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Differential voltage analysis for
battery manufacturing process
control

Andrew Weng*, Jason B. Siegel and Anna Stefanopoulou

Mechanical Engineering, University of Michigan, Ann Arbor, MI, United States

Voltage-based battery metrics are ubiquitous and essential in battery
manufacturing diagnostics. They enable electrochemical “fingerprinting” of
batteries at the end of the manufacturing line and are naturally scalable, since
voltage data is already collected as part of the formation process which is the
last step in battery manufacturing. Yet, despite their prevalence, interpretations
of voltage-based metrics are often ambiguous and require expert judgment.
In this work, we present a method for collecting and analyzing full cell near-
equilibrium voltage curves for end-of-line manufacturing process control. The
method builds on existing literature on differential voltage analysis (DVA or
dV/dQ) by expanding the method formalism through the lens of reproducibility,
interpretability, and automation. Our model revisions introduce several new
derived metrics relevant to manufacturing process control, including lithium
consumed during formation and the practical negative-to-positive ratio,
which complement standard metrics such as positive and negative electrode
capacities. To facilitate method reproducibility, we reformulate the model to
account for the “inaccessible lithium problem” which quantifies the numerical
differences between modeled versus true values for electrode capacities and
stoichiometries. We finally outline key data collection considerations, including
C-rate and charging direction for both full cell and half cell datasets, which
may impact method reproducibility. This work highlights the opportunities
for leveraging voltage-based electrochemical metrics for online battery
manufacturing process control.

KEYWORDS

battery manufacturing, battery formation process, diagnostic features, manufacturing
process control, reproducibility, differential voltage analysis, dV/dQ

1 Introduction

Decreasing the cost and environmental footprint of battery “gigafactories” worldwide
relies on continuously improving the manufacturing process through data-driven process
control. To place the scale of manufacturing data in context, consider a battery factory that
supplies enough cells to produce one electric vehicle (EV) perminute (Kane, 2022). Since the
number of cells needed for each EV is on the order of hundreds for pouch cells and thousands
for cylindrical cells, the cell production rate would need to exceed ∼100 cells per minute for
pouch cells and∼1,000 cells perminute for cylindrical cells. Every cell producedwill generate
voltage and current time-series data as part of the formation process, which is the last step
of battery manufacturing when cells are charged for the very first time to create the solid
electrolyte interphase (SEI) (An et al., 2017; Peled and Menkin, 2017; Wood et al., 2019).
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Voltage and current data from the battery formation process can
be continuously and automatically collected, stored, and analyzed to
develop smart manufacturing process specifications or tolerances,
ensuring that all cells leaving the factory have a guarantee on
performance, lifetime, and safety (Liu et al., 2021). Using voltage-
based measurements is appealing from a manufacturing standpoint
since they can be measured using existing formation cyclers. This
data may be directly collected as part of the formation protocol
or immediately after the formation protocol completes but before
the cells are taken off of the formation cyclers (Weng et al., 2021).
Thus, collecting voltage-based data bears no additional capital costs
to a factory. Since the number of formation cyclers grows with the
production volume, the voltage-based metrics will also naturally
scale as factory throughput increases.

When full cell voltage data is carefully collected and analyzed,
they can be used to derive physically-interpretable, electrochemical
metrics, or features, that provide insights into the thermodynamic
and kinetic properties of the cell. A slow-rate (C/20) full cell
voltage curve can, for example, be analyzed using incremental
capacity analysis (ICA) (Dubarry and Anseán, 2022) or differential
voltage (dV/dQ) analysis (Dahn et al., 2012a; Lee et al., 2020b) to
understand thermodynamic cell properties such as active material
losses and lithium inventory losses. The data can be collected
immediately after the formation cycles complete. Unlike cell
dissections and electrode harvesting, voltage-based analysis is non-
destructive.The same cell that is analyzed inmanufacturing can thus
be tracked throughout its remaining life, either through accelerated
cycle life testing in a lab or through fleet telemetry of real-world
usage inside of an EV. The ability to establish an electrochemical
“fingerprint” on the pristine cells immediately after manufacturing
can help improve lifetime prediction models (Weng et al., 2021)
which, in turn, be can be used to improve themanufacturing process.

However, caution is needed when setting manufacturing
specifications based on voltage-based data. Without careful data
collection and interpretation, manufacturing tolerances may be
set too tightly, increasing reject rates and lowering production
throughput, or too loosely, which may increase production
throughput in the short term but lead to lifetime and safety
issues after years of usage in the field. Ultimately, manufacturing
specifications must also be set based on an understanding of long-
term consequences to performance, lifetime, or safety. The voltage-
based electrochemical features can facilitate understanding trade-
offs between production throughput and long-term reliability, but
only if they are carefully designed and interpreted.

We note that voltage-based electrochemical features do not
replace the need for more advanced end-of-line metrology methods
in the factory, including X-ray (Qian et al., 2021; Kong et al., 2022)
and ultrasonic imaging (Bommier et al., 2020; Deng et al., 2020),
which may be necessary for catching non-electrochemical related
cell defects. Rather, the voltage-based features complement root-
cause analyses by providing basic electrochemical metrics about the
system such as the as-manufactured electrode capacities, cyclable
lithium inventory, and negative-to-positive ratio (NPR).

Currently, factories are not taking full advantage of voltage-
based measurements at the end of line which may be relevant to
long term cell lifetime and durability, partly owing to difficulties in
data interpretation. Resolving the complex electrochemical details
using full-cell voltage data alone is inherently challenging, since

these measurements reflect a combination of thermodynamic and
kinetic factors originating from nearly every cell component and
their interactions with each other. These inherent difficulties are
compounded by a general lack of clear literature guidance on
best practices for collecting and analyzing voltage data. As a
result, commonly reported electrochemical metrics derived from
voltage data, such as modeled electrode capacities from dV/dQ
analysis often differ in both data collection and analysis methods,
limiting their interpretability and reproducibility. To overcome
these challenges, recent work, such as those by Dubarry and
Anseán (2022) are essential for enabling reproducible extraction of
electrochemical features derived from voltage data.

The goal of this work is thus to guide experimental and analysis
considerations needed to enable reproducible voltage-based battery
manufacturing diagnostics. To accomplish this, we revisit a popular
analysis technique through the lens of battery manufacturing:
the differential voltage analysis, or dV/dQ, model. We will detail
the experimental and analysis considerations to facilitate data
reproducibility and interpretability.

2 A manufacturing case study

Here, we showcase an example of how the differential voltage
analysis method can be used for continuous monitoring of cell
electrochemical features at the end of the manufacturing process.
We highlight the various electrochemical metrics, or features, that
can be extracted using the method and their significance for
manufacturing process control.

The study consists of two cell batches made on the same
manufacturing line and made using the same active materials
(Ni0.33Mn0.33Co0.33 positive electrode and graphite negative
electrode). However, the two cell batches were made two years
apart and differed in cell design parameters, including electrode
loading targets and number of layers. Cells from the first batch,
from Mohtat et al. (2021), had nominal capacities of 5.0 Ah and
were built in 2018 (n = 21). Cells from the second batch, from
Weng et al. (2021), had nominal capacities of 2.37 Ah and were built
in 2020 (n = 40). For these cells, we restricted the cell population
to those having full cell data collected at room temperature (RT)
(n = 20) to match the measurement conditions from Mohtat et al.
(2021). A table comparing relevant design parameters is given in
Supplementary Table S1. We will refer to these two datasets as
Mohtat2021 and Weng2021, respectively.

Figure 1 shows the general analysis workflow and lists the
electrochemical features extracted by themodel. In this example, full
cell voltage data (Vfull)was collected on everymanufactured cell after
the formation cycling completed (Section 4.1.1). Each dataset was
analyzed using the differential voltage analysis model (Section 3.2).
The model consisted of two pre-computed functions,Upos andUneg,
representing the positive and negative electrode near-equilibrium
reference potential curves, respectively (Section 4.1.2). The same
functions were used to analyze data from both Mohtat2021 and
Weng2021 since the batches shared the same positive and negative
electrode chemistries.

