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A deep learning-based multi-node framework is constructed in this work to
provide a data-driven platform that provides predictions for the operation
condition of the primary heat transfer (PHT) loop in nuclear power plants
(NPPs). Several deep learning models that have been verified and
demonstrated in previous researches, such as Long-Short Term Memory
(LSTM), Convolutional Neural Network (CNN), and zigmoid-based LSTM
(zLSTM), are applied to modeling critical system parameters at three important
nodes in the PHT loop. The feature extraction and process memory are enhanced
via the collaborative work of CNN and LSTM. zLSTM, on the other hand, is
successfully utilized to strengthen the long-term memory, especially for
predictions of a node with multivariate inputs such as the steam generator.
The node prediction results are also adopted for a polynomial fitting that
generates an additional input to the next node, allowing each node to select a
more accurate input. According to the verification experiments based on Loss of
Coolant Accident (LOCA), the Mean Squared Error (MSE) result (1.29 × 10−3) and
the Mean Absolute Error (MAE) result (1.37 × 10−2) of 0.7 cm2 LOCA case
demonstrate the functionality and accuracy of the proposed framework. It is
found that the fitting error (MSE) in the outlet node at 0.7 cm2 case is 38.5% lower
than the prediction, showing the advantage of applying both deep learning and
fitting methods. The best performance, in term of MSE, is obtained at SG node in
the 0.7 cm2 case, where its processing error (0.001285) is 93.2% lower than that of
the baseline models. Both the validation and verification experiments successfully
proved the feasibility and advantages of the proposed framework, which offers an
alternative option for the operation analysis of PHT performance.
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1 Introduction

To ensure the safety and reliability of the nuclear power plants (NPPs), it is of
importance for the operation condition diagnosis and prediction to be not only accurate
but also efficient. However, traditional modeling methods are harder to conduct in such
scenario when facing complex physical processes, non-linear parameters, and multiple
operation nodes. A data-driven methodology which can bypass such hurdles has been
eagerly expected. The development of artificial intelligence (AI) has made deep learning an
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effective method for simulation and analysis of operation data,
which have attracted increasing attention from the nuclear
industry over the past decades. The AI applications in nuclear
safety has been widely investigated and deployed, leading to a
research tide on how to improve the operational efficiency and
safety of nuclear power through deep learning methods.

There have been many methods in current fault diagnosis
research area, such as pattern recognition, expert systems,
knowledge bases, etc., Pattern recognition has a high detection
rate in identifying specific fault conditions in rolling bearings
(Miao, 2022). The construction of power knowledge graphs
works well in power fault analysis and retrieval recommendations
(Liang et al., 2022). Within the nuclear power sector, fault diagnosis
methods are also being explored, optimized, and improved for
enhanced operation condition analysis.

The traditional measures of analyzing the operation condition
are normally based on system modeling. It obtains a mathematical
model through the physical logic to describe the operation of the
monitored system (Min et al., 2019; Hu et al., 2021). An anisotropic
creep model was proposed by Kim et al. (2021) to analyze the
expansion and explosion processes in NPP accidents based on both
the transient heat transfer and the fuel rod characteristics. Yang et al.
(2019) used RELAP5/MOD3.3 code to predict the Loss of Coolant
Accident (LOCA) during the Main Steam Loop Break (MSLB) on a
third-generation reactor with passive safety features. The
monitoring and analysis system in Daya Bay Nuclear Power
Plant presented a quantitative analysis model of the secondary
loop thermal system using the theory of equivalent enthalpy drop
theory and cyclic functional method (Zhao et al., 2011). The
mentioned simulation methods are obtained through system
modeling, which faces the challenges of complex physical
processes, multiple interacting devices, and non-linear variation
of system parameters.

In contrast, data-driven methods can be more convenient and
efficient for operation condition prediction. It simply collects input
and output information from the sensors without involving the
specific system details. The most studied data-driven methods
include Support Vector Machines (SVM), Principal Component
Analysis (PCA), and K-Nearest Neighbor (KNN) (Ayodeji et al.,
2018; Meng et al., 2020). For example, Wang et al. (2021) combined
SVM, PCA and clustering algorithm to predict sensor failures in
NPPs. Yu et al. (2020) proposed two improvements to PCA: one is a
modified algorithm to improve PCA reconstruction accuracy;
another is a PCA monitoring model for detecting multi-sensor
faults.

