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After proposing the carbon peaking and carbon neutrality target, China further
proposed a series of specific carbon emission growth limit sub-targets. How to
decarbonize the energy system to ensure the realization of the carbon growth
limit sub-targets is a meaningful topic. At present, generation expansion planning
of renewable energy in integrated energy systems has been well studied.
However, few of the existing studies consider specific carbon emission growth
targets. To address this research gap, a two-stage robust generation expansion
planning framework for regional integrated energy systems with carbon growth
constraints is proposed in this paper, which takes into account multiple
uncertainties. In this framework, the objective function is to minimize the total
operation cost and wind turbine investment cost. The first stage is the decision-
making level of thewind turbine capacity configuration scheme. The second stage
is the optimal economic dispatching in the worst-case scenario, which is a bi-level
problem of max-min form. Thus, the two-stage robust optimization framework
constitutes a problem of min-max-min form, which is pretty hard to solve directly
with a commercial solver. Therefore, a nested column-and-constraint generation
algorithm is adopted and nested iterations are performed to solve the complex
problem. Finally, case studies are carried out on a regional electric-gas integrated
energy system. The MATLAB/YALMIP simulation platform with the Gurobi solver is
used to verify the effectiveness and superiority of the proposed framework.
Compared with other four cases, 5,000 Monte Carlo scheduling tests
demonstrate that the proposed framework can ensure the system carbon
emission to be controlled within a certain limit even in the worst scenario. Due
to the consideration of multiple uncertainties, the proposed framework planning
results are both robust and economical for investment. This study can provide
theoretical support for the actual regional integrated energy system to achieve a
certain carbon growth target.
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1 Introduction

Low carbon is the common theme of development in the world
today. After the Paris Agreement was put forward, countries around
the world have attached great importance to carbon reduction
(Höhne et al., 2021; Liu Y. et al., 2022). Since China announced
the carbon peak and carbon neutrality goals, it has concreted the
macro-strategic goals into various regional development indicators
(Zhang et al., 2021; Sun et al., 2022). The energy system is a key area
of carbon emissions in a region (Huang et al., 2020). Therefore, it is
of great practical significance to study the low-carbon optimization
of regional integrated energy systems (Xie et al., 2022).

Renewable energy power generation is an essential path to
decarbonizing the regional integrated energy system. Therefore,
renewable energy generation expansion planning has attracted
the attention of many scholars. A group of scholars focused on
power generation expansion planning for different objects (Toloo
et al., 2022) considered both centralized and distributed solar, wind,
hydro, geothermal and biomass power generation expansion plans
(Fang et al., 2021) studied the joint planning of renewable energy
generation and energy storage batteries in renewable energy
integrated microgrids (Gonzalez-Romero et al., 2020) presented a
review of the state-of-the-art on the coordination of generation and
transmission expansion planning (Zhang et al., 2020) conducted a
coordination planning study of wind farms, energy storage, and
transmission network.

On the other hand, many scholars have studied the power
generation expansion planning of renewable energy considering
different factors or scenarios, and proposed various new models.
The continuous penetration of renewable energy has an impact on
the optimization model construction (Deng and Lv, 2020) screened
out 34 studies of power system planning considering increasing
variable renewable energy, and then the models of which were
further deconstructed and compared. A new hierarchical
modeling framework that integrates two multi-period and multi-
regional generation expansion planning models was studied in
(Lyrio de Oliveira et al., 2022). While the objective function of
most power generation expansion research is the total cost, (Li et al.,
2020) focused on increasing the utilization of renewable energy and
reducing the renewable energy curtailment., and proposed a new
objective function to maximize the accommodation of renewable
energy during the planning horizon (Jabarnejad, 2021) integrated
dynamic-line rating and transmission switching into the renewable
sources generation-expansion planning problem.

Two factors, the uncertainties and carbon emissions, are usually
considered in the planning problems of integrated energy systems.
The uncertainty is an unavoidable consideration when studying
power generation expansion planning (Yang et al., 2022)
summarized various uncertainty modeling methods and discussed
the application of uncertainty modeling in power system planning
and operation. For the integrated energy system, the uncertainties of
renewable energy and energy demand are usually considered (Fang
et al., 2021) considered the uncertainties of wind power and solar
power in the planning of renewable energy generation and storage
batteries in a renewable energy integrated microgrid (Shen et al.,
2020) considered the uncertainties of load and wind power output at
the same time when they studied the power generation expansion
planning of the energy system (Ahmadi et al., 2020) proposed a

dynamic, robust generation-transmission expansion planning in the
presence of wind farms under long-term and short-term
uncertainties of wind power (Lei et al., 2020) proposed a multi-
objective stochastic planning method based on the multi-
dimensional correlation scenario generation method for the
regional integrated energy system integrated renewable energy
considering the uncertainties of renewable energies and loads of
multiple energy types. The above studies have fully considered
various uncertainties of sources and loads of various energy
types. However, under the current turbulent international
situation and the swaying global economy, the impact of natural
gas price uncertainty on the regional integrated energy system has
not been paid enough attention in the power generation expansion
planning.

