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Electric vehicle aggregators (EVAs) that utilize vehicle-to-grid (V2G) technologies can
function as both controllable loads and virtual power plants, providing key energy
management services to the distribution system operator (DSO). EVAs can also balance
the grid’s reactive power as a virtual static VAR compensator (SVC) and provide voltage
stability by utilizing advanced electric vehicle (EV) chargers that are capable of four-
quadrant operations toprovide reactivepowermanagement. Finally,managedcharging
can benefit EVAs themselves by minimizing power factor penalties in their electricity
bills. In this paper, we propose a novel EV charging scheduling algorithm based on a
hierarchical distributed optimization framework that minimizes peak load and provides
reactive power compensation for the DSO by collaboration with EVAs that manage
both the active and the reactive charging and discharging power of participating EVs.
Utilizing the alternative direction method of multipliers (ADMM), the proposed
distributed optimization approach scales well with increased EV charging
infrastructure by balancing active and reactive power while decreasing
computational burden. In our proposed hierarchical approach, each EVA schedules
the active and reactive EV charging and discharging power for 1) reactive power
compensation in order to minimize power factor penalty and electricity cost
accrued by the EVA, 2) satisfaction of each EV’s energy demand at minimal
charging cost, and 3) peak shaving and load management for the DSO. When
compared with an uncoordinated charging model, the efficacy of this proposed
model is successfully demonstrated through a 300% decreased peak EV load for
the DSO, 28% lower electricity costs for EV users, and 98.55% smaller power factor
penalty, along with 17.58% lower overall electricity costs, for EVAs. The performance of
our approach is validated in a case study with 50 EVs at multiple EVAs in an IEEE 13-bus
test case and compared the results with uncoordinated EV charging.
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1 Introduction

Electric Vehicles (EVs) present great demand response potential for electrical grids
because of their flexibility in charging time and duration. Further, EV adoption is being
widely encouraged by governments and institutions to help reduce greenhouse gas (GHG)
emissions and meet decarbonization goals. For example, in September 2020 California
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Governor Gavin Newsom issued an executive order requiring that
100 percent of passenger vehicle sales in California be zero-emission
by 2035 (California Executive Department, 2020). This type of push
for EV sales has been repeated at the state, federal, and international
scales (U.S. Department of the Treasury, 2022). Yet, despite EVs’
potential grid benefits and their promise for GHG emission
reduction, high penetration of EVs also presents a large challenge
for electrical grids–as their spatial and temporal charging variability
can cause undesirable effects in the grid operation. Thus,
coordinated EV charging is an important tool to avoid
congestion by conducting load shifting (de Hoog et al., 2016;
Brinkel et al., 2020) for the distribution network during charging
sessions. In addition to load-management services, many other
positive effects of coordinated EV charging have been identified
by researchers, such as reducing daily electricity cost (Forrest et al.,
2016), reducing voltage deviation (Deb et al., 2018), and supporting
renewable energy integration support to prevent curtailment of
renewable energy resources (Pearre and Swan, 2016; Colmenar-
Santos et al., 2019). Thus, coordinated EV charging, or EV charging
scheduling, is a promising strategy to accommodate large-scale EV
penetration. Following an increasing number of EVs participating in
electricity markets through their charging decisions, it has become
evident that utilizing dedicated EV aggregators (EVAs) for charging
management can lead to distribution grid benefits. For example, a
2013 study demonstrates that coordinated charging greatly increases
the grid’s ability to absorb increased EV penetration without
requiring increased supply (Ortega-Vazquez et al., 2013).
Another study conducts a broad survey of research on smart
interactions between the grid, aggregators, and EVs - identifying
the potential for both direct and indirect control by aggregators to
benefit all participating parties (Wang et al., 2016b). A final example
is a study from 2020 that explores many aspects of EV charging and
grid integration, emphasizing the importance of unified charging
standards and describing the ability of EVAs to facilitate EV
participation in ancillary markets (Das et al., 2020).

Under the EVA-supported EV charging framework, grid to
vehicle (G2V) - or traditional charging - and vehicle to grid
(V2G) - or discharging from the EV back to the electrical grid -
are the two main charging technologies. G2V operation enables the
EV charging system to unidirectionally pull power from the grid,
while V2G technology supports EV chargers handling bidirectional
power flow, which enables EVs to charge/discharge power from/to
the grid. Although V2G chargers are still in the early stages of public
deployment within the United States, V2G technology has garnered
much attention due to its potential to improve system stability at
times of high demand, enable EV drivers to act as a virtual power
plant, and provide ancillary services to the grid (Karfopoulos and
Hatziargyriou, 2016, Ravi and Aziz, 2022).

