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The increasing penetration of renewable energy introduces more uncertainties and
creates more fluctuations in power systems. Conventional offline time-domain
simulation-based stability assessment methods may no longer be able to face
changing operating conditions. In this work, a graph neural network-based online
transient stability assessment framework is proposed, which can interactively work
with conventional methods to provide assessment results. The proposed framework
consists of a feature preprocessing module, multiple physics-informed neural
networks, and an online updating scheme with transfer learning and central
moment discrepancy. The t-distributed stochastic neighbor embedding is used to
virtualize the effectiveness of the proposed framework. The IEEE 16-machine 68-bus
system is used for case studies. The results show that the proposed method can
achieve accurate online transient stability assessment under changing operating
conditions of power systems.
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1 Introduction

The stable and reliable operation of the power system is essential to the economy and social
development of our society. Even though power systems around the globe have been mostly
working properly and stably for the past several decades, the current systems are under new
challenges and the risk of widespread blackouts is increasing. The first challenge is climate
change. The frequency of server weather events, such as hurricanes, extreme heat, or cold
weather, is increasing. The power systems may directly get damaged by these events and led to
N-1, N-2, or worse conditions. The historical heavy rainstorm in the Chinese city of Zhengzhou
led to multiple losses of transmission lines. Or the power systems may have to operate with
lower safety margins and in near-limit conditions to accommodate the cooling or heating load
peaks. To fight climate change, countries around the world reached the Paris Agreement for
low-carbon and green transitions to reduce carbon dioxide emissions. Renewable energy
generation resources, such as wind and solar generations, have been installed in power
systems at various voltage levels. A lot of them are distributed small resources that are
behind-the-meter. These resources are not directly observable to the system operator
through monitoring systems, like SCADA, but will respond to dynamic and fast-changing
weather conditions. This led to the second challenge, which is the complex, uncertain, changing
operating conditions, from the generation side to the load side. The third challenge is the aging
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infrastructure, which is considered as the main cause of outages in the
United State (Bie et al., 2017). These led to unpredicted equipment
failures. The stable operation of the current power system is challenged
by the above factors. A new transient stability assessment framework is
needed with fast assessment speed, high accuracy, and online updating
capabilities.

The most reliable transient stability assessment method is the
time-domain simulations (TDS). TDS-based methods can achieve the
most accurate results with well-defined, detailed simulation models of
power systems. Various commercial simulation software have been
developed and adopted by the industry and regulation agencies for
grid stability studies, such as PSS®E, PowerWorld, and PSD-BPA.
Many parallel computing or various time-step simulation techniques
have also been developed (Liu et al., 2019). However, the TDS is also
very time-consuming. To generate the stability assessment result of a
single test case may take seconds or minutes, even with a high-end
computation platform. Therefore, the transient stability assessments
of all N-1 cases for a given region system is only performed during the
planning stage or for long-term studies with typical summer and
winter cases. For online moving screening, only the most important
test cases can be studied. Under the high penetration of renewable
energy resources, the system operating conditions is consistently
changing, the several cases can no longer be able to cover enough
number of important cases. A Faster online transient stability
assessment technique is needed.

Another category of transient stability assessment method is the
energy function-based methods. These methods have a long history.
They were developed in 1960s and 70s when the memories of
computers were too small to handle all of the parameters of TDS.
Energy function-based methods compare the transient energy during
disturbances with critical energies of the system to assess the stability.
The critical energy values are very hard to compute for real systems.
Methods, such as closest unstable equilibrium point (UEP),
controlling UEP, or potential energy boundary surface or BCU,
have been used to approximate the critical energy values (Chiang
and Thorp, 1989; Chiang et al., 1994; Chiang, 2011). Even though the
energy function-based method can provide the fastest assessments, the
results are considered over conservative and inaccurate. Because it can
not model the complex high-order dynamics, especially for power
electronics devices, and hard to compute lossy systems.