The power generation expansion planning considering the
carbon emissions has been well researched. In the context of
low-carbon development, some power generation expansion
planning studies have considered carbon trading. A two-layer
low-carbon expansion generation planning model considering
carbon trading and carbon capture technology was established in
(Mi et al., 2021). An innovative carbon emission trading scheme was
formulated and applied to the co-planning of distributed renewable
energy generation units, energy storage systems, and capacitor banks
in (Melgar-Dominguez et al., 2020). (Liu J. et al., 2022) established a
multi-flexibility resource planning model with a ladder-type carbon
trading. The power generation expansion planning considering
carbon trading can effectively promote the allocation of
renewable energy power generation and mitigate system carbon
emissions but cannot limit the amount of the total carbon emissions.
Although there are few studies of expansion planning considering
the carbon emission constraints (LU; Zhigang et al., 2022), a certain
macro-target of carbon emissions isn’t considered in the regional
development planning.

All in all, the existing research on power generation expansion
planning in the regional integrated energy system has been well
studied, but there is still a lack of integrating the actual regional
carbon emission control targets and the uncertainty of natural gas
price into the planning. To fill the research gap, this paper mainly
makes the following contributions.

(1) Based on regional macro development goals, e.g., GDP (Gross
Domestic Product) growth rate, energy consumption per unit of
GDP, and carbon emission per unit of GDP, a regional
integrated energy system carbon growth constraint model is
constructed.

(2) In the power generation expansion planning of the regional
integrated energy system, this paper considers multiple
uncertainties in the process of robust optimization. In
addition to the conventional wind power output and load
uncertainties, the impact of natural gas price uncertainty on
regional integrated energy system planning is also considered in
light of the international situation. The influence mechanism of
the three kinds of uncertainties on planning results is also briefly
analyzed.

(3) A two-stage robust generation expansion planning framework
for regional integrated energy systems with carbon growth
constraints is proposed to obtain the wind power capacity
that ensures the system meets carbon growth targets even in
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the worst-case scenarios. Based on the nested column-and-
constraint generation (C&CG) algorithm, the proposed
framework can be transformed into several mixed integer
quadratic programming models that can be solved by
commercial solvers.

The remainder of the paper is organized as follows: Section 2
describes the multiple uncertainty modeling and the proposed
carbon growth constraints modeling. In Section 3, the proposed
robust generation expansion planning framework and solution
procedure are constructed. In Section 4, case studies are
demonstrated. Section 5 concludes the work.

2 Methodology

2.1 Uncertainty modeling

Robust optimization does not require the probability
distribution of uncertain parameters to be given in advance, but
describes the fluctuation of parameters through a certain bounded
set, which is called an uncertain set. As long as the value of the
parameter is within the range of the uncertain set, the solution of the
robust optimization model must be feasible. Commonly used
uncertain sets include box uncertain sets, polyhedral uncertain
sets, ellipsoid uncertain sets, and N-k uncertain sets (Zhu et al.,
2017). The first three sets are suitable for continuous uncertain
parameters such as bus injected power and electricity price, and the
third set is suitable for discrete uncertain parameters such as fault
states.

2.1.1 Uncertainty modeling of power system
Common uncertainties in power system include uncertainty of

injected power, uncertainty of electricity price, uncertainty of power
load and uncertainty of N-k fault (Zhu et al., 2017). This study
mainly focuses on the uncertainty of wind power and power load.
Since the optimization results of the box uncertainty set are too
conservative, polyhedral uncertainty sets are adopted to model
uncertainties of wind power and power load. The polyhedral
uncertainty set of power load are shown as Eq. 1.

uL � ~P
L

i,t

∣∣∣∣∣∣∣∣∣~PL

i,t � PL
i,t + ΔPL

i,t ~g
L
i,t,∑T

t�1
~gL
i,t

∣∣∣∣ ∣∣∣∣≤ ΓL, ~gL
i,t ∈ −1, 1[ ], i ∈ ΩL

⎧⎨⎩ ⎫⎬⎭
(1)

where uL denotes the uncertainty set of power load, ~P
L
i,t, P

L
i,t and ΔPL

i,t

represent the uncertain power load, forecast power load value, and
power load deviation, respectively; ~gL

i,t represents an uncertain
variable between −1 and 1; T is the period of the optimization;
ΓL represents the budget value to limit the uncertainty of power
loads; ΩL denotes the set of power loads.