The widespread applicability of V2G operation has been
questioned by some due to the potentially adverse effects of
battery degradation on driver profits (Bishop et al., 2013).
However, a variety of authors have demonstrated the economic
viability of V2G for EV drivers, especially through the use of smart
charging algorithms that take into account battery cycling (Uddin
et al., 2018). Further, one study–which utilizes both realistic battery
degradation and driver behavior in its city-wide V2G model–finds
that charging rate and efficiency are much more impactful than
changes to battery life or cycling (Gandhi andWhite, 2021). Another

study, employing a semi-empirical lithium-ion fade model, finds
that, while battery wear is increased from V2G usage, this increase is
minimal when compared to degradation from traditional use (Wang
et al., 2016a).

Authors have also looked into future challenges and
opportunities to utilize V2G technology. For example, one study
investigates V2G use by fleets and fleet operators in the UK,
concluding that there is potential to expand V2G to small and
medium sized fleets, but that uptake of the technology by these users
will be highly influenced by market environment (Meelen et al.,
2021). Another investigates impacts of V2G on total cost of
ownership for drivers in the UK–exploring the sensitivities to
various charging and discharging schemes, as well as differences
between participation in balancing versus load management services
(Huber et al., 2021). There has also been much research into the use
of V2G for grid-level support. One study, which conducts a techno-
economic analysis of V2G system on the Indonesian grid, concludes
that widespread adoption of EVs could help the country achieve
high quality of electricity while providing economic benefits to both
the power company and EV drivers (Huda et al., 2020).

As noted above, another focus of research has been V2G grid-
level support services managed by EVAs conducting coordinated
charging. Some examples of services that have been studied include
V2G capability for frequency regulation (Peng et al., 2017), load
shaving (Karfopoulos et al., 2016; Yu et al., 2022), congestion relief
(Gowda et al., 2019), and renewable energy integration (Gao et al.,
2014).

Coordinated EV charging frameworks are mainly divided into
two categories: centralized (Jian et al., 2017) and decentralized (Gan
et al., 2013). The centralized approaches focus on a centralized unit
that directly controls the charging of the EVs. The EVA plays an
important role in centralized charging by managing the
communication between the utility and EVs, and by controlling
EVs’ charging power directly (Al-Ogaili et al., 2019). The
decentralized approaches, on the other hand, enable EVs to
optimize their charging behaviors based on price signal
broadcasts, so there may be no aggregator and individual EVs
create their charging profile based on price signals, which are
influenced by local load (Xydas et al., 2016). Although
centralized charging is preferred by system operators because it
can systematically allocate energy across a large population of EVs
and efficiently achieve a global optimum (Yi et al., 2020), due to the
mixed-integer nonlinear nature of the EV scheduling problem,
centralized charging suffers from computational challenges with a
large penetration of EVs (Faia et al., 2021; Hussain et al., 2021).

To alleviate the computational inefficiency of centralized
charging, both multi-objective computing approaches (Fang et al.,
2021) and hierarchical computing approaches can be used to achieve
computational efficiency (Wu et al., 2019). In recent years, the
alternating direction method of multipliers (ADMM), which is an
iteration-based algorithm that can solve large-scale optimization
problems in a distributed manner, has gained popularity in solving
convex optimization problems (Boyd et al., 2010), as well as non-
convex problems (Zha et al., 2018). An EV charging coordination
method using ADMM was proposed in (Rivera et al., 2017) for both
valley filling and charging cost minimization. However, without
considering feeders’ capacity constraints these methodologies are
inapplicable in practice. Both the Frank-Wolfe method and ADMM
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are applied in (Zhang et al., 2017) to solve the EV charging
coordination problem. However, the Frank-Wolfe method is an
iterative first-order optimization algorithm for convex optimization
(Freund and Grigas, 2016), which performs inefficiently for
problems with binary decision variables. In (Khaki et al., 2018), a
hierarchical ADMM based framework was applied for EV charging
scheduling with feeder capacity considered. However, in this study,
it was not tested in a system-level simulation.

Further, the above-discussed studies only focus on active
power coordination, which means only the consumption and/
or supply of active power is considered and the possibility of
utilizing EVs for reactive power support–an important ancillary
service–is underestimated. Grid services such as frequency
regulation and load shaving can be provided by EVs from
active power dispatch (Han et al., 2010; Bhattarai et al., 2015),
while reactive power dispatch could provide ancillary services for
voltage support (Kisacikoglu et al., 2013). Nevertheless, reactive
power dispatch is often not discussed in the existing literature on
optimal power scheduling of EVs (Wang et al., 2019). In recent
years, more and more research on the control of EV chargers has
been proposed, showing how advanced charging infrastructure
could enable EVs to be charged/discharged in any of the four P–Q
quadrants (Mehboob et al., 2019; Hu et al., 2021). Providing an
efficient way to support the grid with reactive power.