The differential voltage model was then used to extract
electrochemical features which include positive and negative
electrode capacities (Q̃p, Q̃n), the capacity of lithium available for
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FIGURE 1
Summary of how differential voltage analysis can enable coordinated battery manufacturing process control via end-of-line testing. The provided table
describes the voltage-based electrochemical features derived from the method, including applications in manufacturing and test design considerations.

cycling (Q̃Li), the capacity of lithium lost to the SEI (Q̃SEI), electrode
lithium stoichiometries when the full cell is discharged (x̃0, ỹ0),
and cell design information including the practical negative-to-
positive capacity ratio (NPRpractical) and the excess negative electrode
capacity (Q̃n,excess). The ‘tildes’ on each variable name indicate that
they are estimates which may be different from the true parameters
due to the “inaccessible lithium problem,” which will be further
explained in Section 3.3. These extracted features can then be
analyzed to determine whether machine parameter adjustments
are needed in upstream manufacturing processes such as those in
electrode coating or in electrolyte fill (E-fill).

Figure 2 show an example data visualization of the analysis
outputs. An example model fitting result is also provided in
Supplementary Figure S1. Panel A uses box-and-whisker plots
to compare compares several example metrics derived from the

differential voltage analysis, including Q̃p, Q̃n, Q̃SEI, and NPRpractical.
The full-cell C/20 discharge capacity, Qfull, is also provided for
reference. Since the Mohtat2021 and Weng2021 cells used different
numbers of electrode sheets, all of the capacity values reported here
have been normalized to the respective electrode areas, enabling a
head-to-head comparison.

The following sections discusses how to interpret each group of
features in the context of manufacturing process control.

2.1 Monitoring electrode capacities and
loadings

Figure 2A shows extracted values of positive and negative
electrode capacities, Q̃n and Q̃p, for every cell in this study.
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FIGURE 2
Leveraging differential voltage analysis to non-destructively identify electrochemical differences between two cell batches at the end of the
manufacturing line. Qfull: full cell areal capacity, Q̃p: positive electrode areal capacity, Q̃n: negative electrode areal capacity, Q̃SEI areal capacity of
lithium lost to SEI during formation, NPRpractical: Practical negative to positive ratio. Data spans two separate datasets from Weng et al. (2021) (n = 20)
and Mohtat et al. (2021) (n = 21). Cells from both datasets share the same chemistry (Ni0.33Mn0.33Co0.33|graphite), but were made in two separate
batches and vary in cell design parameters. (A) Box-and-whisker plots comparing data from the two batches, where each marker shows modeled
outputs on each individual cell. (B) Correlation plots of the metrics, where diagonal elements show histograms comparing individual metrics across the
two different batches.
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In a manufacturing context, the availability of data on Q̃n and
Q̃p on every batch of cells in production, without needing cell
dissections, can help to identify deviations from electrode loading
set-points, e.g., due to electrode processing variations. These
electrode-level variations would be difficult to detect by relying
on full cell capacity check data alone, since capacity variability at
the electrode level may not manifest in full cell capacity checks
(Section 2.4).

We also found that the Mohtat2021 cells had, on average, 16%
higher positive electrode areal capacity and 17% higher negative
electrode areal capacity compared to the Weng2021 cells. However,
according to the cell design parameters (Supplementary Table S1),
Mohtat2021 cells should have only 7%higher positive electrode areal
capacity and 9% higher negative electrode areal capacity based on
differences in the active material loading targets. The gap between
the targeted andmodeled capacities suggest that the as-built cells did
not match their target loadings, and that electrode coating process
parameters may need to be adjusted.

2.2 Monitoring lithium consumed during
formation

Figure 2A also compares the amount of lithium consumed
during formation, Q̃SEI, for all cells in this study. For theMohtat2021
cells, the mean value was measured to be 0.35 mAh/cm2, while the
Weng2021 cellsmeasured 0.12 mAh/cm2.Mohtat2021 cells thus lost
nearly three times more lithium during formation than compared
to the Weng2021 cells. This result can be verified graphically by
inspecting the voltage curve alignments from the fitting results
which shows that the positive electrode is less lithiated at 0% SOC,
reflecting the fact that extra lithium was irreversibly consumed to
form the SEI and cannot return to the positive electrode ondischarge
(Supplementary Figure S1). The increase in lithium consumption
rate during the formation of the Mohtat2021 cells suggests a
poorer quality of electrolyte or a less passivating negative electrode
formulation. Note that both cell builds shared the same formation
protocol, so differences in lithium consumption cannot be attributed
to differences in the formation protocol. This example highlights a
scenario inwhich the electrolyte filling process parametersmay need
to be inspected, or the quality of the electrolyte itself may need to be
verified.

The increased lithium consumption in the Mohtat2021 cells also
helps to explain why, although the Mohtat2021 cells had 16% higher
positive electrode areal mass loading than the Weng2021 cells, the
full cell capacities of the Weng2021 cells were only 3% higher on
average. Thus, although the Mohtat2021 cells were designed with
higher areal capacities than the Weng2021 cells, most of the benefits
to full cell capacity were lost due the increased lithium consumption
rate during formation.

2.3 Measuring “margin to lithium plating”
using the practical NP ratio

Since the Mohtat2021 cells had consumed more lithium during
formation compared to the Weng2021 cells, the Mohtat2021

negative electrodes will also be less lithiated when the full cell is
charged to 100% SOC. The Mohtat2021 cells will therefore have
a wider margin of negative electrode capacity before the negative
electrode is fully lithiated and lithium plating begins to occur, a
result that can be visually seen in Supplementary Figure S1. Thus,
Mohtat2021 cells should, in theory, be less prone to lithium plating
compared to the Weng2021 cells.

A metric that quantifies the capacity margin before lithium
plating occurs is the negative to positive ratio (NPR). The
differential voltage analysis provides such a metric, known as the
practical NPR, or NPRpractical, which we develop in Section 3.4.2.
The NPRpractical for Mohtat2021 cells was measured to be 1.24,
compared to 1.14 for the Weng2021 cells, confirming that
the Mohtat2021 cells have a higher negative electrode capacity
margin to protect against lithium plating. In order for the
Weng2021 cells to achieve the same NPRpractical as the Mohtat2021
cells, either the positive electrode loading target would need to
decrease, or the negative electrode loading target would need to
increase.

2.4 Electrode manufacturing variability

Turning to Figure 2B, we next show how the differential voltage
analysis outputs can be used to identify differences in electrode
manufacturing variability from batch to batch. We immediately
see that Mohtat2021 cells showed higher variability in the full cell
capacity. The histograms of Q̃n and Q̃p reveal that the origin of the
higher full cell capacity variability stems from the positive electrode
loading, not the negative electrode loading. In fact, the negative
electrode loading for Weng2021 had higher variability compared to
the Mohtat2021 cells, yet this increased variability did not manifest
in the full cell capacity. This result is expected considering the fact
that the practical NP ratio of all cells are greater than one, and
hence, variations in the negative electrode capacities will mainly
manifest in the excess negative electrode capacity rather than the
full cell capacity. Thus, to decrease the full cell capacity variability in
the Mohtat2021 cells, the manufacturer should focus on tightening
the variability in the cathode manufacturing process, not the anode
manufacturing process.

2.5 Parameter correlations

Figure 2B finally presents correlation plots between every
individual output variable of the differential voltage analysis
model. One application of studying correlations is to understand
which electrode-level parameters correlate to full cell capacity
and hence directly impacts measurable cell performance. The
correlation matrix reveals that, within each batch of cells, the
positive electrode capacity correlates to full cell capacity. However,
the correlation breaks when comparing across different batches
of cells since the Mohtat2021 consumed more lithium during
formation (Section 2.2). This result highlights the reality that
multiple cell manufacturing factors, including electrode loadings,
lithium consumption during formation, and the negative electrode
excess capacity, all play a role in determining the full cell capacity.
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Achieving a certain full cell capacity outcome therefore requires
coordinated control across multiple manufacturing processes.

