind turbine condition assessment issue
especially in the status level of being transition.
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Glossary

Parameters

S Number of samples

rt(Pi,Pj) Output cross-correlation coefficient of wind turbine i and j

ξ(rt, rw) Difference between wind turbine output self-correlation
coefficient and wind speed self-correlation coefficient

rt(Pt1,Pt2) The output self-correlation coefficient of the wind turbine
to be evaluated at time t1 and time t2

rw(Vt1,Vt2) Self-correlation coefficient of wind speed at time t1 and
time t2

a The identity degree of set R and set Z

bi The difference degree of set R and set Z

c The opposition degree of set R and set Z

bt The level t difference

it Composition of difference uncertainty coefficient

rx,y,l The lth index layer of the yth subproject layer in the xth project
layer

ax,y,l Correlation degree between index rx,y,l and z1 state

bx,y,l,1 Correlation degree between index rx,y,l and z2 state

bx,y,l,2 Correlation degree between index rx,y,l and z3 state

cx,y,l Correlation degree between index rx,y,l and z4 state

s1 State level thresholds. In this paper, s1 = 0.2

s2 State level thresholds. In this paper, s2 = 0.5

s3 State level thresholds. In this paper, s3 = 0.8

μ Membership degree of the target layer

μp Membership degree of the standardized target layer

Kp Fuzzy set of features corresponding to the state level

Kp’ The fuzzy set of features corresponding to the standardized state
level

v Adjustment factor. In this paper, v = 1

Variables

Pi,s Active output of wind turbine i at the sth sampling point

Pj,s Active output of wind turbine j at the sth sampling point

Pi,av Average value of active power output of wind turbine i during the
sampling period

Pj,av Average value of active power output of wind turbine j during the
sampling period

Pt1,s Output value of the sth sampling point in t1 time series of the
wind turbine to be evaluated

Pt2,s Output value of the sth sampling point in t2 time series of the
wind turbine to be evaluated

Pt1,av Average output value of t1 time series of the wind turbine to be
evaluated

Pt2,av Average output value of t2 time series of the unit to be evaluated

Vt1,s Wind speed values at the sth sampling point of t1 time series

Vt2,s Wind speed values at the sth sampling point of t2 time series

Vt1,av Average values of wind speed in t1

Vt2,av Average values of wind speed in t2

r* ij Index value after normalization pretreatment.
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