Research on advanced EV chargers that operate in full four-
quadrants enables a broader view of EV charging scheduling studies
involving both active and reactive power. The newest studies show
that EVs can provide an efficient way to support power grids with
reactive power (Li et al., 2019; Lenka et al., 2021). A study by (Lenka
et al., 2021) shows that there is no additional battery degradation
when EVs are charging/discharging reactive power. EVs can
respond to the system demand of reactive power locally and fast,
as highlighted by (Nikkhah Mojdehi and Ghosh, 2016). Thus, the
four-quadrant operation of the EV chargers enable EVs with
coordinated charging to act not only as loads for demand
response and battery storage systems but also as fast var-
compensators for the distribution network. Var-compensators,
such as static var compensator (SVC), provide fast-acting reactive
power to electricity transmission and distribution networks, and
perform best when installed locally (Tan and Thottappillil, 1994).
Considering the high cost of installing SVC locally, EVs with four-
quadrants chargers can be a potential substitute, due to their spatial
and temporal flexibility. An integrated volt-var optimization engine
was proposed in (Zhang et al., 2018) for distributed grid control by
utilizing V2G and EV coordination. However, the models were
simplified as convex optimizations. A coordination framework
optimally managing active and reactive power dispatch of
spatially distributed EVs was also proposed, incorporating
distribution grid level constraints (Wang et al., 2019). However,
only two quadrants of the charging region of EVs were considered in
order to decrease the computational burden.

The main contributions of this work are summarized as follows:
1) a hierarchical ADMM-based EV charging framework is proposed
for incorporating large-scale penetration of EVs, 2) modeling
dispatch of both active and reactive power that minimizes
electricity bills of each EV user while also minimizing the
electricity cost and power-factor penalty for the EVAs, 3)
exploration of the possibility of active and reactive power support

by EVs with four-quadrant EV chargers, 4) reduction of the peak
load at the DSO level, and 5) efficient computations and data privacy
due to the hierarchical charging network.

The rest of the paper is organized as follows: Section 2 introduces
a standard ADMM form and presents the hierarchical architecture
of the EV coordinated charging network. Section 3 formulates the
mathematical model of the ADMM-based EV charging framework.
Section 4 presents the case studies, and Section 5 concludes the
paper.

2 Model description

2.1 Four-quadrant EV chargers

The advanced EV charging infrastructure enables the control
region of EVs to become the full active and reactive power (P-Q)
coordinate, shown in Figure 1. The positive directions of P (active
power) and Q (reactive power) represent the power being delivered
from the grid to the EVs, while the negative directions represent the
power being supplied by the EVs to the grid. Figure 1 shows that the
positive values of P indicate the EV charger is working in the G2V
mode, and the negative P means it is working in V2G mode. The
reactive power is capacitive when it is supplied from EVs to the grid
(discharged), and is inductive when the it is delivered from the grid
to EVs. It is worth noting that the standard EV chargers with
uncontrolled reactive power work in the III and IV quadrants where
the values of reactive power Q are negative, indicating the reactive
power is delivered from the EVs to the grid. This is validated by a
study measuring the power quality influenced by EVs’ charging
sessions (Pinto et al., 2015).

2.2 EV charging framework based on ADMM

Alternating direction method of multipliers (ADMM) is an
algorithm that solves convex optimization problems with

FIGURE 1
Four-quadrant operation of EV charging.
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separable objective functions. One example of the standard form of
ADMM is shown below.

min f X( ) + h Y( )
s.t. AX + BY � 0

(1)

f: Rn → R ∪ +∞{ } and h: Rm → R ∪ +∞{ } are closed convex
proper functions in Eq. 1 and A ∈ Rp×n and B ∈ Rp×m are
matrices defining the constraint.

The optimal value of x and y can be obtained by applying the
ADMM algorithm according to the following steps.

a) Initialize the sequences (Xk)k∈N, (Yk)k∈N, (λk)k∈N as
X0 ∈ Rn,Y0 ∈ Rm, λ0 ∈ Rp, where λ is the dual variable. Then,
choose a penalty parameter ρ> 0;

b) Generate the augmented form of ADMM

Lp X,Y , λ( ) � f X( ) + h Y( ) + λT AX + BY( ) + ρ

2
AX + BY‖ ‖22 (2)

c) For k � 1, 2, . . ., do the following:

Xk+1 � argminX∈RnLp X,Yk , λk( )
Yk+1 � argminY∈RmLp Xk+1,Y , λk( )
λk+1 � λk + ρ AXk+1 + BYk+1( )

⎧⎪⎪⎨⎪⎪⎩ (3)

ADMM was initially applied to convex problems but then was
also found to be effective in solving non-convex problems with
binary variables (Zha et al., 2018), which is a perfect fit for the
scheduling problem in this research. First, the hierarchical nature of
our study entails multiple objective functions for each layer

including EVs, EVAs, and the DSO, and they are separable as
this structure can be considered as a sharing problem (Boyd
et al., 2010) that can be solved in a distributed manner by
ADMM. Additionally, the charging and discharging indicators
for each EV charger are set as binary variables in the
optimization model.

The function of the DSO in this study is to alleviate peak load
conditions of a certain region in the distribution system by sending
signals to EVAs and accordingly charging EVs when non-EV
demand load is low or discharging EVs when the non-EV
demand is high. We assume the EV charging infrastructure is
controlled and managed by each EVA, and the information on
non-EV load is managed by the DSO. In general, the DSO controls
the total EV load at a local bus through communication with EVAs
that manage the charging status of the EVs. The hierarchical
structure of the studied EV charging infrastructure is visualized
in Figure 2.