2.6 Summary

In summary, this section highlighted the utility of applying
the differential voltage analysis method to extract electrochemical
metrics at the end of the cell manufacturing line. These metrics
can then be directly used to adjust process upstream manufacturing
process parameters such as those in electrolyte manufacturing or
electrolyte filling. All of the data presented in this section were
directly outputted from the differential voltage method without
needing any electrode-level degradation analysis. Since the method
can run on data collected during battery formation, no additional
work is necessary to extend the analysis to new cells coming off the
manufacturing line, making the method highly scalable.

3 Differential voltage analysis method

3.1 Model selection

Near-equilibrium (i.e., slow-rate) full cell voltage curves have
been widely used to understand dominant cell degradation modes
such as loss of active material (LAM) and loss of lithium inventory
(LLI) (Bloom et al., 2005; Dubarry et al., 2012; Birkl et al., 2017;
Olson et al., 2023). The appeal of these techniques is easy to
appreciate: full cell data is easier and faster to collect than
materials-level characterization data which often requires cell
tear-down and electrode harvesting. Such types of analyses have
been introduced under different names, including differential
voltage analysis (DVA or dV/dQ) (Bloom et al., 2005; Smith et al.,
2011), incremental capacity analysis (ICA) (Dubarry et al., 2012;
Weng et al., 2013; Dubarry and Anseán, 2022), open-circuit voltage
models (Birkl et al., 2017; García Elvira et al., 2021; Schmitt et al.,
2022), and voltage-fitting analysis (Lee et al., 2020b). While all
of these methods rely on full cell voltage curve data, their data
analysis approaches are different. In differential voltage (or dV/dQ)
methods, the voltage is differentiated with respect to capacity
and plotted against capacity. The resulting data reveals peaks and
troughs that can be attributed to either the positive or negative
electrode. In incremental capacity (or ICA) methods, the capacity
is differentiated with respect to voltage and plotted against voltage.
The features observed from ICA are no longer linearly separable,
but through careful data interpretation, distinct degradation modes
can still be inferred (Dubarry and Anseán, 2022). Other variations
of differential analysis have also been recently introduced which
leverage signals such as expansion (Mohtat et al., 2022) and
pressure (Huang et al., 2022), but since these methods require
measurements beyond full voltage, they are omitted from present
consideration.

Since the exact method for extracting the electrode-level
parameters vary from author to author, comparing results across
different papers is complicated. Notably, some authors use full cell
data alone, assigning features of interest and graphically inferring
degradation metrics such as lithium inventory and electrode
capacity losses (Dubarry and Beck, 2021), while others leverage

half-cell “reference curves” (Harlow et al., 2019) to build a model of
the full cell voltage as a function of the electrode-level parameters
(Birkl et al., 2017; García Elvira et al., 2021).

In a battery manufacturing context, a quantitative and
reproducible voltage-based analysis method is needed. The method
must be quantitative in order to resolve minute differences in
manufacturing process parameters which could have large, long-
term consequences to battery performance, lifetime and safety.
The method must also be reproducible in order to scale. Out of
all of the available voltage curve analysis methods, the “voltage
fitting method”, documented by Lee et al. (2020b), provides the
best balance between mathematical rigor and interpretability.
We therefore choose this method as the basis for extracting
electrochemical features for manufacturing diagnostics. Note that,
in this work, we use the words “differential voltage analysis” and
“voltage fitting analysis” interchangeably since they refer to the
same fundamental model construction.

3.2 Model formulation

The differential voltage model seeks to decompose the full cell
near-equilibrium (i.e., open circuit) voltage curve into its constituent
half-cell positive and negative potential curves vs. Li/Li+. The half-
cell curves, also sometimes called “reference curves” (Harlow et al.,
2019), then provide information about thermodynamic states of the
cell, including positive and negative electrode capacities, positive
and negative electrode lithium stoichiometries as a function of the
full cell state of charge (SOC), and the capacity of cyclable lithium
inventory.

We now proceed with a quantitative treatment of the model,
using Figure 3 as a visual guide. The fundamental state equation of
the model is an assertion of voltage conservation between the half-
cell near-equilibrium potentials and the full cell near-equilibrium
potential given by

Vfull (q) = Upos (y) −Uneg (x) , (1)

where Vfull is the full cell near-equilibrium (i.e., open-circuit)
voltage and Upos and Uneg are the positive and negative electrode
near-equilibrium potential curves versus Li/Li+, respectively. q is a
vector of capacities in the full cell domain and is related to the cell
SOC, z ∈ [0,1], by the relation

z =
q

Qfull
(2)

whereQfull is the measured capacity of the full cell. x ∈ [0,1] and
y ∈ [0,1] are vectors of lithium stoichiometries in the negative and
positive electrodes, respectively.Note that x and y are sometimes also
reported as θn and θp by other authors. The lithium stoichiometries
are governed by the half-cell reactions

xLi+ + xe− +C6→ LixC6 (Negative,charging) (3)

LiM→ LiyM+ (1− y)Li+ + (1− y)e− (Positive,charging), (4)

where the first reaction represents the intercalation of lithium
into graphite, and the second reaction describes the release of
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FIGURE 3
Concept illustration of the differential voltage analysis method and the inaccessible lithium problem. (A) The full cell near-equilibrium (‘open circuit’)
voltage curve Vfull (black) plotted alongside the corresponding positive electrode (blue) and negative electrode (red) near-equilibrium potential curves
Upos and Uneg. Parameters with tildes indicate estimated model parameters due to the “inaccessible lithium problem” (see Section 3.3). Gray lines and
variables indicate true model parameters that cannot be ascertained using the native model. (B) The corresponding differential voltage (dV/dQ) curves,
illustrating how full cell dV/dQ peaks can be attributed to features from the positive and negative electrodes.

lithium from any intercalation positive electrode such as (NMC),
nickel cobalt aluminum (NCA), iron phosphate, etc.

Equation 1 assumes that both electrodes are at near-equilibrium,
meaning that the current densities used to acquire the curves
are sufficiently small so that over-potential contributions can
be neglected. Note that while some authors attempt to use
Vfull to extract kinetic information such as resistance increase
(Dubarry et al., 2012), we focus our analysis on extracting only
thermodynamic quantities to limit the number of modeled output
parameters and improve solution uniqueness. To ensure negligible
kinetic effects, Vfull(q) must be collected at a sufficiently slow
rate (see Section 4.1.1). The reference half-cell curves Upos(y) and
Uneg(x) may be obtained experimentally, e.g., via coin cell testing
(see Section 4.1.2).

The terms in Eq. 1 can be mapped to a common, full capacity
basis q. Charge conservation requires that this mapping be affine
(linear plus an offset). We can therefore define the following basis
transformation equations:

x (q) = x0 +
q
Qn

(5)

y (q) = y0 −
q
Qp
, (6)

where Qn and Qp are the total negative and positive electrode
capacities, respectively, and (x0,y0) are the negative and positive
electrode stoichiometries in the fully discharged state. These
equations are derived under the boundary condition that q = 0
corresponds to the fully discharged state, with (x,y) = (x0,y0). Eqs 5,
6 can be inverted to obtain

q (x) = Qn (x− x0) (7)

q (y) = Qp (y0 − y) , (8)

which can be used to map lithium stoichiometries to the shared
capacity basis. Note that, under this construction, q is allowed to
take on negative values. For example, when x = 0, q = −Qnx0 < 0,
according to Eq. 7. Negative q values can be interpreted as
“virtual capacities,” that is, capacity present in the electrodes but is
inaccessible from the perspective of the full cell due to the full cell
minimum voltage constraint.
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We can also define a complementary set of variables describing
the lithium stoichiometries in the fully-charged state, (x100,y100),
which can be written as

x100 = x0 +
Qfull

Qn
(9)

y100 = y0 −
Qfull

Qp
. (10)

Qfull is a known quantity from the full cell data and is not
considered to be a modeled parameter. Hence, (x100,y100) are not
independent model parameters.