In recent years, deep learning methods, as part of the data-
driven approaches, have become popular in the operation condition
diagnosis and prediction. It is considered to be one of the latest
advances in artificial neural networks (ANNs). Zhao et al. (2021)
focused on the state of the art of data-driven approaches to
prognostics and health management (PHM) in NPPs with a
purpose of assessing the opportunities and challenges currently
faced. Deep learning methods include Recurrent Neural Network
(RNN), Convolutional Neural Network (CNN) and Long-Short
Term Memory (LSTM), etc., (Chen and Jahanshahi, 2017; Ling
et al., 2020). There have been enormous successful deep learning
applications in nuclear safety field. For example (Moshkbar-
Bakhshayesh and Ghofrani, 2013), used RNN for time-dependent

diagnosis. CNN is applied by Yao et al. (2020) to detect cracks,
sensor failures, pipeline corrosion, etc., In (Zhang et al., 2020),
LSTM plays a key role in predicting the regulator water level
variations. A prediction model combining CNN and LSTM was
established to analyze and predict the deterioration trend of NPP
primary loop pipelines (Hong et al., 2022).

The operation of pressurized water reactor (PWR) NPPs relies
on a Primary Heat Transfer (PHT) loop where multiple connected
nodes establish the coolant circulation. To make a more
comprehensive analysis, the prediction model needs an overview
of the entire PHT loop behavior rather than focusing on a certain
node. For this purpose, this work proposes a deep learning-based
multi-node framework to monitor and analyze the temperature
variations at three critical nodes in the PHT loop when LOCA
occurs. The prediction framework can sense its current operation
parameters and predict its post-LOCA operating progression.
Through the connection between various nodes, it is also possible
to grasp the overall plant operation trend, obtain comprehensive
conclusions, and provide a more reliable decision-making basis for
system operation and emergency response.

Section 1 of this paper is the background introduction. Section 2
describes the construction of the main models and methods of the
framework. Section 3 is the presentation of the verification
experiments and analysis. This paper is then concluded in Section 4.

2 The multi-node working condition
prediction framework

The data-driven multi-node framework is mainly composed of
models for core inlet temperature prediction, core outlet
temperature prediction, steam generator (SG) steam temperature
prediction, and their polynomial fitting methods. The post-LOCA
temperature data from each node is fed into the corresponding deep
learning model of the framework as input data.

2.1 Core inlet temperature prediction with
LSTM

Due to the complex physical process, the interaction between
systems and equipment, and the non-linear variation of important
parameters, the coolant temperature at core inlet has non-linear and
time-dependent characteristics. As a variant of RNN, LSTM has the
advantages alleviating the above challenges: 1) It has an efficient
long-term memory function for time series prediction; 2) It can be
used to predict complex non-linear time series data as a non-linear
model (She et al., 2019). Thus, LSTM is chosen for the first node
(core inlet) to predict the temperature variation.

The inlet temperature prediction model using LSTM is
constructed by two LSTM layers and two dense layers. Two
LSTM layers are used to build the model such that the complex
post-LOCA temperature variations can be fully covered. Two dense
layers then follows the LSTM layers to ensure all the necessary
features are included within the prediction results. The dropout
value is set to 0.2. The model structure is shown in Figure 1 and
Table 1 presents the specific parameter configuration. The “LOCA
data” in Figure 1 refers to the post-LOCA inlet temperature data.
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The best performing parameter configuration is determined via both
historic experience and repeated tests. The successful experience of
applying deep learning models in previous studies (She et al., 2019;
She et al., 2021; Gong et al., 2022) provide a basic configuration of
the model parameters. The newly conducted tests using current
datasets then help improve the basic configuration to be more
suitable for the proposed framework.

2.2 Core outlet temperature prediction with
CNN + LSTM

The core outlet is the second node where the coolant takes
the fission heat out of the reactor. Due to the complex
interactions inside the core, the temperature variation at the
outlet becomes uncertain and hard to predict, which requires a
prediction model capable of dealing with such uncertainty and
similar situations.