To better characterize the fluctuation of wind power, the relative
value of wind power deviation is used to generate the base
uncertainty set, which is a special polyhedron uncertainty set.
The base uncertainty set of wind power are shown as Eq. 2.

uW � ~P
W

i,t

∣∣∣∣∣∣∣∣∣0≤ ~P
W

i,t ≤ PWT
N,i ,∑T

t�1

~P
W

i,t − P̂
W

i

P̂
W

i

∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣≤ ΓW, i ∈ ΩW

⎧⎨⎩ ⎫⎬⎭ (2)

where uW denotes the uncertainty set of wind power, ~P
W
i,t represents

the uncertain wind power; PWT
N,i and P̂

W
i represent the rated capacity

and expectation value of wind power output, respectively; ΓW
represents the budget value to limit the uncertainty of wind
power; ΩW denotes the set of wind turbines.

2.1.2 Uncertainty modeling of the gas system
Since natural gas can be compressed, the uncertainty of natural

gas load can be mitigated by sufficient storage capacity in the
transmission pipeline (Guo et al., 2020; Yi et al., 2022).
Therefore, the gas load uncertainty can usually not be considered
in the research. However, as stated in the Section 1, the gas price will
even increase several times in a short period of time because there
are many uncertain factors affecting it, and its uncertainty is strong.
Therefore, this study mainly focuses on the uncertainty of gas price
and a polyhedral uncertainty set are adopted to model uncertainties
of gas price. The polyhedral uncertainty set of gas price are shown as
Eq. 3.

ugp � ~cgpi,t

∣∣∣∣∣∣∣∣∣~cgpi,t � cgpi,t 1 + ~ggp
i,t( ),∑T

t�1
~ggp
i,t

∣∣∣∣ ∣∣∣∣≤ Γgp, ~ggp
i,t ∈ −0.5, 1.2[ ], i ∈ ΩS

⎧⎨⎩ ⎫⎬⎭
(3)

where ugp denotes the uncertainty set of gas price, ~cgpi,t and cgpi,t
represent the uncertain gas price, and base gas price, respectively;
~ggp
i,t represents an uncertain variable between −0.5 and 1.2; Γgp

represents the budget value to limit the uncertainty of the gas price;
ΩS denotes the set of gas sources.

2.2 Carbon growth constraint modeling

A regional integrated energy system plan should be incorporated
into the regional macro development plan. After putting forward the
goal of achieving peak carbon neutrality, the Chinese government
further put forward the target of reducing carbon emission per unit
of GDP, reducing energy consumption per unit of GDP.
Considering these macroscopic development goals, a specific
constraint for regional integrated energy system planning can be
proposed. The following takes China’s 14th Five-Year Plan as an
example to illustrate the modeling of carbon growth constraints.

The reduction target of carbon emission per unit GDP during
the 14th Five-Year Plan period can be expressed as Eq. 4.

C2025

G2025
� C2021

G2021
1 − αcrb( ) (4)

where C2021 and C2025 represent the total regional carbon emissions
in 2021 and 2025, respectively.G2021 andG2025 represent the region’s
GDP in 2021 and 2025, respectively. αcrb represents the reduction
rate of carbon emissions per unit of GDP in the region during the
14th Five-Year Plan period.

The target of reducing energy consumption per unit of GDP
during the 14th Five-Year Plan period can be expressed as Eq. 5.

E2025

G2025
� E2021

G2021
1 − βerg( ) (5)

where E2021 and E2025 represent the total regional energy
consumption in 2021 and 2025, respectively. βerg represents the
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reduction rate of regional energy consumption per unit of GDP
during the 14th Five-Year Plan period.

The GDP growth target during the 14th Five-Year Plan period
can be expressed as Eq. 6.

G2025 � G2021 1 + γGDP( )Nyear (6)

where γGDP represents the average annual GDP growth rate of the
region during the 14th Five-Year Plan period. Nyear represents the
number of years in the 14th Five-Year Plan period, i.e., 5.

According to Eqs 4, 6, the average annual carbon emission
growth rate ηcrb, i.e., the carbon growth constraint, is Eq. 7.

ηcrb � 1 + γGDP( ) 1 − αcrb( )1/Nyear − 1 (7)

According to Eqs 5, 6, the annual growth rate of energy
consumption ηerg is Eq. 8.

ηerg � 1 + γGDP( ) 1 − βerg( )1/Nyear − 1 (8)

3 The proposed robust generation
expansion planning framework and
solution procedure

Planning problems that consider uncertainty can usually be
solved by fuzzy optimization, stochastic optimization, or robust
optimization. Compared with fuzzy optimization and stochastic
optimization, robust optimization does not require artificially
given membership function or probability distribution function
of uncertain parameters, and can strictly guarantee the feasibility
of the solution (Du et al., 2022). Achieving carbon reduction targets
is a daunting and important task, and this study aims to explore how

FIGURE 1
The schematic diagram of the proposed two-stage robust generation expansion planning framework.
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power generation expansion planning can be done under various
uncertainties to achieve carbon reduction targets. Therefore, a
robust generation expansion planning framework are proposed in
this paper.