The time-discrete model of the charging sessions of EVs is
described as follows. For each time interval Δt , assume the number
of EVAs of one certain region is NJ, and there are Nj

I EV chargers
under each EVA. The active charging and discharging power of an
EV by using charger i under aggregator j are represented by Pch

i,j and
Pdch
i,j , and the reactive charging and discharging power are Qch

i,j and
Qdch

i,j . The lower and upper limits of the charging and discharging
power are represented by P ch

i,j and �Pch
i,j , and Pdch

i,j and �Pdch
i,j ,

respectively. Similarly, Qch
i,j and �Qch

i,j , Q
dch
i,j and �Qdch

i,j are the lower
and upper limits of charging and discharging reactive power
respectively. The constraints on the EV charging/discharging of
active and reactive power, with respect to the chargers’ power rate

FIGURE 2
Schematic of the EV charging infrastructure with hierarchical ADMM scheme.
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and the EV’s battery capacity, are shown in Eqs. 4–6. e i,j(t) and
�ei,j(t) are time varying bounds on the energy stored in EVi,j’s
battery. The EV energy conservation constraint, including V2G
capability, is represented by Eq. 7, where ηch and ηdch are the
charging and discharging efficiency, both set as 0.9 in this paper.

Pch
i,j ≤P

ch

i,j
≤ �Pch

i,j (4)
Pdch
i,j ≤P

dch

i,j
≤ �Pdch

i,j (5)
ei,j t( )≤ ei,j t( )≤ �ei,j t( ) (6)

ei,j t + 1( ) � ei,j t( ) + P( ch
i,jηch − Pdch

i,j /ηdch)Δt (7)

Eq. 8 is ensuring enough energy is stored in the battery by the
time of departure for each EV tdpti,j , where ei,jrat is the maximum
capacity of the EV battery.

0.8ei,j
rat ≤ ei,j t

dpt
i,j( )≤ ei,jrat (8)

It is worth noting that only the four-quadrant EV chargers are
capable of controlling both the reactive and active charging/
discharging power, while the standard EV chargers simply handle
the active power. Sjad represent the set of four-quadrant EV
chargers under EVA j. For four-quadrant EV chargers, the
reactive power charging or discharging can occur within the
following constraints, shown in Eq. 9, 10.

Qch
i,j ≤Q

ch
i,j ≤ �Qch

i,j i ∈ Sjad (9)
Qdch

i,j ≤Qdch
i,j ≤ �Qdch

i,j i ∈ Sjad (10)

For the standard EV chargers, the reactive power is considered
to be 20% of the value of active charging or discharging power
during the first 85% of the charging session, with an increase up to
70% of the amount of active power for the last 15% of the session.
These assumptions are based on research of EV charging
characteristics (Pinto et al., 2015; Haidar and Muttaqi, 2016),
both of which identify that reactive power is around 20% active
power during the overall charging session, but increases
significantly during the end phase of the charging session. It is
worth noting that the reactive power of EVs using standard
chargers is considered as capacitive under this condition, which
means the reactive power is delivered from the EVs to the grid, so
only reactive discharging power occurs during the standard
charging sessions.

In addition, we also consider the upper bounds on the electrical
power being supplied by each EVA to its EVs and by the DSO to the
EVAs, shown in Eq. 11, 12.

Peva,j t( )≤ �Peva,j (11)

∑Nj

j�1
Peva,j t( )≤ �Pdso (12)

3 Problem formulation

3.1 EV charging model

The total number of EV chargers supervised by the DSO is:

Ntotal
I � ∑Nj

j�1
Nj

I (13)

Where, the number of EV chargers supervised by EVA j is Nj
I,

with Nj
I,ad four-quadrant chargers Nj

I,ad and Nj
I,nad standard

chargers, defined in Eq. 14.

Nj
I � Nj

I,ad + Nj
I,nad (14)

For each EV i under EVA j, the objective is to minimize the
electricity cost, and the cost model is shown in Eq. 15, where ∏pch

and ∏pdch are the vectors of the electricity price and the incentives
for discharging power, respectively, and TN is the total number of
time intervals per day. In this paper, TN is set as 288 considering 5-
minute time intervals.