With the development of data-driven artificial intelligence and
machine learning-based technologies, a new potential solution for fast
and accurate transient stability assessment is emerging. Many works
have been using the support vector machine methods or neural
network-based learning algorithms to achieve the fast online
assessment of transient stability (Che et al., 2020) – (Gupta et al.,
2019). These methods are supervised learning methods. In the current
works, the TDS is used to generate the training and testing set with
label samples. The algorithms are trained offline and implemented
online. In (Che et al., 2020), the support vector machine is
implemented to estimate the region of attraction of the post-fault
system. Ref (Yan et al., 2021) proposed to use of the information
entropy to rank the value of training samples and improve the learning
efficiency. A graph convolutional neural network and long-short-term
memory network-based multi-task transient stability assessment
framework were proposed in (Huang et al., 2020), which utilizes
the time sequence data handling capability of recurrent structure to
extract information from post-fault states. In (Yan et al., 2019), an
online batch processing framework is proposed, in which the

convolutional neural network can work with TDS to perform
online transient stability assessment tasks. These works show the
good potential of implementing the deep learning-based method for
transient stability assessment. However, the future power system with
high penetrations of renewable energy resources, the operating
condition of the system is consistently changing with large
variations. Conventional offline-trained deep learning networks
may not be able to provide accurate results. Even though the
online transfer learning-based method can be used to improve the
performance, there is a fact that all of the offline or online trainings are
subject to certain levels of biased data, resulting in underperformance
of the trained networks. Especially, when the training data set is small
during the online transfer learning.

With the development of physics-informed neural networks and
many other new technologies, engineers and researchers are beginning
to insert engineering knowledge into the neural network framework to
improve the adaptability and interpretability of the neural network,
and also to improve the training efficiency (Raissi et al., 2017; Raissi
et al., 2019; Karniadakis et al., 2021). The deep learning-based methods
were originally designed to analyze the huge dataset in areas, where
little human knowledge can be used, such as social networks, protein
folding, etc. However, as mentioned above, the transient stability
assessment of power systems has been intensively studied for many
decades, and established knowledges and methods can provide
valuable help.

In this work, we attempted to address the following issues, 1) the
transient stability assessment method should be able to provide online
fast screening results under various operating conditions; 2) the
physics information and some existing knowledge should be
implemented to improve the performance of the deep learning-
based method; 3) during the online self-updating process, the
distribution bias of the small training set should be addressed to
improve the adaptability of the proposed method. Therefore, we
developed an online transient stability assessment method based on
the graph neural networks and central moment discrepancies. The
contributions of this paper are the followings:

1) A graph neural network-based transient stability assessment
framework is proposed, which can interactively work with TDS
to provide reliable assessment results under changing operating
conditions.

2) The physics information and existing knowledge are used to
improve the performance of the deep learning-based algorithms,
including a feature preprocessing module and multiple networks.

3) An online updating scheme with transfer learning and central
moment discrepancy is used to improve the adaptability of the
proposed method.

4) The performance of the proposed method is tested with a 16-
machine 68-bus system. And compared with other deep learning
methods. The t-distributed stochastic neighbor embedding
(t-SNE) is used to virtualize the results.

The rest of this manuscript is organized as the following. Section 2
provides the formulation of the transient stability assessment problem
and the proposed framework. The feature preprocessing module and
the physics-informed graph neural networks are described in Section
3. Section 4 gives the details of the online transfer learning and central
moment discrepancy in the proposed framework. The case studies are
presented in Section 5. Section 6 concludes this work.

Frontiers in Energy Research frontiersin.org02

Liu et al. 10.3389/fenrg.2023.1082534

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1082534


2 Power system transient stability
assessment with the proposed
framework

A well-designed power system should be able to maintain its
transient stability after disturbances. A general model is given by a set
of differential-algebraic equations,

_X � f X,Y( ), (1)
0 � g X, Y( ). (2)

The above equations with other detailed power system features are
used in the TDS to analyze the stability of the system.

2.1 Formulations of the transient stability
assessment problem

The transient stability of power systems needs to be assessed at
three stages, namely, the offline planning stage, the online
operation stage, and the real-time post-fault stage. As shown in
Figure 1.

For the offline planning stage, when there is a new transmission
line, a new generation unit needs to be added to the system, or other
major renovations, the system transient stability needs to be re-
assessed by all of the N-1 cases, under typical operating scenarios.
Currently, most of the grid operators in US or China only perform
N-1 tests with several typical scenarios, usually two scenarios for
summer, and two scenarios for winter. These tests may cover some
of the worst scenarios historically. However, due to the increasing
penetration of renewable energy, these typical scenarios are no
longer be able to provide reliable and not overly conservative
operation references. Therefore, online assessments are needed.

In addition, the time consumption of the offline assessments is not
a primary concern, the TDS-based methods are usually
implemented.