3.1 The proposed two-stage robust planning
framework

According to the number of decision-making stages, robust
optimization can be divided into static robust optimization and two-
stage robust optimization. Static robust optimization, also known as
single-stage robust optimization, is characterized by making decisions
before the specific realization of uncertain parameters is known, so the
results are usually too conservative and inconsistent with the actual
situation. Because the decision of the two-stage robust optimization is
carried out in stages, the conservativeness of the model is weaker than
that of the static robust optimization model (Zhu et al., 2017).
Therefore, two-stage robust optimization are adopted in this study
to solve the generation expansion planning considering the carbon

emission growth limits. The schematic diagram of proposed two-stage
robust generation expansion planning framework is shown as Figure 1.

3.1.1 Objective function
The two-stage robust optimization model is adopted to handle

the uncertainties of wind power, power loads, and gas prices. The
objective function of stage I consists of wind turbine investment
costs and its strategic decision variables are the capacities of wind
turbines. Stage II is to carry out the economic dispatch in the worst
scenario of the whole uncertain set under the situation of the first-
stage decision. Its operational decision variables are the actual
outputs of power generators and gas sources. The objective
function of stage II consists of the energy supply costs of the
electric-gas integrated energy system. The complete formulation
of the objective function in the proposed two-stage robust
optimization model is shown as Eq. 9.

min ∑
w∈ΩW

cWIPWT
N,w +maxmin ∑T

t�1
∑

i∈ΩW∪ΩC

cGPG
g,t + ∑

j∈ΩS

~cgpi,t F
S
g,t

⎛⎜⎝ ⎞⎟⎠⎛⎜⎝ ⎞⎟⎠⎛⎜⎝ ⎞⎟⎠
(9)

where cWI and cG are cost coefficients of wind turbine investment
and power generation, respectively; PWT

N,w represents the rated
capacities of wind turbines; PG

g,t and FS
g,t denotes the actual

generator output and gas flow of gas sources; ΩC represents the
set of coal-fired generators.

3.1.2 Constraints
Since carbon emissions in the power system are closely related to

active power flow, the DC power flow modeling is adopted in this
paper. Constraints Eqs 10–16 represent the power system
operational constraints. Constraint Eq. 17 represents the wind
turbine capacity constraint. Constraints of uncertain sets of
power load, wind power and gas price are shown in Eqs 1–3.

PG
i ≤PG

i,t ≤ �PG
i i ∈ RΩGΩW (10)

0≤PG
i,t ≤ ~P

W

i,t i ∈ ΩW (11)

Pij,t � θij,t
xij

(12)

Pij ≤Pij,t ≤ �Pij (13)
PG
i,t � ∑

j∈Ωi

Pij,t + ~P
L

i,t (14)

θij ≤ θij,t ≤ �θij (15)
θref,t � 0 (16)

0≤PWT
N,i ≤ �PWT

N (17)

wherePG
i,t represents the actual outputs of power generators; �P

G
i andPG

i

represent the upper and lower limits of power generation; Pij,t, θij,t and
xij represent the power flow, phase angle difference, and reactance of
branch i − j; �Pij and Pij represent the upper and lower limits of branch
transmission; �θij and θij represent the upper and lower limits of branch
phase angle difference; θref,t is the phase angle of the slack bus; �PWT

N

represents themaximum value of wind turbine capacity;ΩG is the set of
power generators; Ωi represents the set of buses adjacent to bus i.

The steady-state modeling of gas system based on the
Weymouth function (De Wolf and Smeers, 2000) is adopted in

FIGURE 2
Integrated energy system coupled with IEEE 24-bus power
system and 7-node natural gas system.
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this paper. Constraints Eqs 18–22 represent the gas system
operational constraints. Constraints Eqs 23, 24 represent
operational constraints of coupling units. Constraints Eq. 25
denotes the carbon emission growth constraints.

FS
m ≤FS

m,t ≤ �F
S
m m ∈ ΩS (18)

Fmn,t Fmn,t

∣∣∣∣ ∣∣∣∣ � kmn π2
m,t−π2

n,t( ) (19)
Fmn ≤Fmn,t ≤ �Fmn (20)

FS
m,t + FP2G

m,t � ∑
n∈Ωm

Fmn + FL
m,t + FGFU

m,t (21)
πm ≤ πm,t ≤ �πm (22)