Rev,ij � ∑k+TN−1

t�k
∏pch

t( )Pch
i,j t( ) −∏pdch

t( )Pdch
i,j t( )( ) (15)

Subject to:

δ pchi,j ∈ 0, 1{ } ∀i (15 − a)
δ pdchi,j ∈ 0, 1{ } ∀i (15 − b)

δ qchi,j ∈ 0, 1{ } i ∈ Sjad (15 − c)
δ qdchi,j ∈ 0, 1{ } i ∈ Sjad (15 − d)

δ pchi,j + δ pdchi,j ≤ 1

δ qchi,j + δ qdchi,j ≤ 1
⎧⎨⎩ ∀i (15 − e)

Pch
i,j ≥ 0 ∀i (15 − f )

Pdch
i,j ≥ 0 ∀i (15 − g)

Qch
i,j ≥ 0 i ∈ Sjad (15 − h)

Qdch
i,j ≥ 0 i ∈ Sjad (15 − i)

Pch
i,j ≤Pi,j

max · δ pchi,j ∀i (15 − j)
Pdch
i,j ≤Pi,j

max · δ pdchi,j ∀i (15 − k)
Qch

i,j ≤Qi,j
max · δ qchi,j i ∈ Sjad (15 − l)

Qdch
i,j ≤Qi,j

max · δ qdchi,j i ∈ Sjad (15 −m)
Pi,j

max( )2 + Qi,j
max( )2 ≤ Srati,j( )2 ∀i (15 − n)

Qi,j
max � 0 i ∉ Sjad (15 − o)

Where, δ pchi,j , δ pdchi,j , δ qchi,j , and δ qdchi,j in Eq. 15-a to Eq. 15-d are
the binary variables indicating charging or discharging status of active
and reactive power for each charger. Eq. 15-e ensures charging and
discharging cannot occur at the same time interval, and Eq. 15-f to
(15-i) define the charging and discharging power are positive by
default. Pi,j

max and Qi,j
max in Eq. 15-j to Eq. 15-m are the maximum

charging power rate for active power and reactive power, respectively.
Srati,j is the power rating for each EV charger, and the relationship
betweenPi,j

max,Qi,j
max , and Srati,j are defined in Eq. 15-n. Eq. 15-o defines

that no reactive control is possible by the standard chargers.
For each EVA j, the objective is to minimize both the direct

electricity cost and the demand charges. The surcharges caused by
the drop of power factor (PF), or so-called power factor penalty,
could be avoided by enabling EVs to utilize the four-quadrant EV
chargers to mitigate reactive power variance that occurs due to the
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large-scale EV charging sessions of the EVA. The optimization
model of the EVA is shown in Eq. 16.

Reva,j � ∑k+TN−1

t�k
∏pch

t( )Pch
j t( ) −∏pdch

t( )Pdch
j t( )( )(

+ ∑
i ∈ Sj

ad

Qad
i,j t( ) −∑

i ∉ Sj
ad

Qnad
i,j t( )( )2⎞⎠ (16)

Pch
j t( ) � ∑N

j
I

i�1
Pch
i,j t( ) (17)

Pdch
j t( ) � ∑N

j
I

i�1
Pdch
i,j t( ) (18)

WherePch
j (t) andPdch

j (t) in Eq. 17, 18 are the sumof charging and
discharging active power of EVs under EVA j at time interval t.Qad

i,j (t) is
the controlled reactive power from four-quadrant EV chargers and
Qnad

i,j (t) is the uncontrolled reactive power from the standard EV
chargers, which is defined as 20% of the amount of active charging/
discharging power for the first 85% of the charging sessions and 70% of
the amount of active power for the last 15% of the charging sessions.

The sum of active power consumption for the EVAs within the
certain region under the DSO, at time interval t is shown in Eq. 19,
and pj(t) is the sum of active power of EVs charging from the grid at
EVA j. The sum of non-EV power demand obtained from the grid at
time interval t is shown in Eq. 20, where pj,nev(t) is the non-EV
power demand at EVA j.

Ωev t( ) � ∑Nj

j�1pj t( ) � ∑Nj

j�1∑Nj
I

i�1 Pch
i,j t( ) − Pdch

i,j t( )( ) (19)

Ωnev t( ) � ∑Nj

j�1
pj,nev t( ) (20)

For the DSO, the objective is to minimize the peak load of the
region Rdso(t) as shown in Eq. 21.

Rdso t( ) � max Ωev t( ) +Ωnev t( )( ) (21)
The general objective function of EV charging coordination

including all three layers is shown in Eq. 22.

R � min ∑t+TN−1

k�t
⎛⎝∑Nj

j�1
( ∏pch

t( )Pch
j t( ) −∏pdch

t( )Pdch
j t( )( )

+ ∑
i ∈ Sj

ad

Qad
i,j t( ) −∑

i ∉ Sj
ad

Qnad
i,j t( )( )( 2)

+max ∑Nj

j�1
pj,nev t( ) + pj t( )⎛⎝ ⎞⎠⎞⎠ (22)

Now considering the matrix of EVs’ active and reactive power
under EVA j:

xj � pchj pdchj qchj qdchj[ ]T (23)

Where pchj , pdchj , qchj and qdchj are vectors of sum of active/reactive
power for all EV chargers under EVA j, and specifically defined in Eqs.
24–27. And the objective function in Eq. 22 can be formed as shown in
Eq. 28, where A is the transformationmatrix, and the specific forms of
it are illustrated in the ADMM formulation section.

pchj � pchj T1( ), qchj T2( ), . . . , pchj TN( )[ ]T (24)

pdchj � pdchj T1( ), pdchj T2( ), . . . , pdchj TN( )[ ]T (25)
qchj � qchj T1( ), qchj T2( ), . . . , qchj TN( )[ ]T (26)

qdchj � qdchj T1( ), qdchj T2( ), . . . , qdchj TN( )[ ]T (27)

R � min
x

∑Nj

j�1
f j xj( ) + g ∑Nj

j�1
Axj⎛⎝ ⎞⎠ (28)

Eq. 28 could be rewritten in the standard ADMM form, shown
in Eq. 29.