For the online operation stage, the operating conditions of the
power system are constantly changing. The real and reactive power
load and power generations from renewable energy resources are
continuously fluctuating. The controllable resources and demand
response resources are following the system needs. In real power
systems, the states of the system can be acquired by the SCADA system
with state estimations for every 5–15 min. And some of the resources
which have fast response dynamics are re-scheduled or re-dispatched
for every 15 min to 1 h. First, the system operating conditions are
gained, and the power flow is calculated based on the new dispatch
result. Then, a list of final security checks needs to be quickly
conducted, including a set of N-1 tests of transient stability, before
the dispatch signals are distributed. In the legacy grid, the operating
conditions rarely have large, unpredictable variations within 15 min
interval. With the development of renewable energy, the operating
conditions are subject to larger fluctuations and the solar and wind
forecasting usually provide potential ranges of active power output
with certain confidence intervals. As a result, a faster, and more
accurate online transient stability assessment capability is required
to continue monitoring the system and guide the operations. A larger
set of N-1 scenarios need to be assessed between every dispatch
interval. These tests can provide much better references for the
system operator, compared to offline analysis. The results of the
online screening for transient stability are used for supporting the
optimal dispatch and preventive controls for the online operations of
power systems.

For the real-time post-fault stage, the transient rotor angle stability
is determined mostly by the first swing, or several following swings
(Kundur, 1994). This means the time frame is very short. The real-

FIGURE 1
Power system transient stability assessment at different stages.
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time assessment is combined with emergence control decisions and
performed by comparing the fault and protection device action
information with offline simulated scenarios. In addition, the use
of phasor measurement unit (PMU) is limited by industry practice due
the cyber security concerns.

In this work, we primarily focus on the transient stability
assessment at the online operation stage, where lots of simulations
and assessments need to be performed as soon as possible and as
accurately as possible. Some of the features, proposed in this work, can
be applied to the other two stages.

The power system transient stability assessment problem is a
classification problem. After a disturbance, if the post-fault states
trajectory is asymptotic stable and the final equilibrium point is a
stable equilibrium point, then the system is stable. Otherwise, the
system is unstable, or may fall into a limit cycle. In a real system, the
operating condition at the post-fault stable equilibrium point should
satisfy certain operating requirements. Actually, the transient stability
is often referred to as the rotor angle stability of the system, which
means that all the synchronous machines should remain synchronism.
Based on the well-established engineering knowledge, the transient
stability index (TSI) can be used to identify the stability of the system
with the following equation (Tang et al., 1994),

TSI � 180o − Δδ max| |
180o + Δδ max| |, (3)

where Δδ max represents the maximum rotor angle differences between
any two generators in the system. When TSI is greater than 0, the
system is stable. Otherwise, the system is unstable.

2.2 The proposed transient stability
assessment framework

In this work, we proposed a comprehensive transient stability
assessment framework for the online operation stage. The overall
structure of the framework is shown in Figure 2. It consists of an
offline preparation section, an online assessment section and an online
updating section. The structure and workflow of the proposed

framework are described in the following. The detailed
formulations of multiple physics-informed neural networks
(M-PINNs) and transfer learning with central moment
discrepancies (CMD) is provided in section III and IV.

2.2.1 Offline training section
To provide fast online transient stability assessment results, the

proposed framework is a data-driven machine learning-based method.
The M-PINNs need to be trained offline under well-established
supervise learning procedures. The training data set is mainly
generated by time-domain simulations of a potential fault list. To
the best knowledge of the authors, this list usually contains a huge set
of different faults, such as all of the N-1 faults and some important N-
1-1 or N-2 fault scenarios. Notice that for a real power system, the “-1”
refers to the loss of a component, not limited to line or generation
losses. The component could also be a busbar at a substation or a tower
carrying multiple lines. In addition, the simulations results of
historically fault scenarios are also added to the data set. The TDS
can provide the data input the M-PINNs needed, and the simulation
results can be labeled by Equation 3 to supervise the training process.
During the offline training the multi-fold cross-validation can be used
to improve the data usage and the performance of the M-PINNs. After
training with the fault scenarios under different operating conditions,
a general transient stability assessment agent, M-PINNs, is produced
for online operation.

2.2.2 Online assessment section
During the online operation of the power system, as stated above,

the online assessment is needed to ensure the system’s safety. At each
time-period, the system operating condition is collected by the
SCADA system with state estimations. Then, the transient stability
of a smaller list of potential fault scenarios should be investigated. This
list is usually built based on the engineering knowledge of system
operators. And various according to different operating conditions,
such as power flow changes. Conventionally, the TDS is used, resulting
in limited analyzation capability. In this work, the M-PINNs are used
to work with TDS to generate reliable assessment results, the concept is
shown as the following.