To tackle the challenge of uncertainty, a combined structure of
CNN and LSTM is employed to build a prediction model (She et al.,
2021). CNN utilizes its convolutional structure of weight sharing
and pooling operations to effectively extract the data features of
operation conditions. The LSTM structure properly handles the
incoming time series data and predicts the future progression. Two
LSTM layers are deployed in the framework to increase the depth of
the neural network such that the complex temperature variation can

be captured and analyzed appropriately. Two dense layers are also
applied to the prediction results processing.

The CNN + LSTM model is composed of one CNN layer, two
LSTM layers, and two dense layers. Figure 2 presents the model
structure and Table 2 contains the specific parameter configuration.
The “LOCA data” in the figure means the post-LOCA outlet
temperature data.

2.3 SG steam temperature prediction with
zLSTM

The coolant enters the SG and accomplishes the heat exchange.
The steam temperature is affected by several key system parameters
such as pressure, flowrate, water level, etc. In order to accurately
predict the steam temperature, the effects of non-linear, multivariate
long time series need to be considered, which makes zLSTM (Gong
et al., 2022) the steam temperature prediction model.

The standard LSTM forget gate function is defined as follows:

ft � sigmoid Wfxxt +Wfhht−1 + bf( ) (1)

zLSTM is obtained by replacing the sigmoid in the LSTM forget
gate with zigmoid as follows:

ft � zigmoid Wfxxt +Wfhht−1 + bf( ) (2)
zigmoid x( ) � sigmoid trans x( )( ) (3)
trans x( ) � e βpx − 1 x≥ 0

1 − e−βpx x< 0
{ (4)

The zLSTM forget gate function can be obtained from Eqs 2–4 as
shown in Eq. 5.

ft � sigmoid e βp Wfxxt+Wfhht−1+bf( ) − 1( ) Wfxxt +Wfhht−1 + bf ≥ 0
sigmoid 1 − e −βp Wfxxt+Wfhht−1+bf( )( ) Wfxxt +Wfhht−1 + bf < 0

⎧⎨⎩
(5)

where Wfx, Wfh, bf are trainable parameters, xt is the current
moment’s input, ht-1 is the previous moment’s state, and β is a
hyper-parameter.

FIGURE 1
LSTM structure.

TABLE 1 Parameters of LSTM.

Model parameters Value

LSTM_1 Units 128

Dropout_1 Odds 0.2

LSTM_2 Units 64

Dropout_2 Odds 0.2

Dense_1 16

Dense_2 1
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Such improvement allows the amplification of the sigmoid derivative
such that model training is still feasible for LSTM even at the far end of
the time series, which gives zLSTM the following advantages:

1 Non-linearity: zLSTM is capable of non-linear processing
capability as a RNN variant.

2 Long-term memory: zigmoid has a larger gradient with the same
output, which enhances the long-term performance by allowing
the model to conduct learning over the full length of the time
series. Longer inputs are then allowed to be fed into the model,
enriching the information used for predictions.

3 Multivariate processing: zLSTM can handle an input vector that is
assembled with multiple key system parameters, providing
system-wide data support for predictions.

In the zLSTM structure, there are one input layer, two hidden
layers, and one output layer. Details are given in Table 3.

2.4 Polynomial fitting

Polynomial fitting is to fit the functional relation of variables in a
polynomial form, which is defined as follows:

y � a0 + a1x + a2x
2 + · · · + anx

n � ∑n

i�0aix
i (6)

It can be applied to operation data processing with the following
characteristics:

1. It can simulate non-linearly separated data.
2. It is generally more flexible and can simulate complex relations.
3. It requires some prior knowledge of the data to choose the best
index.

The mentioned advantages were applied to the reliability
assessment of nuclear power operation systems (Boopathi et al.,
2021). The polynomial fitting method is utilized in this work to
simulate the functional relation between each node, leading to an
analytical description of the operation trend. Predictions can be
more reliable and accurate by considering the results from both a
deep learning model and a polynomial fitting. In the framework,
polynomial fitting of current node is calculated using the operation
data from the previous node, e.g., the core outlet temperature fitting
result is calculated using the inlet temperature operation data; while
the core outlet temperature operation data is used for the polynomial
fitting of the SG steam temperature.

2.5 Multi-node operation condition
prediction framework

This work selects the data of three important nodes in the PHT
loop for the framework modeling, namely core inlet temperature,
core outlet temperature, and SG steam temperature. Firstly, the

FIGURE 2
CNN + LSTM structure.

TABLE 2 Parameters of CNN + LSTM.