In summary, knowledge of four parameters

θ = {Qn,Qp,x0,y0} (11)

provides a complete description of the model from Eq. 1. These
parameters bear physical meaning, since (Qn,Qp) are related to the
total electrode capacities and (x0,y0) predict lithium stoichiometry-
dependent electrode potentials.Thesemodel parameters can then be
used to derive additional electrochemical features relevant to battery
manufacturing diagnostics, as will be described in Section 3.4.

Note that the choice of model parameters are not unique. For
example, {Qn,Qp,x100,y100} is an equally valid set of parameters. For
the remainder of this work, wewill continue to use the {Qn,Qp,x0,y0}
basis with the recognition that themodel can always be reformulated
using another set of four basis states using Eq 9, 10.

The goal of the model is then to identify a unique combination
of model parameters θ that provides the best fit against the
measured voltage data. The optimization problem can be solved by
implementing an error function

E(q:θ) = Upos(y0 −
q (y)
Qp
)−Uneg(x0 +

q (x)
Qn
)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Vfull(q)

−Vmeas (q) , (12)

where Vmeas(q) is the experimentally-measured full cell voltage
curve and the domain of q is now restricted to the full-cell domain
spanning (0,Qfull). The model returns an optimal parameter-set
which minimizes an error function of the form

θopt = arg min
θ
∑
q
(λ|E (q:θ) |2 + (1− λ) |

dE (q:θ)
dq
|
2
). (13)

The first term inside the summation is the voltage error and
the second term represents the differential voltage error. λ ∈ [0,1]
is a weight parameter, i.e., when λ = 1, the contribution from the
differential voltage signal is ignored. The optimization problem can
be solved using standard non-linear least-squares solvers which are
available in most scientific programming languages such as Python
or Matlab. Note that, in Figure 3, plotted full cell voltage data
corresponds to the modeled data, and the measured voltage data is
omitted for simplicity. A real-world comparison of measured versus
modeled full cell voltages is available in Supplementary Figure S1.

Variations the optimization method exist in the literature.
For example, Lee et al. (2020b) set λ = 1 and implemented
additional constraints based on full cell voltage limits, i.e.,
Vmax = Upos (y100) −Uneg (x100) and Vmin = Upos (y0) −Uneg (x0).
With this approach, the model-predicted full cell capacity is

guaranteed to match the measured value. However, solution
convergence becomes more challenging in the presence of these
additional constraints which could make the solution space ill-
conditioned. Dahn et al. (2012b) included the differential voltage
(dV/dQ) curves in the error function to assign preferential weight
the phase transition features (Figure 3B) and to negate the effects
of impedance mismatch between the full cell and coin cell form
factors. However, these dV/dQ methods reported previously are
generally not fully automated, often requiring manually adjusting
model parameters through graphical user interfaces (Dahn et al.,
2012b) and evaluating goodness-of-fit by visually inspecting peak
alignments. Overall, a “one-size-fits-all“ optimization scheme is
not known to exist yet. The specific details of the optimization
may therefore need to be tuned to perform optimally for a given
system.

3.3 Model extension: Accounting for the
inaccessible lithium problem

So far, we have laid the groundwork for the differential
voltage analysis method. In this section, we outline a fundamental
challenge with interpreting and reproducing model outputs known
as the “inaccessible lithium problem.” This issue was alluded to by
Truchot et al. (2014) and recently expanded upon by Lu et al. (2021).
In this section, we first describe how this issue affects interpretation
of the model outputs in a manufacturing context. We then propose
corrections to the differential voltage analysis model to clarify the
interpretation of the model outputs.

The “inaccessible lithium problem” is summarized as follows.
The model state equation assumes that Upos and Uneg are defined
for the entire range of lithium stoichiometries spanning y ∈ [0,1]
and x ∈ [0,1], respectively. Yet, half-cell potential curves are
generally experimentally unattainable over the entire range of
stoichiometries. For example, for layered oxide positive electrode
systems such as NMC, full delithiation would render the host
material thermodynamically unstable, impacting the reversibility of
lithium intercalation reaction. Full lithiation of the layered oxide
particles is also experimentally challenging due to massive kinetic
limitations towards the fully lithiated state (Phattharasupakun et al.,
2021). These kinetic limitations explain why it is so difficult to “fully
discharge” a positive electrode half cell; even when discharging at
small C-rates, the potential tends to rebound above 3 V vs. Li/Li+

after resting.
Near-equilibrium potential data on layered-oxide positive

electrodes can only be feasibly obtained within a restricted
stoichiometry window, which is determined by the voltage limits of
coin cell data collection. Defining ymin and ymax as the minimum
and maximum observable lithium stoichiometry in the positive
electrode, it must be the case that ymin > 0 and ymax < 1. An
analogous situation applies to the graphite negative electrode,
with xmin > 0 and xmax < 1, though the resulting errors from
assuming xmin ≈ 0 and xmax ≈ 1 are generally understood to be
more benign, since lithium transport in graphite is generally more
facile.

To proceed with the analysis, practitionersmust either implicitly
or explicitly assume that the tested range of potentials (e.g., 3.0 V to
4.3 V for layered oxide positive electrodes) correspond to the full
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range of lithium stoichiometries, i.e.,

(xmin,xmax,ymin,ymax) ≈ (0,1,0,1) , (14)

and proceed with the analysis method as described in
Section 3.2. However, this simplification will lead to errors in the
model outputs. To demonstrate the magnitude of this error, we
compare the positive and negative electrode capacities calculated
using differential voltage analysis from Section 2 to the true
electrode capacities, which can be calculated by combining the
theoretical capacities with the cell design parameters, according to:

Q =m ⋅ f ⋅ nfaces ⋅A ⋅Qtheor, (15)

where Q is the electrode capacity in Ah, m is the electrode areal
loading target in g/cm2, f is the mass fraction of active material in
the electrode, nfaces is the number of active electrode faces, A is the
electrode area per face, excluding overhanging regions, in cm2, and
Qtheor is the theoretical capacity of the material in Ah/g.

The resulting calculations, summarized in Table 1, show that
the estimated positive electrode capacity is only 54% to 55% of
the true positive electrode capacity, while the estimated negative
electrode capacity is 87% to 89% of the true negative electrode
capacity. This result was demonstrated on both the Mohtat et al.
(2021) and the Weng et al. (2021) datasets, suggesting some level of
generality. The gross underestimation of positive electrode capacity
can be primarily attributed to the fact that the layered oxide
Ni0.33Mn0.33Co0.33 positive electrode material used in these works
retain significant lithium inventory even above the coin cell upper
cut-off potential of 4.3 V vs. Li/Li+, and consequently, ymin ≫ 0.

We thus conclude that ignoring the inaccessible lithiumproblem
(Eq. 14) will likely lead to inaccurate reporting of true electrode
capacities and stoichiometries, especially for layered oxide positive
electrode materials such as NMC. This issue could affect the
ability to directly use modeled electrode capacities to convert into
electrode loadings using Eq. 15. Unfortunately, the inaccessible
lithium problem is a fundamental limitation of the coin cell data
collection process used to initialize Vpos and Vneg in the model.