FIGURE 2
The proposed transient stability assessment framework.
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For TDS-based transient stability assessment, the per-fault, fault-
on, and post-fault simulations are required. Usually, the post-fault
simulations need to last for several seconds, which is time-consuming.
For M-PINNs data driven-based transient stability assessment, only
the first several hundred milliseconds (100–300 m) of the post-fault
simulations are needed for the assessment. This means the M-PINNs
method can drastically reduce the computation cost and time
consumption for online assessment. Therefore, increasing the
analyzation capability of the system to pre-screening more possible
fault scenarios under changing operating conditions. If the assessment
results from the M-PINNs surpass a pre-set confidence threshold,
then, output the results. Otherwise, the full-length TDS is used to re-
assess the low-confidence, high-risk scenarios. Therefore, the TDS and
M-PINNs work together to provide reliable transient stability
assessment results. In other words, the well-trained M-PINNs can
solve the assessment tasks of easier potential fault scenarios in a timely
manner, and find the hard ones for TDS to work with.

3 Features pre-processing and physics-
informed neural networks

The section formulates the core part of the online transient
stability assessment method, namely, the feature pre-processing
module and the physics-informed neural networks. They will be
running in parallel with the TDS during the online operation and
provide quick stability assessment results.

3.1 Feature pre-processing module

The feature pre-processing module serves as the important
interface between the TDS and the neural networks. It is crucial
for improving the efficiency and accuracy of online assessments.

The TDS of power systems are performed with numerical
methods, such as the Euler methods or Runge-Kutta methods. In
this work, the TDS is developed based on the structure of the Power
System Toolbox by Prof. J.H. Chow (Chow and Cheung, 1992). To
further speed up the simulations, the Kron reduction is used, where all
the non-active buses in the system are eliminated (Dörfler and Bullo,
2013), (Villegas Pico and Johnson, 2019). Generation buses, and the
slack bus are kept in the simulation. In this reduction process, it also
converts the power system from a sparse network to an all-to-all
connection network. For any power system with a nodal admittance
matrix,

Y �
Y11 / Y1N

..

.
1 ..

.

YN1 . . . YNN

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (4)

where N is the total number of buses. It is assumed that the non-
generation nodes can be regarded as passive constant impedances
during the transient period. Only the generation nodes have current
injections. The Ymatrix can also be rearranged to the following form,

Y � Yg×g Yg×p

Yp×g Yp×p
[ ], (5)

where g represents the group of generation nodes, p represents the
group of passive nodes. The reduced network is,

Yred � Yg×g − Yg×pY
−1
p × pYp×g, (6)

where Yred is the reduced network admittance matrix. This means that
during the TDS, only the state variables of the generation buses are
available. The state variables of other internal buses, such as voltage
magnitude or phase angle need additional calculations. In order to let
the TDS and M-PINNs work together more efficiently, the M-PINNs
will only take the states from generation buses. Details are provided in
the next subsection.

The state parameters �X of the generator buses are sampled per
0.01 s, from time t0 to (t0 + tend). The sampled vector is
�X � xt0 xt1 / xtm / xtend[ ]. And the xtm is normalized by
the following equation,

xtm, nom � xtm −min �X( )
max �X( ) −min �X( ) (7)

where max and min drives the maximum and minimum value of
sampled vector of a state variable. xtm, nom is the value after
normalization. Notice that the state parameter �X can be one of any
generator parameters, like rotor angles, currents, voltages, etc. The
parameters are only normalized with respect to the maximum and
minimum values of its own class. For fast transient stability
assessment, the sampling time window is usually few hundred
milliseconds after the fault happened or fault cleared. Within this
short time range, the state parameters will not have extremely large
and small values due to the system inertia and control limits. Then,
Equation 7 can be used to normalize the system parameters.

In computer science, information technology, and complex system
community, the entropy is widely used for measuring the average level
of useful “information”, extracting the “surprises”, or “changes”within
a dataset. In previous works, an rule-based rapid stability assessment
has been developed with the assistance of entropy measures (Kamwa
et al., 2009). It should be noted that even though the time-series data
from TDS contains all the information for stability assessment. The
level of useful information in each state variable vector at different
time-period is different. Some state variables contain much more
detailed information about the fault and what happened thereafter,
such as the voltage magnitude. Other state variables may preserve less
information due to the limitations of simple and slow dynamics, such
as the rotor speed. The information entropy equation is defined as the
following,

H X( ) � −∑n
i�1
P xi( )logP xi( ), (8)

where X � [x1, x2, . . . , xi, . . . xn] is the discretized vector of the
state variable �X. P(x1), P(x2), . . . , P(xi), . . .P(xn) are the
probability of appearances. H(X) is the information entropy
value. Eq. 8 is used to extract the physical information from the
TDS outputs. In case studies section, we will show that the
M-PINNs can benefit from these inputs.