Model parameters Value

Filters 8

Kernel Size 2

Pooling Size 4

LSTM_1 Units 128

LSTM_2 Units 64

Dense_1 16

Dense_2 1

TABLE 3 Parameters of zLSTM Model.

Model parameters Value

Input_layer 4

zLSTM_1 Units 128

zLSTM_2 Units 64

Output_layer 1
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aforementioned LSTM, CNN + LSTM, and zLSTM are trained by
temperature operation datasets from corresponding loop nodes. The
polynomial fitting of current node is conducted using the values
from previous node, which establishes the analytical rules for the
parameter transfer and exchange within the framework. By means of
statistical analysis, which is Mean Squared Error (MSE) and Mean
Absolute Error (MAE) in this work, the prediction result and the
fitting result of each node are compared to determine the selected
input for the next node. The multi-node operation condition
prediction framework is systematically presented in Figure 3.

3 Experiments

3.1 Datasets

The datasets are obtained from LOCA simulations using an
industry-grade NPP simulation platform (Sun et al., 2017). The
platform mainly uses shared memory technology and an
engineering simulator coupled with MATLAB/Simulink.
Subsequently, the performance can be evaluated through
simulations of abrupt load-transient changes and wide range-load
changes. The simulations are carried out at 100% reactor power for
two LOCA cases, i.e., break sizes of 0.7 cm2 and 0.8 cm2.

Each LOCA sample contains 10 key system parameters:

1 Core inlet temperature;
2 Core outlet temperature;

3 Core outlet subcooling;
4 pressurizer pressure;
5 pressurizer water level;
6 Coolant flowrates;
7 SG water level;
8 SG steam pressure;
9 SG steam temperature;
10 SG steam flowrate.

Core inlet temperature, core outlet temperature and SG steam
temperature are selected for this experiment. Datasets are extended
by introducing noisy signals. Seventy-five percentage of the dataset
is used for training purposes and the rest is used for the test
experiments. The time window for each model training is set to
4. A continuous period with 150 s of data is then randomly selected
in the test set for model validation.

All the datasets are available in the Supplementary Material of
this paper.

3.2 Data preprocessing

Three Gaussian noise perturbations are introduced during the
simulation such that the dataset is expanded into three new
samples and has a wider coverage of possible situations. The
dataset proportion between the training set and the test set is 3:1.
The test set is also plotted as the “original value” in the result
figures such that the comparison between the simulation results

FIGURE 3
Multi-node operation condition prediction framework.
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and the actual LOCA trend can be observed. All the data is
denoised, smoothed, and then normalized to the maximum and
minimum values.

3.3 Performance metrics

MSE and MAE are chosen as the performance metrics to
evaluate the multi-node prediction framework.

MSE � 1
n
∑n

i�1 yi − ŷi( )2 (7)

MAE � 1
n
∑n

i�1 yi − ŷi

∣∣∣∣ ∣∣∣∣ (8)
where yi and ŷi are the original value and simulated value,
respectively.

3.4 Baseline methods

SVM and ANN have also been applied to predicting the
operation trend of NPPs (Sallehhudin and Diab, 2021;
Moshkbar-Bakhshayesh and Ghofrani, 2022), except that
their main purpose is to verify the accuracy and reliability of
the single node prediction by the improved machine learning
methods. The feasibility of applying predictions to the entire
PHT loop was not considered yet in the previous researches. In
order to prove the accuracy improvement of the multi-node
prediction framework, this paper selects SVM and ANN as the
baseline to predict the SG steam temperature at the last node.
The prediction accuracy comparison is represented through
MSE and MAE among the three methods.

3.5 Model training

This work refers to the rolling update method to derive the
multivariate time series data required for model training. The
training parameters are determined according to previous
successful studies which verified a set of parameter
configurations for applying deep learning models to LOCA
diagnosis and predictions. The window size of the baseline
model and each node model is set to 4, and the highest
degree of polynomial fitting is set to 8. In the experiments,
Adam optimizer (Kingma and Adam, 2014) is applied during
the model training with a learning rate 0.001.

3.6 Model verification experiments

Firstly, the functional verification experiment of the multi-node
prediction framework is carried out to prove its functional feasibility
during a simulated LOCA. Datasets of 0.7 cm2 and 0.8 cm2 break size
are selected for model training and test. The verification experiment
is divided into the following three steps.