R � min
x, y

∑Nj

j�1
f j xj( ) + g ∑Nj

j�1
yj⎛⎝ ⎞⎠ s.t.Axj − yj � 0 (29)

Where f j(xj) is the individual cost, and g(∑Nj

j�1yj) is the shared
objective.

According to (Boyd et al., 2010), Eq. 29 equals to Eq. 30, which
represents the y-update blocks using a single average term �y.

R � min
x,�j

∑Nj

j�1
f j xj( ) + g Nj�y( ) s.t. �y � 1

Nj
∑Nj

j�1
Axj (30)

By utilizing Eq. 30, we decrease the y-update variables in Eq. 29
to only one variable. The following ADMM formulation section
therefore is developed based on the form of Eq. 30.

3.2 ADMM formulation

• ADMM1

The sharing problem between the DSO and each EVA can be
written in the ADMM form as follows .

1) x-update

xk+1j � argminxj
sum(∏xj

T( ) + ε/2( ) Ap(xj − xkj ) + Ap�x
k
j − �yk + zk

����� �����22)
(31)

s.t. (4)-(11), (15-a)—(15-o), i � 1, . . . ,Ntotal
I , j � 1, . . . ,Nj

2) y-update

(�yk+1 � argmin�y max L + Nj�y( ) + Njε/2( ) �y − zk − �xk+1
���� ����22( ))

(32)
s.t. (12)

3) dual-variable update

zk+1 � zk + �xk+1 − �yk+1 (33)
Where �xk+1 � 1

Nj
∑Nj

j�1x
k+1
j ,∏ is the electricity pricing matrix, L

is the non-EV load shown in Eq. 34, and Ap is the transformation
matrix specified in Eq. 35.

L � ∑Nj

j�1
pj,nev (34)

Ap � 1 − 1 0 0[ ] (35)

Frontiers in Energy Research frontiersin.org06

Zhang et al. 10.3389/fenrg.2023.1078027

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1078027


After the dual iteration in Eq. 33 of ADMM1, the DSO
broadcasts βk+1 � zk+1 + �xk+1 − �yk+1 to EVA j, which is used for
ADMM2, demonstrated below.

• ADMM2

According to the structure of the EV coordinated charging
framework in this study, the matrix xj(t) of charging power for
EVA j is the sum of charging power matrix ui,j(t) for each EV i
under the corresponding aggregator, shown in Eq. 36, 37.

xj t( ) � ∑N
j
I

i�1
ui,j t( ) (36)

ui,j � pchi,j pdchi,j qchi,j q
dch
i,j[ ]T (37)

Where pchi,j , p
dch
i,j , qchi,j , and qdchi,j are vectors of charging and

discharging active/reactive power for each EV charger i under
EVA j, specifically shown in Eqs 38–41.

pchi,j � Pch
i,j T1( ),Pch

i,j T2( ), . . . ,Pch
i,j TN( )[ ]T (38)

pdchi,j � Pdch
i,j T1( ),Pdch

i,j T2( ), . . . ,Pdch
i,j TN( )[ ]T (39)

qchi,j � Qch
i,j T1( ),Qch

i,j T2( ), . . . ,Qch
i,j TN( )[ ]T (40)

qdchi,j � Qdch
i,j T1( ),Qdch

i,j T2( ), . . . ,Qdch
i,j TN( )[ ]T (41)

The sharing problem between EVA j and each EV i can be
written in the ADMM form as follows.

1) U-update

ul+1
i,j � argminui,j

sum(∏ui,j
T( + λ1/2( ) Aj 1( )(ui,j − ui,j

l) + Aj 1( )�uj
k − v1

l
j

�����(
+w1

l
j‖22 +

λ2
2

( ) Aj 2( )(ui,j − ui,j
l) + Aj 2( )�uj

k − v2
l
j + w2

l
j‖

2

2

������ ) (42)

s.t. (4) - (10), (15-a)—(15-o)

2) V-update

v1
l+1
j � argminv1 j

ε/2( ) Nj
iv1 j − xkj + βk

����� �����22 + Nj
iλ1
2

( ) v1 j − w1
l
j − Aj 1( )�ul+1

j ‖2
2

����� )(
(43)

s.t. (11)

v2
l+1
j � argminv2 j

Aj 2( )v2 j − K
���� ����22 + Nj

iλ2
2

( ) v2 j − w2
l
j − Aj 2( )�ul+1

j ‖2
2

����� )(
(44)

3) Dual variable update

w1
l+1
j � w1

l
j + Aj 1( )�ul+1

j − v1
l+1
j (45)

w2
l+1
j � w2

l
j + Aj 2( )�ul+1

j − v2
l+1
j (46)

Aj is the transformation matrix specified in Eq. 47.