3.2 Multiple physics-informed neural
networks

Neural network-based machine learning algorithms have strong
fitting capabilities for high-order non-linear systems. By adopting
the supervised learning training process, the neural networks can
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build the mappings between the input and labeled output, which is
purely data-driven. Different from the previous works, we introduce
the physics-informed concept to the transient stability assessment,
the physics-informed neural networks (PINNs) not only can be
driven by big data, but also informed by pre-established physics
knowledge. In this way, the PINNs can be built, trained, and
implemented more wisely and efficiently.

The structure of the PINN in this work is shown in Figure 3. The
major components are input layer, hidden layer, pooling layer,
activation function, fully connected layer, and output layer, as
shown in Figure 3.

3.2.1 Input layer
The standard input layer for graph neural networks is used to link the

input signals with the hidden layers in the middle. The number of input
nodes equal to the number of buses in the target power system. As stated
above, only the states from the generation buses are used. For other passive
nodes, the information entropy of the system is used to fill in the blanks.

3.2.2 Hidden layer
The hidden layer is designed based on the structure of Chebyshev

neural network, which is a branch of the spectral graph neural
network.

Define a graph G � (V, E, W), where V and E are the set of
vertices and edges in G,W is the adjacency matrix of G. Notice that
if the power grid is considered as a graph, the vertices are the buses
in power system; edges represent the transmission lines; W
preserve the topology information of the power grid; and G is
always a connected graph when the system is stable during the
normal operation condition without any buses or lines tripped.
Thus, we have

L � I −D−1
2WD−1

2, (9)
where L is the normalized Laplace matrix, I is the identity matrix,D is
the diagonal matrix with the following diagonal elements,

Dii � ∑
j

Wij, (10)

where i and j are indices of matrix D and W. Define the
eigenvectors of the normalized Laplace matrix L as
U � [u1, u2, ..., un], and the matrix of eigenvalues as,
Λ � diag(λ1, λ2, ..., λn), where L � UΛUT. The Fourier transform
on graph G can be defined as,

x̂ � UTx, (11)
where x̂ is the projection on the spectral domain through the
orthogonal basis UT of the original input signal x.

Define the operator of spectral graph convolution as “*G”, and the
operator of matrix dot product as “☉”. The spectral graph convolution
between two signals x and y is derived as,

x pG y � U UTx( )☉ UTy( )( ). (12)
Let UTy � [θ0, θ1, ..., θn−1]T, and define gθ �

diag([θ0, θ1, ..., θn−1]) as the kernel function of the spectral graph
convolution operation. The graph convolution on the spectral domain
has the following expression

x pG y � UgθU
Tx. (13)

With Equations 9–13, the basic structure of PINN is
established. The power systems topology and transmission line
admittance matrix can be substitute or derived into the form of
Equation 9, since the Ybus matrix has the similar formulation
(Kundur, 1994). The physical law and physical model of the
power system are embedded into the design of the neural
networks. The PINNs in this work have the same number of
vertices as the number of buses in the power grids.

In the above formulation, the information from all of the nodes
in V are needed for the calculations. This creates a huge
computational burden for large power system with lots of buses.
And it is also very inefficient, because the buses from far distances
in power systems have marginal impacts on the local rotor
dynamics. Buses/nodes nearby have the majority of the coupled
impacts. Therefore, in this work, the Chebyshev polynomial
expansions are used to approximate the graph convolution
kernel gθ (Michaël et al., 2016), (Tang et al., 2019), with the
following expansions,

gβ Λ( ) � ∑K−1
k�0

βkΛk, (14)

where K is the number of polynomials, β is a vector of coefficients.
Substitute Equation 14 into Equation 13, the Chebyshev approximated
spectral graph neural network is given by,

x *G y � Ugβ Λ( )UTx � ∑K−1

k�0
βkL

kx, (15)

where the kernel is localized via convolutions with a Kronecker delta
function (Hammond et al., 2011). Let dg represents shortest path
distance between two vertices. ∀dg(i, j)>K, (LK)i,j � 0. This is a
K-localized spectral filter withKth-order polynomials of the Laplacian.
In terms of the adjacency matrix W, it counts the number of edges
between vertices i and j. This process reduces the complexity of PINNs
to the same level of conventional convolution neural network (CNN).
With a good K value, chosen based on the average distance between
the nearest generation buses in a power grid, the inputs from

FIGURE 3
The structure of the PINN.
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generation buses can be collected and the computational burden is also
well balanced.