PG
i,t � ηGFUFGFU

m,t i ∈ ΩGF (23)
FP2G
m,t � ηP2GPP2G

i,t m ∈ ΩP2G (24)
CEtotal ≤ 1 + ηcrb( )CEinitial (25)

where FS
m,t, F

S
m and �FS

m represent the mass flow rate of gas sources
and their upper and lower limits; Fmn,t, Fmn and �Fmn represent the
mass flow rate of pipeline m − n and its upper and lower limits; kmn

is a constant determined by the pipeline parameters and
environmental parameters; πm,t, πm and �πm represent the gas
pressure of node m and its upper and lower limits; FP2G

m,t , F
L
m,t

and FGFU
m,t represent the mass flow rates of the power-to-gas unit, gas

demand, and gas-fired unit; ηGFU and ηP2G represent the energy
conversion efficiencies of the gas-fired power generator and power-
to-gas unit; ΩGF and ΩP2G represent the set of gas-fired generators
and set of power-to-gas units; Ωm represents the set of nodes
adjacent to node m. CEtotal and CEinitial represent the total
carbon emission of the regional integrated energy system after
expansion planning and before the growth of energy demand.

3.2 Solution procedure based on the nested
C&CG algorithm

Even the easiest two-stage robust optimization (TRO),
composed of three levels, can be an NP-hard problem. To
overcome the computational burden, the Benders-dual cutting

plane algorithm and column-and-constraint generation algorithm
are commonly used to solve the two-stage robust optimization.
Compared to the Benders-dual cutting plane algorithm, the C&CG
algorithm performs an order of magnitude faster and therefore is
commonly used to solve the TRO (Zeng and Zhao, 2013).
Specifically in this study, the Weymouth function in constraints
Eq. 19 is quadratic and can be piecewise linearized by introducing
0–1 variables. Since stage II in the proposed planning framework is a
bi-level mixed integer programming problem that cannot be solved
by the traditional C&CG algorithm, a nested C&CG algorithm
proposed in (Long and Bo, 2012) was adopted to the TRO with
integer variables in the second stage. According to the nested C&CG
algorithm, the proposed TRO problem is divided into the master
problem (MP) and the subproblem (SP) which is divided into the
master problem of SP (MPS) and the subproblem of SP (SPS).
Specifically, MPS is a single-level max problem converted from a
bi-level max-min problem by KKT conditions and given values of
binary variables Zv*. To improve readability, the proposed planning
model in Section 3.1 is divided into MP, MPS, and SPS in matrix
form. The MP, MPS, and SPS are shown as Eqs 26–28.

MP( ) min
X

aTX + η

s.t.

AX ≤d
η≥ bTY r

B1X + C1Y
r + D1Z

r + E1u
r* ≤ e

B2X + C2Y
r + D2Z

r + E2u
r* � f

(26)

MPS( ) max
u

τ

s.t.

τ ≤ bTY v

B1X* + C1Y
v + D1Z

v* + E1u
v ≤ e

B2X* + C2Y
v + D2Z

v* + E2u
v � f

b + CT
1π

v + ET
1π

v + CT
2μ

v + ET
2μ

v � 0
πv B1X* + C1Y

v + D1Z
v* + E1u

v − e( ) � 0
πv ≥ 0

(27)

SPS( ) min
Y ,Z

bTY v

s.t.
B1X* + C1Y

v + D1Z
v + E1u

v* ≤ e
B2X* + C2Y

v + D2Z
v + E2u

v* � f

(28)

where a and b are the coefficient matrixes of objective functions
in stage I and stage II, respectively; X represents the decision

TABLE 1 Parameters of generators.

Generator no. Type Capacity/(MW) Cost coefficient/(USD/MWh) Carbon intensity/(tCO2/MWh)

G1 Wind turbine − 10 0

G2 Coal-fired 350 30 1.31

G3 Gas-fired 150 − −

G4 Coal-fired 750 31 1.25

G5 Coal-fired 500 30 1.31

G6 Wind turbine − 10 0

G7 Gas-fired 150 − −

G8 Coal-fired 600 31 1.25

G9 Coal-fired 600 30 1.31

G10 Wind turbine − 10 0
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variables of stage I, i.e., the capacities of wind turbines; Y r

represents the decision variables of stage II in the r cycle,
i.e., the actual outputs of the power generators, gas sources,
and coupling units; Zr represents the binary variables
introduced by the segment linearization of the Weymouth
function in the gas system; ur represents the uncertain
variables, i.e., the power load, wind power output, and gas
price, and the marker * indicate that this value is given by the
previous step in the algorithm; B1,C1,D1, E1 and B2,C2,D2, E2

represent the coefficient matrixes of inequality constraints and
equality constraints, respectively; e and f represent the matrixes
of constants in inequality constraints and equality constraints,
respectively; πv and μv represent the matrixes of dual variables; r
and v reresent the number of outer loops and inner loops,
respectively. The detailed process of solving Algorithm 1 is as
follows:

Outer loop: Solve the MP

Step 1: Set the loop index, upper bound, and lower bound

of the outer loop, and artificially give an

initial scenario of uncertain sets:

r � 1, UBout � +∞, LBout � +∞,ur* � u0.