Knowing that the inaccessible lithium problem can lead to large
errors in the model outputs (x,y,Qn,Qp), we reformulate the model
by defining ‘tilde’ variables (x̃, ỹ, Q̃n, Q̃p), to represent estimated
parameters. The state equation can then be re-written as:

Vfull (q) = Upos (ỹ) −Uneg (x̃) (16)

where

x̃ (q) = x̃0 +
q
Q̃n

(17)

ỹ (q) = ỹ0 −
q
Q̃p
. (18)

This modified system is identical to the original system, but
recognizes the fact that the modeled lithium stoichiometries and
electrode capacities may, in general, be different from the true values
which are not observable due to the limitations in coin cell data
collection for Upos and Uneg.

The estimated parameters can then be related to the true
parameters by the following relations:

Q̃p = Qp (ymax − ymin) (19)

Q̃n = Qn (xmax − xmin) (20)

ỹ0 − ỹ100 =
y0 − y100

ymax − ymin
(21)

x̃0 − x̃100 =
x0 − x100

xmax − xmin
. (22)

This system of equations has more unknowns than equations,
highlighting the difficulty in recovering the true parameters from
the model alone. Ideally, the true lithium stoichiometries may
be experimentally measured, e.g., via inductively coupled plasma
optical emission spectroscopy (ICP-OES) (Kasnatscheew et al.,
2016). True capacities may also be calculated using information
about the electrode design (Eq. 15). Without more measurements,
further assumptions are needed to fully resolve the estimated model
parameters, e.g., x̃100 ≈ x100 and ỹ0 ≈ y0.

Despite the data interpretation challenges introduced by the
inaccessible lithium problem, we highlight several applications of
the model outputs which remain unaffected by this problem. First,
calculations of differences in electrode capacities are not affected.
This is because the error terms in Eqs 19, 20 cancel when taking
ratios of capacities. This fact explains why literature reports of losses
of active material (LAM) and our analysis of electrode capacity
loading differences from Section 2.1 are still valid even though the
inaccessible lithium problem may render absolute values of Qn and
Qp inaccurate. Second, the inaccessible lithium problem also does
not impact the process of searching for an optimal set of model
parameters (Eq. 12) since the domain for optimization is strictly
only within the full cell capacity window, i.e., q ∈ (0,Qfull). Missing
data beyond the limits of the observable full cell voltage data is
therefore inconsequential to the optimization.

Overall, the inaccessible lithium problem effectively introduces
an optional post-processing step in which the model output
parameters may be converted into true parameters using Eqs 19–22.
This final step would require additional input not provided for by
the differential voltage model. Yet, even without knowing the true
model parameters, the estimated model outputs remain useful for
estimating differences in parameters such as electrode capacities.
The main contribution of the model extension, including the
introduction of the tilde variables, is thus to clarify that the model
outputs must be interpreted as estimates of the true values due to the
limitations in constructing Upos and Uneg from data.

3.4 Extended model outputs for
manufacturing diagnostics

This section defines and discusses several additional
electrochemical features relevant for battery manufacturing process
control: the lithium consumed during formation (Q̃SEI) the
practical negative-to-positive ratio (NPRpractical) and the total
cyclable lithium inventory (QLi). These features can be calculated
directly from the optimized parameters of the modified model
θ̃opt = {Q̃n, Q̃p, x̃0, ỹ0}. In light of the previous discussion on the
“inaccessible lithium problem”, we make a distinction between
estimated model parameters, denoted with tildes, and true model
parameters. To aid understanding, expressions in this section will be
given for both true values and estimated values, where appropriate.
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TABLE 1 Comparison of (A) electrode theoretical areal capacities versus (B) practical areal capacities derived from the differential voltage analysis. The
capacities predicted by the differential voltage analysis are lower than the theoretical values due to the ‘inaccessible lithium problem’ (Lu et al., 2021).

Positive electrode Negative electrode

Source Mohtat 2021 Weng 2021 Mohtat 2021 Weng 2021

Number of active faces 28 14 28 14

Area per face (cm2) 79.20 79.20 79.56 79.56

Loading (mg cm−2) 18.50 17.23 8.55 7.85

Theoretical capacity (mAh g−1) 279.5 279.5 372 372

Active material fraction 0.94 0.94 0.95 0.97

Total capacity (Ah) 10.78 5.02 6.73 3.16

(A) Capacity, theoretical (mAh cm−2) (Q) 4.86 4.53 3.02 2.83

(B) Capacity, from fitting (mAh cm−2) (Q̃) 2.66 2.46 2.70 2.46

Percent of theoretical capacity observed (Q̃/Q) 55% 54% 89% 87%

3.4.1 Lithium consumed during formation
The capacity of lithium consumed during formation, Q̃SEI,

is analogous to the first cycle Coulombic efficiency metric
(Mao et al., 2018), defined as ratio of discharge and charge capacity
during formation. However, unlike Coulombic efficiency, which
requires slow-rate charge-discharge cycles to calculate, Q̃SEI provides
a consistent measure of lithium consumption even when the
formation protocol consists of complex charge-discharge cycles
involving multiple C-rates and partial SOC windows, as is the
case with modern formation protocols (An et al., 2017; Wood et al.,
2019). Conveniently, since Q̃SEI can be obtained through the analysis
of voltage data after formation completes, this metric enables the
recovery of information about lithium consumed during formation
even if formation data is missing.

We define the estimated capacity of lost lithium inventory due
to formation, Q̃SEI, as

Q̃SEI = q (xmin) − q(ymax) (23)

= q (x̃ = 1) − q (ỹ = 0) . (24)

This formula can be understood by considering that, before
formation, the positive electrode stoichiometry is at its highest value,
ymax, since all of the cyclable lithium has not yet left the positive
electrode. For the same reason, the negative electrode stoichiometry
is at its lowest value, xmin. After formation completes, the lithium lost
to the SEI will not return to the positive electrode during discharge,
causing the highest possible stoichiometry value in the positive
electrode to decrease by q (xmin) − q (ymax). Eq. 23 can alternatively
be interpreted as the capacity of unoccupied lithium sites in the
positive electrode when the negative electrode is fully delithiated.

We note that the calculation assumes that the positive electrode
voltage curve and capacity is unchanged during formation. Previous
studies have shown that this assumptionmaynot be true (Kang et al.,
2008), which would introduce another error contribution to this
calculation which warrants further studies. From a manufacturing
standpoint, if the positive electrode system is known to be the same
frombatch-to-batch, then Q̃SEI may still be used to detect differences
in the SEI formation process.

3.4.2 Re-interpreting the negative to positive
ratio

The negative to positive ratio (NPR) is a common term used in
battery design and generally refers to the ratio of negative to positive
electrode capacities. The optimization of NPR is sometimes referred
to as ‘capacity balancing’ (Reuter et al., 2019), not to be confused
with the process of balancing series-connected cells. Conventional
wisdom suggests that the NPR be must greater than one to prevent
over-lithiation of the negative electrode during charging. Increasing
NPR also implies less utilization of the negative electrode, which
could be advantageous in silicon-containing systems where volume
expansion is a major contributor to cycle life degradation (Luo et al.,
2022). However, increasing the NPR requires putting in more
negative electrode active material into the cell without increasing
usable energy content, which decreases the cell energy density.
Adding more negative electrode loading could also increase the
surface area for SEI reactionswhich could be detrimental to calendar
life. The NPR is therefore a critical cell design metric that should be
optimized and tracked during manufacturing.

In this section, we first review the most commonly-held
definition of the NPR and identify some conceptual gaps preventing
a clear interpretation of thismetric.We then propose a revised,more
practical definition of the NPR which enables a more physically-
grounded assessment of the lithium plating risk.