Notice that even though the CNN is widely used in a lot of
power system stability studies (Yan et al., 2021), (Yan et al., 2019),
(Gupta et al., 2019), the convolution operation in CNN is not
designed for the power engineering problems. It was originally
designed for the computer vision and image recognition tasks with
a critical assumption that the neighboring pixels in an image are
correlated. Thus, the CNN algorithms convolute the information
into the center pixel position from its neighbors. In power
engineering problems, we can, for example, put the time-series
voltage data of different buses into a 2-dimensional matrix and
substitute it input the CNN. However, the voltage data does not
share the same pre-assumption. The CNN-based methods were
working simply because of the strong non-linear fitting capabilities
of the CNN. The buses in a power grid are topologically correlated
with transmission lines and power flows. Therefore, Equations
9–15 are used to build the linkage between vertices and edges in
an undirected graph. And this graph is physically informed by the
power grid network.

3.2.3 Pooling layer and activation function
Two different pooling layers are investigated in this work, namely,

the local average pooling and the maximum value pooling over the
kernel. And the maximum value pooling is chosen. The leak Relu
activation function is used in the PINNs.

3.2.4 Fully connected layer and output layer
The fully connected layer in a deep network usually serves as a

classifier. The hidden Chebyshev layers and pooling layers can build
the mapping between the input and the internal feature space. And the
fully connected layer can link the internal feature space with a labeled
sample space. Lastly, the Softmax layer is used as the output layer to
provide the final output. Instead of a single hard maximum output, the
soft maximum provides the probability of each classification category,

which can provide a valuable reference for the confidence of the
classification results.

4 Online transient stability transfer
learning with central moment
discrepancy

The purpose of this online transfer learning is to further
improve the assessment accuracy with real-time operating
conditions acquired by the SCADA system. It used the offline
trained model or the model from the previous time period as good
baseline models, where a lot of general knowledge has been
learned. Therefore, the online training workload is reduced and
can focus on the cases and scenarios needed the most at the
moment.

The proposed graph neural network-based PINN is firstly trained
offline as the generalized model with numerals power system
operating conditions and fault scenarios. It can provide fair
transient stability assessment results in all cases.

It should be noted that the training process of neural networks
can be considered as an optimization process, where the
algorithm is trying to find the best-fit weights through the loss
function and back propagation. If the faults scenarios and
operating conditions of the training samples are evenly
distributed in the offline training set. The algorithm will try to
find the optimal parameters that achieves the minimum losses
over the whole set. The idea is similar to the support vector
machine model, which finds one best-fitting hyperplane to
separate all the data samples by categories. The model is
generalized in macroscopic but may lose accuracy in
microscopic. Therefore, in this work, the transfer learning with
central moment discrepancies is used to fine tuning the weights of
the PINNs to provide better transient stability assessment results
under online operating conditions.

FIGURE 4
The structure of transfer learning for transient stability assessment.
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4.1 The online transient stability transfer
learning framework.

The proposed online transfer learning framework is shown in
Figure 4.

The online transfer learning is initiated when the changes of the
operating condition of the power system surpass the pre-set threshold.
In this case, the changes are measured by using the standardized
Euclidean distance,

d �

�����������∑n
i�1

yi − xi( )2
si2

√√
(16)

where n is number of dimensions of the measured operating
conditions. Y(y1, y2, . . . , yn) and X(x1, x2, . . . , xn) are the
neighboring operating conditions at time period T and T + 1. si is
the standard deviation of the i-th dimension. The standardized
Euclidean distance over comes the problem of different scales
between different dimensions. When d> dthreshold, the transfer
learning will extract the current M-PINNs-based model from the
online assessment framework and update it. Then the
updated model will be used for the online assessment for the next
time period.

4.2 The transfer learning with central moment
discrepancy

The basic idea of transfer learning is to retrain theM-PINNs with
training samples based on the current operating condition. Due to
the time limitation, only a small number of training samples can be
generated by TDS. In real-world operations, these small samples are
selected based on the engineering knowledge. In addition, the
training samples from previous similar operating conditions will
be used to assist the transfer learning process. According to the
transfer learning algorithm, the weights parameters of all the layers
of M-PINNs are retrained with the following loss function (Zhu
et al., 2021),

Lloss � 1
M

∑
i

l zi, z
′
i( ) + γ Lregularizer, (17)

where l(・) is the cross entropy loss function, M is the number of the
batch size, zi and z′i are the output label and true lable of i-th sample. γ is a
scaler weight, Lregularizer is a regularizer function to prevent themodel from
overfitting the small sample set by using the central moment
discrepancy (CMD).