Step 2: Solve the MP and obtain the optimal wind turbine

capacities Xr* = X, and update the lower bound of

the outer loop LBout � max LBout,aTX* + η{ }.
Step 3: Jump to the inner loop, solve the SP and obtain

the worst scenario of the uncertain set ur*.

Step 4: Determine whether it is convergent.

1) If 1 − LBout/UBout < ε (ε is the convergence

threshold), output the final planning result

X* = Xr* and terminate the loop.

2) If 1 − LBout/UBout ≥ ε, set r � r + 1, jump to Step 2

in outer loop and add the following constraints

to MP.

η≥ bTY r

B1X + C1Y
r + D1Z

r + E1u
r* ≤ e

B2X + C2Y
r + D2Z

r + E2u
r* � f

⎧⎪⎨⎪⎩ (29)

Inner loop: Solve the SP

Step 1: Set the loop index, upper bound, and lower bound

of the inner loop, and give initial values of

binary variables Zv* if v � 1:

v � 1, UBin � +∞, LBin � +∞,Zv* � Zr.

Step 2: Solve the MPS, obtain the current worst scenario

of the uncertain set uv* � uv and update the upper

bound of the inner loop UBin � min UBin, τ{ }.
Step 3: Solve the SPS, obtain the binary variables Zv* and

update the lower bound of the inner loop LBin �
max LBin,bTYv{ }.

Step 4: Determine whether it is convergent.

1) If 1 − LBin/UBin < ε, terminate the inner loop,

return ur* = uv* and UBout � UBin to the outer loop.

2) If 1 − LBin/UBin ≥ ε, set v � v + 1 and Zv* � Zv−1*, jump

to Step 2 in the inner loop, and add the following

constraints to MPS.

τ ≤ bTY v

B1X* + C1Y
v + D1Z

v* + E1u
v ≤ e

B2X* + C2Y
v + D2Z

v* + E2u
v � f

b + CT
1π

v + ET
1π

v + CT
2μ

v + ET
2μ

v � 0
πv B1X* + C1Y

v + D1Z
v* + E1u

v − e( ) � 0
πv ≥ 0

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
(30)

Algorithm 1. The nested C and CG algorithm.

4 Case studies

To verify the validity and superiority of the proposed planning
framework, case studies were conducted on a regional integrated
energy system formed by the coupling of IEEE 24-bus power system
and 7-node natural gas system. All emulators run on a desktop
computer with an Intel Core i7-8700 CPU and 32 GB memory. The
case models were constructed based on the MATLAB/YALMIP
platform and solved by Gurobi solver.

4.1 System parameters

The regional electric-gas integrated energy system adopted in
this section is shown in Figure 2 (Zimmerman et al., 2011). The
power system consists of five coal-fired units and two gas-fired units,
as well as three wind turbines to be planned. The relevant parameters
of the generator set are shown in Table 1 (Jamie McIntyre et al.,
2011; Zimmerman et al., 2011). The natural gas system consists of
two gas sources, five branches and one compressor. The parameters
of the gas source are shown in Table 2. The parameters of the natural
gas pipeline are shown in Table 3. Compressor ratios in natural gas
systems range from 1.1 to 1.5. There are 12 electrical loads and three
gas loads in the integrated energy system. The reference values of
electrical load and gas load are shown in Table 4 and Table 5. The
prediction value of the 24-h power load and gas load is shown in
Figure 3. As described in Section 2, the uncertainty of natural gas
load can be ignored. The maximum prediction error of power load is
20% (Guo et al., 2020). The uncertainty parameters of electric load,
wind power and natural gas prices are shown in Table 6. The electric
power system and natural gas system are coupled by two gas turbine
units and one power-to-gas (P2G) unit. The installed capacity of the
P2G unit is 150 MW. The maximum wind power capacity planned
for each node in the system is 500 MW. During the 14th Five-Year
Plan period, the carbon emission per unit GDP in this region is
targeted to be reduced by 19%, the energy consumption per unit
GDP is targeted to be reduced by 14.5%, and the average annual
growth rate of GDP is 7%. The fixed investment cost of wind power
is 115 USD/(MW·day).

4.2 Optimized results of the proposed two-
stage robust planning framework

The nested C&CG algorithm is used to solve the proposed two-
stage robust programming framework. The convergence condition
is the percentage deviation between the objective function values of
the MP and SP. In the process of solving the model in this paper, the
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convergence condition is set to 0.8%. Figure 4 illustrates the
convergence process for solving the proposed two-stage robust
planning framework and the solution time of proposed nsted
C&CG algorithm is 1864.2 s.