3.4.2.1 Issues with conventional definitions of NPR
To begin, consider a common definition of the NPR based on

areal loadings and theoretical electrode capacities:

NPRtheor =
mnQn,theor

mpQp,theor
. (25)

In this equation, mn and mp are the electrode active material
mass loadings in grams, and Qn,theor and Qp,theor are the theoretical
capacities in units of mAh/g. Applying this formula to the
example Ni0.33Mn0.33Co0.33|graphite systems from Mohtat et al.
(2021); Weng et al. (2021) yields calculated NPR values of 0.62
for Mohtat2021 and 0.63 for Weng2021 (Table 1). This result
would suggest that these cells designs have undersized negative
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electrode capacities and are at risk for lithium plating. However,
this assessment assumes that all of the theoretical capacity
of the Ni0.33Mn0.33Co0.33 positive electrode (279.5mAh/g) can
be utilized, which is not true due to the inaccessible lithium
problem (Section 3.3). This definition of NPR, while theoretically
valid, is therefore not practically useful in a manufacturing
context.

Repeating the calculation but using the estimated values Q̃n and
Q̃p to define

NPRconventional =
Q̃n

Q̃p
(26)

leads to yet another definition of NPR found in literature.
This definition partly excludes the inaccessible lithium in the
positive electrode since Q̃p and Q̃n are bounded by observable
potentials in the coin cell data used to construct Upos and Uneg,
respectively. However, this definition remains ambiguous because
the calculated value of NPR will change based on the choice of
potential ranges chosen for the half-cell reference potential curves
which can vary across different datasets. NPR definitions based on
(Q̃n, Q̃p) therefore do not guarantee reproducibility across different
authors and datasets.

3.4.2.2 Definition of practical NPR
In this section, we develop a practically relevant and consistent

definition of the NPR, which we call “Practical NPR.”We first return
to the original motivation of comparing relative loadings of positive
and negative electrode capacities from a cell design perspective,
which is to determine whether the negative electrode will become
over-lithiated when the cell is fully charged to 100% SOC. A sensible
boundary condition is to set the NPR equal to unity if the negative
electrode is completely lithiated when the full cell is at 100% SOC
(i.e., x100 = 1). An NPR greater than 1 would then indicate that
there exists some excess negative electrode capacity at 100% SOC,
which can serve as a margin to protect again lithium plating during
charge.

Under this construction, we realize that a practical NPR
definition must then be dependent on two factors: the voltage
at which 100% SOC is defined, and how much lithium was
consumed during formation. The voltage at which 100% SOC
is defined becomes relevant since higher voltages requires more
utilization of both the positive and the negative electrodes, thereby
decreasing the excess negative electrode capacity. How much
lithium was consumed during formation becomes relevant because
more lithium consumed during formation decreases the negative
electrode lithium stoichiometry in the fully charged state, x100,
which effectively increases the negative electrode excess capacity.
In fact, since SEI formation continues over the life of the cell,
x100 will continue to decrease, which will effectively increase
the negative electrode excess capacity over life. Loss of negative
active material, on the other hand, could have the opposite
effect by shrinking the negative electrode curve (Dubarry et al.,
2012).

Overall, a practical NPR definition cannot be a static metric, but
one which changes after formation and over the life of a cell based
on the competition between different degradation modes such as
lithium inventory loss and active material loss.

TABLE 2 Comparison of various definitions of negative to positive ratio
(NPR). Numerical values showmean ± standard deviation. Values were
calculated based on differential voltage analysis results performed on the
datasets fromMohtat et al. (2021); Weng et al. (2021).

Definition NPRtheor NPRconventional NPRprac

Equation mnQn,theor

mpQp,theor

Q̃n

Q̃p
1+ Q̃n,excess

Qfull

Ref Eq. 25 Eq. 26 Eq. 27

Excludes inaccessible lithium? N Y Y

Considers effect of lithium lost to SEI? N N Y

Mohtat et al. (2021) 0.62 1.02 ± 0.009 1.14 ± 0.009

Weng et al. (2021) 0.63 1.00 ± 0.014 1.24 ± 0.013

Given the above realizations, we now define the Practical NPR
as

NPRpractical = 1+
Q̃n,excess

Qfull
, (27)

where

Q̃n,excess = q(xmax) − q(x100) (28)

= q (x̃ = 1) − q(x̃100) (29)

represents themeasured excess capacity in the negative electrode
when the cell is fully charged. The Practical NPR correctly accounts
for the sensitivity to the full cell upper cutoff voltage window,
where increasing voltagewindows leads to decreasingNPRs (i.e., less
protection against lithium plating). The definition is also sensitive
to changes in the electrode stoichiometries (x100) over life, and is
therefore able to account for the increase in the Practical NPR over
life as lithium loss shifts x100 to lower values over life.

Applying the Practical NPR definition to the dataset from
Weng2021 and Mohtat2021, yields values of 1.14 and 1.24. This
calculation shows that, after formation, the Mohtat2021 cells have
more negative electrode excess capacity than the Weng2021 cells.
The difference between the calculated practical NPRs can be
attributed to more lithium consumed during formation for the
Mohtat2021 cells (Section 2.2), which increased the negative excess
capacity (Section 2.3). By contrast, none of the other definitions
of NPR could distinguish this fact, since those definitions do not
consider the lithium lost during formation.

A summary comparison of different NPR calculation
methodologies is provided by Table 2.

3.4.3 Total cyclable lithium inventory
The total cyclable lithium inventory in the system is imperative

to track over life, since lithium inventory depletion is a primary
reason for capacity loss in standard lithium-ion batteries (Birkl et al.,
2017; Dubarry and Anseán, 2022). Lee et al. (2020b) proposed that
the total cyclable lithium inventory can be accounted for from the
equation

Q̃Li = x̃0Q̃n + ỹ0Q̃p. (30)
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In this equation, the first term captures the lithium trapped in the
negative electrode due to the full cell minimum voltage constraint.
Meanwhile, the second term includes both the cyclable lithium
within the full cell operating voltage window and the inventory
of lithium above the full cell maximum voltage. To gain a deeper
intuition into Eq. 30, we can rewrite the same equation on the basis
of the shared capacity vector q as

Q̃Li = [q(ymin) − q(y100)]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
V>Vmax

+ [q(y100) − q(y0)]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Cyclable

+ [q(y0) − q (xmin)]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
V<Vmin

(31)

= q(ymin) − q (xmin) . (32)

Eq. 31 shows that the total lithium inventory consists of three
components: the lithium available in the positive electrode above the
full cell upper cut-off voltage (first term), the lithiumavailablewithin
the full cell voltage window (second term), and the lithium available
in the negative electrode below the full cell lower cut-off voltage
(third term). Note that if xmin ≈ 0 is assumed, then the third term
drops out and QLi becomes simply a statement of the total lithium
inventory remaining in the positive electrode after discounting for
lithium lost to the SEI. By combining Eqs 23, 32, it can be verified
that

Q̃p = Q̃Li + Q̃SEI, (33)

which clarifies the fact that all of the lithium inventory in the
system originates from the positive electrode.

3.4.4 Note on degradation diagnostics: From
absolute capacities to capacity losses

The differential voltage analysis method may be repeated on
full cell voltage datasets collected over the course of a cycle life or
calendar aging test for the aged cell system. Taking {Q̃′n, Q̃

′
p, Q̃
′
Li} to

bemodel outputs from the aged cell, the following familiar quantities
can be defined (Sulzer et al., 2021):

LAMNE = 1−
Q̃′n
Q̃n

(34)

LAMPE = 1−
Q̃′p
Q̃p

(35)

LLI = 1−
Q̃′Li
Q̃Li
, (36)

where LAMPE is the loss of active material in the positive
electrode, LAMNE is the loss of active material in the negative
electrode, and LLI is the loss of lithium inventory. Conveniently,
these equations are equally valid for both true model parameters
(e.g.,Q) and observed model parameters (e.g., Q̃), and therefore, the
‘inaccessible lithium problem’ introduced in Section 3.3 does not
affect the numerical outcome of the study of capacity losses over the
lifetime of a cell.