Aj � 1 1 0 0
0 0 θ1 θ2

( ) (47)

Where, θ1 and θ2 are the indicator variables defined in Eq. 48,
and Sjad is the set of four-quadrant chargers.

θk � 0 i ∉ Sjad
1 i ∈ Sjad

{ k � 1, 2 (48)

The average active charging power of EVs at EVA j, �uj, in Eq. 42
is defined as below.

�uj � 1

Nj
I

∑N
j
I

i�1
ul+1
i,j (49)

K in Eq. 44 is the sum of reactive power for all standard EV
chargers, represented in Eq. 50, where Si,jTK1 and Si,jTK2 represent
the set of time series for each EV during the first 85% of the
charging session and the last 15% of the charging session,
respectively.

K �
0.2∑N

j
I

i�1
Anadui,j f or Tk ∈ Si,jTK1, k � 1, 2, . . . ,N

0.7∑N
j
I

i�1
Anadui,j f or Tk ∈ Si,jTK2, k � 1, 2, . . . ,N

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(50)

Where Anad � [τ1 τ2 0 0], τ1 and τ2 are the indicator variables
defined in Eq. 51.

τk � 0 i ∈ Sjad
1 i ∉ Sjad

{ k � 1, 2 (51)

The y-update vector vj and vector of dual variables wj are
composed of two parts, shown in Eq. 52, 53.

vj � v1j v2j[ ]T (52)
wj � w1j w2j[ ]T (53)

The process of using the ADMM to solve the hierarchical EV
charging scheduling problem is provided in Algorithm 1.

1. Each EVA calculates day-ahead EVs’ arrival/

departure time

2. DSO obtain day-ahead non-EV load profile

3. Initialize ε and [λ1 λ2].

4. While ErrADMM1 >ThADMM1 do

5. For j=1: Nj do

6. While ErrADMM2
P >ThADMM2

P or ErrADMM2
Q >ThADMM2

Q do

7. For i =1: Nj
I do

8. Calculate ui,j

9. End

10. Update �uj

11. Calculate v1j, v2j

12. Update and broadcast w1j and w2j to ∀i

13. End

14. Broadcast xj � Nj
I�uj to DSO

15. End

16. Update �x

17. Calculate �y

18. Update and broadcast β to ∀j

19. End

Algorithm 1. Hierarchical ADMM Model

Frontiers in Energy Research frontiersin.org07

Zhang et al. 10.3389/fenrg.2023.1078027

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1078027


4 Case Studies

The mathematical models described in Sections 2 and 3 are
developed in Python and solved by the Gurobi solver (Gurobi
Optimization LLC, 2020). For the case studies, we focus on a DSO
in a certain region managing 2 EVAs with 50 EV chargers per EVA,
assuming 100% EV penetration for households in the region. Of the
50 chargers per EVA, 30 are standard chargers and 20 are four-quadrant
chargers that include reactive power management. It is also assumed
that the DSO has a priori knowledge about the non-EV load of the
system, and each EVA knows the arrival time, departure time, and
desired state-of-charge (SOC) of its EVs. We use the UCLA Smart Grid
Energy Research Center ‘s (SMERC) smart charging network
infrastructure as a testbed of per-user data to simulate such an
EVA. User charging data was collected at charging stations located
at the Santa Monica Civic Center, Los Angeles, and the UCLA
employee/visitor parking structure 9 (PS9) (Xiong et al., 2018).

The data collected from SMERC is preprocessed such that charging
session records that last less than 0.5 hours or consume less than 1 kWh
have been removed and any energy consumption that exceeds the
maximum threshold is replaced with nominal maximum value.
Additionally, all starting time, duration, and energy consumption
values are normalized for each respective data set to be used for
training and inversely scaled after testing to retrieve the correct values.
In this paper, each user’s arrival time is generated by randomly sampling
from a Gaussian Mixture Model trained with the users’ historical arrival
hours (and optimized on the number of components, according to the
Bayes information criterion (BIC)). Each user’s departure time ismodeled
by adding the prediction of stay duration based on Gaussian Kernel
Density Estimation of the user’s historical charging session duration data
to the randomly sampled arrival time (Chung et al., 2018).

The initial SOC is randomly set between 0.2 to 0.4, and final desired
SOC is set between 0.8 to 1. The socket rating of the EVs is 60 kVA,which
means themaximumactive power charging rate is 60 kWconsidering the
charging power range of DC fast charging methods. The maximum
energy capacity of the EVs is randomly set between 30 kWh to 80 kWh.
The simulation is run for 24 hours with 5-minute intervals.