Before adopting the proposed framework, the total carbon
emission of the test system is 52,513 tCO2. According to Eqs 7,

8, the annual energy demand of the test system increases by 3.70%
brought by regional economic development, and the growth of
carbon emissions should be controlled within 2.58%. It can be
seen that after the planning of wind power in the regional

TABLE 2 Natural gas source parameters.

Source no. Capacity/(MBtu/h) Cost coefficient/(USD/MBtu) Carbon intensity/(tCO2/MBtu)

S1 1,500 17 0.083

S2 2,000 16 0.083

TABLE 3 Natural gas pipeline parameters.

Pipeline no. Start node End node Length/(km) Diameter/(mm)

1 2 1 15 225

2 5 2 20 200

3 6 5 15 200

4 5 3 10 150

5 7 4 25 270

TABLE 4 Electrical load reference value before planning.

Load no. Bus Load power/(MW) Load no. Bus Load power/(MW)

L1 3 180 L7 9 175

L2 4 74 L8 10 195

L3 5 71 L9 14 194

L4 6 136 L10 15 317

L5 7 125 L11 19 181

L6 8 171 L12 20 128

TABLE 5 Gas demand reference value before planning.

Load no. Node Gas demand/(MBtu/h)

L1 1 1,000

L2 2 700

L3 3 400

FIGURE 3
Power load and natural gas demand.

TABLE 6 Parameters of uncertainty.

Item Value Item Value

ΓL 12 ΔPL
i,t ± 20%

ΓW 18 ~ggp
i,t

−0.5–1.2

Γgp 12 P̂
W
i

0.4125
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integrated energy system, the total carbon emissions of the system
should be controlled within 53,868 tCO2 in any scenario.

Figure 5 shows the wind power planning capacity of the three
buses under the proposed planning framework. To verify
whether the planning results can ensure carbon emissions
meet the requirements, this paper conducts a robust
scheduling test on the planning results. The results show that
the planning results can indeed make the system meet the carbon
growth constraints in the worst scenario, as shown in Figure 5.
Therefore, it can be verified that the proposed two-stage robust
planning framework can effectively promote wind power
configuration. In addition, it can ensure that the carbon
emissions of the regional integrated energy system will not
exceed the limited target during the dispatch operation even
in the worst scenario.

4.3 Effect analysis of carbon emission
constraints

The planning framework proposed in this paper embeds carbon
growth constraints based on regional macro-development goals. To
study the impact of carbon growth constraints on the planning
results, the following two cases are set for comparison as shown in

Table 7. Case 1 is the planning framework proposed in this paper,
and Case 2 is the control group.

The results of wind turbine capacity planned in Case 1 are
shown in Figure 5 above. In Case 2, the optimal planning capacity
of the wind turbines at the three buses is all 0. Since the carbon
growth constraints are not considered in Case 2, while relatively
cheap and sufficient thermal power can meet the growing energy
demand, wind turbines with fixed investment costs will not be
planned. In Case 1, in the two-stage robust optimization, the
system will be forced to plan the wind turbines to meet the carbon
growth constraints.

To compare the effect of planning results on system carbon
emissions in the two cases, this paper conducts 5,000 Monte
Carlo simulations on the planning results of Case 1 and Case 2 in
the dispatch model with carbon growth constraints and multiple
inferior uncertainty sets. The simulation results are shown in
Table 8. It is obvious that the planning results of Case 2 can
hardly meet the carbon emission growth constraints when
dispatching in inferior scenarios. Thus, the necessity of
considering carbon growth constraints in the proposed
framework is further highlighted.

The wind power planning capacity of Case 1 is obtained
under the worst scenario in robust optimization. In order to
further study the carbon reduction potential of the system in Case

FIGURE 4
The convergence process of the proposed model.

FIGURE 5
The planning results of the proposed model and system carbon
emissions.

TABLE 7 Carbon constraint effect analysis cases.

Case Carbon growth constraints Uncertainty

Power load Wind power Natural gas price

Case 1 ✔ ✔ ✔ ✔

Case 2 ✔ ✔ ✔
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1, the wind turbine capacity of Case 1 is tested in the system
economic dispatch. Figure 6 comparatively presents the carbon
emissions of the system under economic dispatch and robust
dispatch with the wind turbine capacity of Case 1. It can be seen

that the wind power capacity obtained by the proposed planning
framework cann’t only enable the system to meet the carbon
growth targets in the worst scenario, but also have a huge space
for carbon reduction in actual dispatch.

TABLE 8 Monte Carlo simulation results.

Case Total wind power capacity/MW Number of successful solutions Number of infeasible solutions

Case 1 1,302 5,000 0

Case 2 0 0 5,000

FIGURE 6
System carbon emissions of economic dispatch and robust
dispatch with wind turbine capacity of Case 1.

TABLE 9 Robustness analysis cases.