Finally, we note that the definition of lithium inventory loss
given by Eq. 36 does not provide any information on where the

lithium is physically lost. It is generally understood that a primary
pathway for lithium loss is through electrolyte reactions at the
negative electrode to form the SEI. However, lithium can also be
irreversibly trapped in the negative and positive electrodes due to
electrical isolation of particles, which could occur either due to
physical fracturing of active material particles (Yang et al., 2012;
Zhou et al., 2019; Liu A. et al., 2021) or islanding of entire particles
due to loss of adhesion to the binder material (Müller et al., 2018).
A more general expression for the loss of lithium inventory can be
expressed as the sum of lithium trapped in each component:

LLI = LLIpos + LLIneg + LLISEI + LLIplating. (37)

In this equation, the first two terms represent lithium trapped
inside lithiated but electrically-isolated positive and negative
electrode particles, the third term represents the lithium trapped
in the negative electrode SEI (Sulzer et al., 2021), and the last term
represents dead lithium lost to lithium plating (Yang et al., 2017). It
is important to recognize that differential voltage analysis cannot
be used to decompose QLi or LLI into their constituent parts.
Differential voltage analysis thus only reveals the quantity of lithium
lost without providing information about where the lithium was
lost. This limitation is fundamental to the technique, since different
breakdowns ofQLi yield identical voltage features (Birkl et al., 2017).
More advanced, materials-level characterization, will be needed to
fully understand the sources of lithium loss.

4 Discussion

4.1 Data collection considerations

Collecting high-quality lab data is a starting point for ensuring
that the differential voltage analysis results are reproducible. We
therefore dedicate this section to discussing basic experimental
considerations to enable reproducible differential voltage analysis for
a given cell chemistry, using Figures 4, 5 as guides.

4.1.1 Obtaining full-cell near-equilibrium
potential curves

Differential voltage analysis requires the cell voltage curves to
be collected at near-equilibrium conditions so that kinetic effects
may be ignored. Without an assumption of near-equilibrium, Eq. 1
would require additional terms to capture overpotential effects,
complicating the analysis. A natural question that follows is “at what
C-rate does the voltage data needed to be collected at to constitute
near-equilibrium conditions?” This question is especially salient in
battery manufacturing contexts, where the speed of diagnostic tests
need to be as fast as possible.

In work by previous authors, C-rates ranging between C/20
and C/30 are most commonly used to obtain voltage curves at
near-equilibrium conditions. For example, Dubarry and Baure
(2020) used C/25 curves for both differential voltage analysis and
incremental capacity analysis, Lu et al. (2021) used C/30 curves, and
Keil et al. (2016) used a fixed current value which translated into
C-rates ranging between ∼C/10 and ∼C/30, depending on the cell
type.

Using our own datasets, we studied the effect of C-rate
on the shape of the voltage and differential voltage curves in

Frontiers in Energy Research 12 frontiersin.org

https://doi.org/10.3389/fenrg.2023.1087269
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Weng et al. 10.3389/fenrg.2023.1087269

FIGURE 4
Full cell data collection example for differential voltage analysis. (A,C) Full-cell constant-current charge curves collected at C-rates ranging between 1C
and C/100 and their corresponding differential voltage curves. (B,D) The same curves, but collected on discharge. Q0 is the nominal cell capacity
(2.5 Ah). An arbitrary offset α has been added to each dV/dQ curve for clarity.

Figure 4. Panel A shows an example charge dataset collected on
an Ni0.6Mn0.2Co0.2|graphite system, with C-rates ranging between
1C and C/100. The result shows that the C/20 charge rate achieves
a capacity of 2.50 Ah, which is within 1% of the capacity of
2.5 2Ah measured at C/100. The corresponding differential voltage
curves, shown in Panel C, shows that the C/20 rate provides
peak features that are closely aligned with the near-equilibrium
limit at C/100. (Note that, in this panel, each line is offset by an
arbitrary constant α for clarity.) Therefore, in our dataset, C/20
appeared to be a reasonable C-rate to capture a near-equilibrium
condition.

While C-rates ranging betweenC/20 andC/30 appear to provide
viable input datasets for past work, this result may not always be
true for all cell types in manufacturing. Notably, cells having higher
energy densities may experience more kinetic limitations, and cells
having larger form factors could experience more electrode-level
lithium concentration heterogeneities. In both cases, even slower
C-rates may be required to resolve the features in the differential
voltage plots.Work byMohtat et al. (2020) further suggested that the
performance of voltage fittingmethods deteriorates at higherC-rates
due to peak smearing. Overall, more work is needed to quantify the
effect of C-rate on the analysis outputs as well as the generalizability
of C-rate setpoints across different cell chemistries and cell
designs.

The directionality of charge must also be considered.
Figures 4B, D show that the voltage and dV/dQ features on
discharge are, similar, but not identical, to those on charge. At C/100,
the low-SOC peaks, which correspond to graphite features, appear
to have sharper peaks on discharge. An additional peak also appears
in the discharge data, which can be attributed to the graphite 2 L
staging reaction (see Figure 5C). Practically speaking, the presence
of the charge-discharge asymmetry suggests that the differential
analysis outputs may be different depending on whether the charge
or discharge curves are used. The extent of these differences should
be further studied, which we leave as future work.

4.1.2 Obtaining half-cell near-equilibrium
potential curves

Electrode near-equilibrium potential curves can either be
obtained experimentally from scratch using coin cell testing
(Murray et al., 2019; Hu et al., 2021) or downloaded from open-
access databases such as LiionDB (Wang et al., 2022). In either case,
due caution is necessary for several reasons.

First, the majority of datasets report half-cell potentials versus
lithium stoichiometries, but since there is no common voltage
range setting, different half-cell datasets will lead to different
modeled outputs for electrode capacities and stoichiometries (see
Section 3.3).
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FIGURE 5
Half-cell data collection example for differential voltage analysis. (A,C) Graphite|lithium half-cell lithiation and delithiation curves and their
corresponding different voltage curves. (B,D) Ni0.33Mn0.33Co0.33|lithium half-cell lithiation and delithiation curves and their corresponding differential
voltage curves. All data is measured at C/50. To indicate reproducibility, data from two consecutive charge-discharge curves have been provided
(except for the graphite delithiation curve). The direction corresponding to full cell charging is indicated by a red arrow.

Second, the experimental procedures used to obtain the curves
may differ, with some authors using continuous currents, while
other authors obtaining ‘quasi-static’, or ‘pseudo-OCV’ curves, by
combining data collected after some voltage period at each SOC,
similar to the galvanostatic intermittent titration (GITT) technique
(Chen et al., 2020). While the latter method could theoretically
provide a more accurate near-equilibrium potential curve, fewer
data points are typically collected to ensure the test finishes within
a reasonable time. As a result, some characteristic features related to
phase transitions in the negative electrode may be lost (Hess, 2013).

A third reason for exercising caution when using half-cell
data obtained from literature is that the current direction is
sometimes not reported, yet current direction materially impacts
the features seen in the voltage curves. Figure 5 shows that the
current direction influences the voltage (and differential voltage)
features for both a graphite negative electrode (Panels A,C) and
an Ni0.33Mn0.33Co0.33 positive electrode (Panels B,D). At the
negative electrode, a hysteresis gap between the lithiation and the
delithiation curves exists, which persists across consecutive charge-
discharge cycles. The characteristic differential voltage feature
occurring at ∼2.3 Ah, corresponding to the stage 2 transition,
is sharper and higher in magnitude in the lithiation direction.
The staging reactions 2 through 4 are also distinctly different. In

particular, the staging reaction 2L appears sharper on lithiation
and the stage 4L reaction appears sharper on delithiation (Hess,
2013).

At the positive electrode, a large kinetic limitation is observed at
the end of the lithiation curve, causing the lithiation capacity to be
measurably lower than the delithiation curve across multiple cycles.
The observation of poor kinetics during lithiation of the positive
electrode has been experimentally confirmed by Kasnatscheew et al.
(2016) and thoroughly discussed in Phattharasupakun et al. (2021).
Overall, charge-discharge asymmetry exists at the material level
for both the positive and the negative electrodes. For high-fidelity
differential voltage analysis, the current direction used to obtain the
electrode potential curves should be aligned against what is used
for the full cell. Doing so will improve the model’s ability to fully
describe the full cell voltage curve using the electrode potential
curves.