3.6.1 Core inlet temperature prediction
The input vector Tin, which contains the test data of the first

150 s in the LOCA process, is used as the input to the prediction
model (LSTM). There is no fitting process since it is the first node.
Figure 4 presents the experimental result of the LOCA with both
0.7 cm2 and 0.8 cm2 break sizes.

In the 0.7 cm2 break case, except for a slight delay in the
predicted trend where the LSTM model is catching necessary
information, the predicted temperature Tina fits the original trend
with an MSE evaluation 2.59 × 10−3, proving an accurate prediction
performance.

FIGURE 4
Prediction of core inlet temperature during LOCA. (A) prediction for 0.7 cm2 break (B) prediction for 0.8 cm2 break.
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3.6.2 Core outlet temperature prediction
Similar to the inlet node, an input vector Tout randomly

selected from the outlet temperature dataset is used by the CNN +
LSTM model to produce an outlet temperature prediction Toutb.
The polynomial fitting at this node uses the inlet prediction
values to generate a fitted outlet temperature result Touta. Both
the predicted value and fitted value are shown in Figure 5
(0.7 cm2) and Figure 6 (0.8 cm2), respectively.

The prediction result shows slightly delayed response, especially
when the initial prediction results drifts from the original data. On
the other hand, the fitted result matches the original data more
precisely except the far end where the convergence is weakened. The
MSE results for 0.7 cm2 break are 3.02 × 10−3 for prediction Toutb and
1.86 × 10−3 for fitted Touta, which determines the fitted data Touta to
be selected as Tout’ for the next node.

3.6.3 SG steam temperature prediction
The SG water level, SG steam pressure, SG steam temperature, and

SG steam flow of the LOCA cases are extracted for 150 s and fed into the
zLSTM to obtain the SG steam temperature prediction result Tsgc.
Meanwhile, the fitted result Tsgb is generated by using Tout’ from the
outlet node in the polynomial fitting. Both results are shown in Figure 7
(0.7 cm2) and 8 (0.8 cm2), respectively.

The prediction model experiences a learning stage at the
beginning due to the multivariate scenario, which temporally
limits its predicting performance. After a period of time, the
predicted trend becomes consistent with the original data. The
polynomial fitting becomes more complex at this SG node,
showing relatively large fluctuations when inflection points
appear in the original curve. It matches operation trend
tightly only when the situation turns to be stable. With the

FIGURE 5
Prediction and Fitting of Core Outlet Temperature on Break Size 0.7 cm2. (A) prediction (B) fitted value.

FIGURE 6
Prediction and Fitting of Core Outlet Temperature on Break Size 0.8 cm2. (A) prediction (B) fitted value.
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MSE results (0.7 cm2) 3.39 × 10−3 for Tsgc and 1.29 × 10−3 for Tsgb,
Tsgb is qualified for the final output of the multi-node prediction
framework (Figure 8).

3.7 Model comparative experiments

The comparative experiments are against the baseline models SVM
and ANN. Both MSE and MAE are chosen as the metrics such that a
more comprehensive performance evaluation can be provided. Since
SVM and ANN only predict a single scenario, the performance
comparison is conducted for the steam temperature predictions

from the framework and the baselines. The results comparisons are
offered in Figure 9. Table 4 shows the temperature prediction accuracy
on the two break sizes.

Figure 9 visually illustrates the development of the operation
conditions predicted by different models. Throughout the process,
the multi-node prediction framework represents a more accurate
prediction. The prediction accuracy metrics listed in Table 4
describe the prediction performance of the tested models. The
upper part of Table 4 gives the MSE values, while the MAE
values are listed in the lower part.

Analysis and investigations of the experimental results are
provided below.

FIGURE 7
Prediction and Fitting of SG Steam Temperature on Break Size 0.7 cm2. (A) prediction (B) fitted value.

FIGURE 8
Prediction and Fitting of SG Steam Temperature on Break Size 0.8 cm2. (A) prediction (B) fitted value.
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1 The multi-node prediction framework provides more accurate
predictions compared to SVM and ANN. For instance, the best
MSE obtained at SG node in the 0.7 cm2 case (0.001285) is 93.2%
lower than that of SVM (0.01896) and 86.2% lower than that of
ANN (0.009313).