Case Carbon constraints Uncertainty

Power load Wind power Natural gas price

Case 1 ✔ ✔ ✔ ✔

Case 3 ✔ ✔ ✔

Case 4 ✔ ✔ ✔

Case 5 ✔ ✔ ✔

FIGURE 7
Wind turbine capacity planned in Case1, Case3, Case4, and
Case5.

TABLE 10 Monte Carlo simulation results.

Case Total wind power capacity/MW Number of successful solutions Number of infeasible solutions

Case 1 1,302 5,000 0

Case 3 601 1,695 3,305

Case 4 1,500 5,000 0

Case 5 807 4,090 910
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4.4 Robustness analysis

The proposed two-stage robust planning framework takes
into account the three uncertainties of power load, wind power
and natural gas prices. To test the advantages of the proposed
model in terms of robustness, several sets of cases as shown in
Table 9 are set up for comparison.

Figure 7 presents the capacity of wind turbines obtained by
two-stage robust optimization of Case 1, Case 3, Case 4, and Case
5. It can be found that the total wind power capacities planned in
Case 3 and Case 5 are significantly lower than those in Case 1 and
Case 4. Case 3 doesn’t consider the uncertainty of power load, so
in the two-stage robust optimization, there will be lower load
requirements compared with Case 1, which directly leads to
lower wind turbine capacity requirements. Case 5 doesn’t
consider the uncertainty of natural gas prices. The optimal
operation of coupling equipment depends on the relative price
of electricity and natural gas. Therefore, in the robust
optimization, Case 1 will generate higher gas prices than Case
5. As a result, the P2G is promoted to operate and consume
electric power, as shown in Figure 8, which is equivalent to
increasing the power load. Therefore, natural gas price
uncertainty and power load uncertainty have similar effects. In
addition, it can be noticed that the total capacity of wind turbines
in Case 4 is slightly larger than that in Case 1, which is affected by
the uncertainty of wind power. Since Case 1 considers the
uncertainty of wind power compared with Case 4, Case 1 has
a worse wind power scenario in the two-stage robust planning. In
this way, considering the fixed investment cost of wind turbines,
the equivalent cost of wind power generation in Case 1 is higher
than that in Case 4. Therefore, the installed capacity of wind
turbines in Case 4 will be irrationally configured as much as
possible. Overall, in the two-stage robust optimization, the
uncertainties of power load and natural gas price will promote
the capacity planning of wind turbines in the regional integrated

energy system, while the uncertainty of wind power will inhibit
the capacity planning of wind turbines.

To demonstrate the superiority of the proposed
model, 5,000 times of Monte Carlo robust dispatching
simulations are performed on the planned wind turbine
capacity of the above four cases. The simulation results are
shown in Table 10.

According to the results in Table 10, it can be seen that the
planning results of Case 1 and Case 4 have good robustness,
while the planning results of Case 3 and Case 5 are less robust.
Although the robustness of Case 4 is good, the wind
power uncertainty is not considered in the
robust optimization, which will lead to irrational configuration
of wind turbine capacities and waste of wind turbine
investment. The proposed Case 1 considers more
comprehensive uncertainties, and the planning results are both
robust and economical in investment, which is a better planning
scheme.

5 Conclusion

In this paper, a two-stage generation expansion planning
framework for a regional integrated energy system is
proposed considering carbon emission constraints. The
uncertainties of wind power, power load, and natural gas price
are also considered in the proposed framework. The nested
C&CG algorithm is used to solve the two-stage robust
planning model. Based on the IEEE 24-bus power system and
7-node natural gas system integrated energy system, the
effectiveness and superiority of the proposed framework are
verified. The following conclusions can be obtained through
numerical simulation.

(1) The proposed two-stage robust generation expansion
planning framework with carbon growth constraints can
effectively promote the configuration of wind turbines and
ensure that the carbon emissions of the regional integrated
energy system will not exceed the defined target even in the
worst scenario.

(2) The wind plant planning result of the proposed model is the
configuration result in the worst scenario. Therefore, in actual
operation, the wind power capacity obtained by the proposed
planning framework can not only enable the system to meet the
carbon growth targets in the worst scenario but also have a huge
space for carbon reduction.

(3) In the two-stage robust optimization, both electricity load
uncertainty and natural gas price uncertainty will promote
the capacity planning of wind power, while wind
power uncertainty will inhibit the capacity planning of wind
turbines.

(4) By comparing the model planning results with different
uncertainty sets, it can be found that the proposed model has
good robustness, and at the same time, it takes into account the
economy of wind turbine planning investment.

This article focuses on the wind turbine capacity planning, so the
operating cost of P2G isn’t considered. P2G isn’t only a coupling

FIGURE 8
P2G power consumption under robust dispatch in Case 1 and
Case 5.
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channel for integrating energy systems, but also an effective way to
introduce low-carbon natural gas into gas systems. In future studies,
the proposed model can further consider the coordinated planning
of wind turbines and P2G units.
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