Consider that there is a mismatch between the distribution of
the small transfer leanrning trainning set and the distribution of

FIGURE 5
The single line diagram of the modified IEEE 16-machine 68-bus system.

FIGURE 6
The coordination between TDS and M-PINNs.
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the potential fault cases set of a true system. To measure this
distribution shift, many technics can be used, such as, the
Kullback-Leibler divergence (KL), the maximum mean
discrepancy (MMD) or CMD can be used. In this work, to
achieve better online performance and faster speed, the CMD
is adopted for the following reasons, 1) the KL-divergence
approach only matches the first moment, which lacks of
capability in higher order moments in the hidden activation
space; 2) comparing with the MMD-based approach, which
minimizes the distance between weighted sums of all moments
with the Taylor expansion of the Gaussian kernel, the CMD does
not require computationally expensive matrix computations
(Zellinger et al., 2017). The Lregularizer can be defined as,

Lregularizer Ztrain, Z( ) � 1
b − a

E Ztrain( ) − E Z( )‖ ‖

+∑∞
k�2

1

b − a| |k ck Ztrain( ) − ck Z( )‖ ‖, (18)

where E(Ztrain) � 1/M∑ ztrain,i and E(Z) � 1/M∑ zi are first
order moment of the training set and the whole potential fault
set. ck(Ztrain) � E(Ztrain − E(Ztrain))k and ck(Z) � E(Z − E(Z))k
are the k-th order moment. This regularizer term can be used to
balance the fitting of the M-PINNs between the underfitting the
potential fault scenarios under the current operating condition
and the overfitting the small online transfer learning data set. In
addition, the dropout mechanism is also used to prevent the
overfitting.

5 Case study

5.1 Test system and data

In this paper, the proposed M-PINNs-based online transient stability
assessment method is tested on a modified IEEE 16-machine 68-bus
system, which is a benchmark equivalent model of the New England test
system (NETS) and the New York power system (NYPS), as shown in
Figure 5. The generators from G1 to G9 belong to NETS area, G10 to
G13 belong to NYPS, and the neighboring areas are represented by G14,
G15 and G16. To further include the renewable energy generations, the
G10 and G11, G4 and G5 are replaced by lumped wind turbines with
virtual synchronous machine (VSM) controls (Zhong, 2016), (Liu and
Zhang, 2019). Notice that theVSMalso has virtual generation parameters,
which are equivalent to the conventional generators but subject to
different dynamics according to primary energy sources. The sixth-
order sub-transient model of the synchronous generators with a
second-order exciter model, and a third-order PSS model has been
implemented in the simulations (Liu et al., 2019). The parameters of
the test system are from the Power System Toolbox (PST) (Chow and
Cheung, 1992). All six types of faults fromPST are considered, namely the
three-phase fault, the line to ground fault, the line-to-line fault, line-to-line
to ground fault, loss of line fault and loss of load at bus fault. The offline
training data set is built where the fault types, fault locations and fault
durations are randomly selected from six types of faults, on all buses and
transmission lines, duration ranges from 3 cycles to 15 cycles with
uniform distributions. The size of the offline training set is
10000 samples. The training set is generated by TDS with various
simulation time steps, ranging from 1e-6 to 1e-3, according to the
PST (Chow and Cheung, 1992).

5.2 Implementation and validation of the
proposed framework

Using the test system and dataset, the proposed Chebyshev neural
network-basedM-PINNsmodels are firstly trained offline. The parameters
in the hidden layers are trained with back propagation through the

TABLE 1 The hyper parameters of M-PINNs model.

Batch size 130 Learning rate 0.0001

Dropout rate 0.5 Momentum 0.9

Number of Chebyshev layers 3 Order of the localized filter [3, 2, 1]

Fully connected layer size [256, 512, 2] dthreshold 0.4

Regularizer weight γ 0.8 k-th order moment of CMD 5

TABLE 2 The performance of Different models.

Algorithm of the model Accuracy

The proposed method 99.17% ± 0.11%

Graph convolutional network 98.30% ± 0.23%

Convolutional neural network 96.27% ± 0.17%

Deep belief network 97.01% ± 0.33%

Multi-Layer perceptron 94.10% ± 0.19%

TABLE 3 The transfer learning performance of the proposed framework.