4.1.3 Data logging frequency and data smoothing
The data logging rate and filtering method will affect the

smoothness of the collected voltage curves and its derivatives.
It is generally recommended to over-sample than under-sample
to minimize data loss. Noise in the over-sampled data can be
overcome by post-processing the data using filtering methods.

Frontiers in Energy Research 14 frontiersin.org

https://doi.org/10.3389/fenrg.2023.1087269
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Weng et al. 10.3389/fenrg.2023.1087269

A common approach is to use a Savitzky and Golay (1964)
filter which is included as part of most scientific programming
languages. Note, however, that the process of selecting filtering
parameters, such as window size and polynomial order, may
introduce distortions in the data, decreasing the reproducibility
of modeled results (Feng et al., 2020; Lu et al., 2021; Schmid et al.,
2022). To improve model reproducibility, more studies are
needed to understand the degree to which data filtering
strategies impact model outputs, which we leave as future
work.

4.2 Comments on factory deployment

Here, we summarize how a battery manufacturer might deploy
the differential voltage analysis method in the battery factory
for online process control and quality control applications. We
also highlight the remaining knowledge gaps that may prevent
deployment today which warrant further research.

Enabling the differential voltage analysis in manufacturing
requires both half-cell and full-cell data collection. The half-cell
data only needs to be collected once. The data, once vetted, can
be stored as part of the model input parameters and be re-used to
analyze all full cell data belonging to the same family of positive and
negative electrodematerial sets, e.g., across multiple cell batches and
production lines.

The largest barrier to method deployment is then in the
acquisition of the full cell near-equilibrium data. As discussed
previously, current methods for differential voltage analysis
generally require around 20 h in order to collect the full cell voltage
trace. If the measurement method is to be deployed on every
cell coming out of formation, then the production throughput
will decrease. Considering that the industry trend is to decrease
formation times (Wood et al., 2019), any additional process that will
make the total time on test longer may be untenable.

To improve the adoption of the method, we propose several
pathways. First, rather than collecting the full cell voltage data after
formation, the voltage data during the formation process itself may
be processed for differential voltage analysis. To our knowledge, this
method has yet been reported in academic literature, and is the
subject of future work.

Second, a study should be conducted to understand the
influence of higher C-rates on the modeled parameters. Historically,
some of the challenges with differential voltage analysis arose in the
analysis of aged cells, where the effective current density increases as
the cell capacity decreases. For example, at 50% capacity retention, a
“C/20” charge step would only take approximately 10 h to complete
since the C-rate is defined with respect to the nominal (pristine)
cell capacity. In battery manufacturing, we are only concerned
with studying the electrochemical state of the pristine cells without
consideration for aging. Hence, the C-rates traditionally thought
to be necessary to enable differential voltage analysis may be too
conservative in a manufacturing context. A future study of the
influence of C-rate on the modeled electrochemical parameters will
provide some necessary guidance in this direction.

Finally, not every cell may need to be fingerprinted. For example,
retaining and measuring several dozen cells (out of hundreds

of thousands built per day) could provide enough statistical
information to track day-to-day changes in electrochemical process
parameters. These measurements can still be made on formation
equipment, and would only require a small, dedicated number
of formation cyclers, to be withheld for this purpose. This
partitioning method can also encourage the adoption of more
advanced characterization methods such as computed tomography
(CT) (Wu et al., 2018; Bond et al., 2022; Gauthier et al., 2022),
ultrasound imaging (Bommier et al., 2020; Deng et al., 2020), and
strain measurements (Mohtat et al., 2022). Measuring all of these
parameters on the same cell could enable a more complete
perspective on the cell electrochemical and mechanical state,
enabling deeper insights.

4.3 Improving method reproducibility

Besides logistical challenges of deployment, another major and
perhaps larger obstacle preventing adoption of the differential
voltage method is the difficulties with implementation and
interpretation ofmodel outputs.These difficulties stem froma lack of
literature guidance on a standard, rigorousmethod to implement the
fitting model and an absence of understanding of how sensitive the
model outputs are to small differences in input datasets, including
both full cell and half cell data. This work sought to clarify the
model interpretation by enabling a quantified understanding of
model errors due to the inaccessible lithium problem (Section 3.3).
We also discussed elementary data collection considerations needed
to enable a working model (Section 4.1).

Several avenuesmay be taken to further improve reproducibility
of the electrochemical features derived from the differential voltage
analysis method. First, model input sensitivities need to be
better understood. This work introduced several input sensitivity
considerations includingC-rate and current direction (charge versus
discharge). However, a discussion on sensitivity to temperature was
not covered by this work. Moreover, a quantitative assessment of
the input-output sensitivities have not yet been completed. A logical
next step is thus to quantify model output differences due to these
differences in model inputs.

Another important consideration involves understanding the
optimizer’s ability to find the optimal solution θopt. Reproducibility
requires that there exists a global minimum value of the error
function defined by Eq. 12 and that the optimizer can converge
to this value. However, in general, neither condition is guaranteed
since the objective function is, in general, non-convex. The
solution uniqueness for the positive electrode parameters Q̃p
and y0 may be especially challenging for NMC systems which
are relatively featureless (Figure 3). Some past efforts have been
made to understand how model output parameter uncertainty
increased as the data collection voltagewindowdecreased (Lee et al.,
2020a). These studies should be expanded. A better understanding
here will enable practitioners to quantify how much of the
variability in model-predicted outputs, such as those shown in
Figure 2, are due to true manufacturing variability versus model
uncertainty.

Finally, it must be recognized that all of the electrochemical
features extracted using the differential voltage model are estimates
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of the true values (Section 3.3). Experimental verification of model-
predicted outputs, such as positive electrode capacity, negative
electrode capacity, lithium lost to SEI, cyclable lithium inventory,
and negative to positive ratios, can be challenging to obtain, but may
be necessary to obtain confidence in themodel-predicted outcomes.

5 Conclusion

This work clarified how the differential voltage analysis method
can be automated to improve online battery manufacturing process
control. Using an example manufacturing dataset, we demonstrated
how modeled outputs, such as positive and negative electrode
capacities, lithium lost to form the SEI, and negative to positive
ratios, can be used to gain insight into the sources and consequences
of manufacturing variability. In our example, we found that the
source of variability in full cell capacity for one batch of cells is
due to variations in positive electrode loadings. We also detected a
three-fold difference in the amount of lithium consumed to the SEI
between twodifferent cell batches, a conclusionwewere able tomake
without observing any data from the formation cycles or using any
destructive analytical methods.

To facilitate adoption of the differential voltage analysis method
inmanufacturing, we detailed themathematical formalism required
to implement the method as well as the input data requirements. We
extended the basemodel formulation to explicitly account formodel
parameter errors due to the inaccessible lithium problem. Using the
reformulated model, we defined an expanded set of electrochemical
features which included the lithium consumed during formation,
the practical NP ratio, the excess negative electrode capacity, and
the total cyclable lithium. When combined, these features provide a
“fingerprint” of the electrochemical state of the pristine cell which
can be used to adjust parameters in various manufacturing steps
including electrode manufacturing and the formation process.

Besides clarifying the model implementation details, this
work also recognized the importance of obtaining high-quality
experimental data, which includes both full cell and half-cell data,
to enable reproducible results. We identified several basic data
collection considerations, including the C-rate, current direction
(charge versus discharge), and data smoothing method, as being
potential factors affecting model output reproducibility.

With an improved awareness of the nuances involved with
model construction, model output interpretation, and data
collection, the battery community can be better positioned to
deploy the differential voltage analysis method in factories, driving
continuous improvement in the battery manufacturing process.
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