2 0.7 cm2 break size presents a gradual progression. In this LOCA case,
polynomial fitting is more efficient and accurate through the entire
framework with a lower loss value. The 0.8 cm2 break LOCA case
generates more inflection points during its development. It then
requires more historical data for the predictions, especially at the SG
node where zLSTM demonstrates its capability of dealing with
multiple input variables as a deep learning-based model.

3 The selection of more accurate result being passed to the next node
leads to gradual decreasing in loss value along the node chain, playing a
role of error filter that enhances the prediction accuracy node by node.
An inference is that the framework can bemore accurate by increasing
the node numbers, which is hereby a suggestion to the future study.

4 It is observed from all the figures that deep learning-based models
convergent quickly during non-linear states even though they need a
short period at the beginning to catch up with the variations. The
longer the LOCA process is, the better performance in all the three
prediction nodes due to their LSTM elements. The fitted values, on
the contrary, can assure a tight following with the original data at
linear stages and become drifted when a non-linear trend lasts.

5 At the outlet node and SG node, both 0.7 cm2 case and 0.8 cm2 case
are investigated with the prediction as well as the fitting method.
Each case is evaluated using two metrics MSE and MAE, presenting
eight result pairs (four pairs per node) for the investigation on the
simulationmethods. For example, the 0.7 cm2 case at the outlet node
gives the MSE 0.003017 for prediction and 0.001856 for fitted value,
showing a 38.5% decrease of MSE in the fitting method. In six of the
eight pairs, the fitting method presents significant error decrease.
Even in the other two pairs where predictions have better
performance, the difference is as low as 5.9% (MSE at SG node)
and 2.7% (MAE at SG node). An explanation for the “fitting
advantage” phenomenon is that the fitting uses the prediction
result from previous node as input and then successfully
combined the advantages of both the deep learning model and
the polynomial method.

4 Conclusion

This paper proposes a multi-node prediction framework for the
prediction of NPP operation conditions. The framework first builds
a deep learning-based prediction model for each selected critical
nodes in the PHT loop according to their data characteristics.
Parallelly, a polynomial fitting value is calculated using the

FIGURE 9
Comparison of prediction of SG steam temperature during LOCA. (A) prediction (B) fitted value.

TABLE 4 Accuracy evaluations for framework models and baseline models.

Break
Size

LSTM (inlet) CNN + LSTM (outlet) Fitted value (outlet) zLSTM (SG) Fitted value (SG) SVM ANN

MSE 0.7 0.002588 0.003017 0.001856 0.003394 0.001285 0.018960 0.009313

0.8 0.001649 0.002609 0.001697 0.001348 0.001433 0.010090 0.002452

MAE 0.7 0.021955 0.031020 0.020015 0.021316 0.013717 0.098176 0.033491

0.8 0.020043 0.027549 0.016574 0.014537 0.014934 0.094918 0.035178

The bold values represent the best model performance in a selected case.

Frontiers in Energy Research frontiersin.org09

Shi et al. 10.3389/fenrg.2023.1099326

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1099326


prediction from previous node such that the output of this node will
be a comparative result with lower loss value. Under such a scheme,
the framework is capable of generating more and more accurate
result and, as a consequence, producing an accurate system
prediction at the last stage.

The framework is a data-driven platform without the necessity
of building mathematical system models. With the assistant of the
deep learning method, the historical operation data can be used to
directly describe the system behaviors. The framework establishes an
integration of the corresponding deep learning models along with
polynomial fitting methods, providing a comprehensive base for the
system predictions.

The verification experiments and comparative experiments are
conducted for LOCA cases, which successfully demonstrate the
feasibility and advantages of the framework. The prediction accuracy
in forms of MSE and MAE confirms its superior position against the
baseline models with the MSE optimization up to 93.2% and 86.2%.

Moreover, there are still some issues left for future research beyond
this work. First of all, only temperature-related datasets are used for
experiments, leaving other key system parameters of the PHT loop with
further investigation. In addition, the difficulty of predicting and fitting
the operation condition gradually increases with the process
complexity, resulting in poor prediction and fitting effects at the
initial steps of the simulations. Further exploration on dealing with
system complexity is necessary to improve the current PHT prediction
approach. Finally, besides the simulated operation data, the NPP onsite
data could be a complement to this research if accessible.
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