No transfer learning (%) Transfer learning without CMD (%) Transfer learning with CMD (%)

Scenario 1 94.66 98.12 98.56

Scenario 2 93.21 97.50 98.16

Scenario 3 94.26 97.87 98.95

Scenario 4 95.53 98.16 99.04

Scenario 5 96.81 98.15 98.33
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stochastic gradient descent method. In this work, the momentum
mechanism is also used to further speed up the training process.

For inputs, the topology of the power system is adopted as the
topology of the Chebyshev neural networks by Equation 9. The relative
rotor angle, rotor speed, q-axis current and bus voltage magnitude of

generators and VSMs are used as inputs for the network nodes of
generation buses. The renewable generations can access the system
through these VSMs. The information entropies of the above four
measurements are used as the homogeneous inputs for all of the other
nodes. The sampling rate for the inputs is 30 milliseconds, and the time

FIGURE 7
The accuracy curves of four PINNs during the training.

FIGURE 8
The virtualization of the classification process of a PINN model.
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window is 300 milliseconds from the moment of fault introduced. Notice
that this time window is much shorter than some other works in
literatures, since they used the fault clearing time as the starting point.
This means that longer post-fault trajectories are accessible for the neural
network model, which is easier. But the assessment results are produced
slower than the proposed method in this work.

For the M-PINNs model setup, the concept of ensemble
learning is adopted (Ren et al., 2015; Liu and Zhang, 2016; Liu
et al., 2020). The M-PINNs model is consist of four PINNs. Each of
them takes three out of four measurement inputs mentioned above,
for example, one of the PINNs uses rotor speed, q-axis current, and
bus voltage magnitude as inputs, no relative rotor angle. And the
final decision is only made when at least three out of four PINNs
agree with each other. This setup has several advantages. First, the
model is more robust to random errors, because at least three
independently trained must produce the same assessment results.
Second, the model gained the capability of overcoming unexpected
errors in one of the input states. Last but not least, when the
assessment results are tied two by two amount four PINNs, this
means that the results do not pass the confidence test. Thus,
according to Figure 6, the samples will be sent back to the TDS
for accurate assessment.

The algorithm is implemented in TensorFlow and the power
system model is built in MATLAB. The hyperparameters are shown
in Table 1. The convergence of four PINNs of the proposed model
during offline training is demonstrated by the accuracy curves in
Figure 7.

The accuracy of the proposed M-PINNs is compared with other
machine learning-based algorithms in Table 2. For fairness, when
the model has a tied result (2-2 even), the result from the PINN
without rotor speed input is used as the final decision. The TDS is
not used simply for a fair comparison. The “±” sign shows the
variation ranges with 10 different random seeds. From the results,
the proposed method has the best transient stability assessment
accuracy. The overall accuracy of the proposed framework is
99.64%. Because the cases with tied results from M-PINNs are
further verified with TDS.

For the transfer learning performance, the results are shown in
Table 3, including the five different operation scenarios and the results
from a model without transfer learning, a model with transfer learning
but no CMD, and the proposedmodel. It can be seen that the proposed
model provides the best results again.

In addition, the t-distributed stochastic neighbor embedding
(t-sne) algorithm is also implemented to show the classification
process of the proposed PINN model in Figure 8.

T-sne is a non-linear dimension reduction method. It is
commonly used in machine learning literatures to virtualize the
deep neural network working process through neuron activations
signal matrices. The subplot (a–f) in Figure 8 shows the activations of
the input layer, the first Chebyshev graph convolution layer, the
second Chebyshev graph convolution layer, the third Chebyshev
graph convolution layer, the fully connected layer and the final
Softmax layer. From the figure, we can see that the PINN model
is effectively separated the stable cases, labeled as 1, and unstable
cases, labeled as 0.

6 Conclusion

In this work, an online power system transient stability
assessment framework is proposed with spectral graph
convolution neural network-based M-PINNs and transfer
learning with CMD technics. The designs of the framework are
provided in detail. The proposed framework can be trained offline
with physical information from the power grid, and work closely
with time-domain simulations during the online assessment stage
to provide fast and accurate results. The physical informed feature
and CMD regularizer design provide the framework with strong
capabilities to handle the system operation changes, due to the
variations from the renewable generations.

For future works, under the practical scenarios with the penetration of
power electronic devices interfaced resources, the emergency control
actions are faster and may overlap with the time frame of assessment
and protection actions. Therefore, a coordinated framework between the
assessment-protection-control should be investigated as a valuable future
research direction.
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