To demonstrate the performance of our proposed model, the
simulation results are compared with an uncoordinated EV charging
condition, where each EV is charged at the maximum charging rate
immediately after their arrival. Additionally, an IEEE 13-bus distribution
system is utilized, as shown in Figure 3, for testing the influence of the
proposed model on a distribution system. The EVAs in this study are
assumed to be placed at node 634 in the IEEE 13-bus distribution system
as seen in Figure 3. The non-EV load data was obtained from the
National Renewable Energy Laboratory’s End-Use Load Profiles for U.S.
Building Stock and is comprised of 10% of the total electricity load for
60 residential buildings, two small office buildings, and two retail strip
malls in West Los Angeles throughout a 24-hour period in July of 2018
(National Renewable Energy Laboratory, 2021).

4.1 Simulation results of EV charging
scheduling

The electricity price used for charging/discharging the EVs is the
summer time-of-use (TOU) price from the Los Angeles Department
of Water and Power (LADWP). For each EVA, the price of
electricity in a 24-hour period is based on the locational marginal
price (LMP) from a CAISO node located inWest Los Angeles over a
24-hour period in July of 2022. Figure 4 shows the TOU price and
the LMP in a 24-hour period, respectively.

The hierarchical computation of the proposed EV charging
scheduling framework is applied and tested on the case studies
with the assumptions described above. The values of the ADMM
parameters of Algorithm 1 are set as shown in Table 1.

The variations of the dual residuals of ADMM1 and ADMM2 per
iteration are shown in Figure 5. It shows that ADMM1 converged
much faster than ADMM2. In fact, after 3 iterations of ADMM1 and
on average 213 iterations of ADMM2, all the dual residuals reach
values less than the corresponding error tolerances, and it is worth
noting that the final converged value of the dual residuals are on
average 0.001 for ε, 0.099 for λ1, and 0.067 for λ2, respectively. A
higher accuracy could be obtained by further decreasing the values of
the error tolerance based on the need of the system operator.

The charging profiles of two EVs with standard and four-quadrant
chargers, respectively, is shown in Figure 6. For a better comparison, the
coordinated charging profiles are represented by the solid lines, while
the charging profiles of each EV under uncoordinated charging are
represented by the dashed lines. The difference in the initial charging
time between the green lines and the dashed lines indicates that the
proposed hierarchical EV charging scheduling is capable of load shifting
by charging EVs at a different time period according to the optimization
objectives of the EV, the EVA, and the DSO. And it is clear in both
Figures 6A,B that the peak charging power of EVs under the proposed
charging scheme is lower when compared to uncoordinated charging.
The black line in Figure 6B shows that reactive power is generated
between 3:00 and 8:00 PM by the EV with the four-quadrant charger to
compensate for the reactive power simultaneously generated by EVs
with standard chargers, whose reactive power is uncontrolled and is
being injected into the grid during the active power charging session.

The daily electricity costs for an EV with a standard charger in
Figure 6A under the proposed charging and uncoordinated charging
are $4.34 and $13.46 respectively, while the costs for an EV with
four-quadrant charger in Figure 6B are $4.03 and

FIGURE 3
IEEE 13-bus system (W. H. Kersting, 2001).
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$13.48 respectively. In fact, the average daily electricity cost for all
EVs under the proposed charging scheme and the uncoordinated
charging scheme are $6.04 and $8.39 respectively. This shows the
capability of reducing electricity expenditure for EV users by
applying the proposed charging strategy – resulting in 28% lower
electricity costs on average for EV users under the proposed
coordinated EV charging strategy. The lower charging cost for
EVs under the proposed charging strategy can serve as a good

incentive for EV users to participate in the coordinated EV charging.
By utilizing the four-quadrant chargers and the proposed
hierarchical charging strategy, the power factor could be
maintained in a satisfactory range to avoid large amount of
demand charges paid by the EVAs.

The average daily electricity costs of the EVAs, and the power
factor penalty for the EVA under different charging schemes, are
shown in Table 2. It is worth noting that for LADWP territory, the
power factor penalty is calculated as a varying dollar amount per kWh
depending on the how far the power factor value falls from its ideal
value of 1 during any given time block (i.e., the charge is steeper for
lower power factors), as well as whether that time block is during the
high peak, low peak, or baseline time blocks (Los Angeles Department
of Water and Power, 2022). These per kWh penalty charges range
from $0.0004 to $0.01437. Additionally, the demand charge per
month is levied as a per kW cost that is determined by the time
and magnitude of the customer’s highest peak load during that
month. It will either be $10.00/kW, $3.75/kW, or $0.00 if the peak
demand falls during the high peak, low peak, or baseline time blocks,
respectively. In our model, overall peak demand for all three charging
strategies was in the morning during the baseline time block, and
therefore did not add any additional costs.

The proposed charging strategy manages not only active power but
also reactive power by considering the four-quadrant operations of EV
chargers, which can be beneficial for the EVA to maintain the reactive
power balance and decrease the power factor penalty on the electricity bill.
The performance of the proposed charging scheme is compared with
both the uncoordinated charging and the coordinated charging scheme
using the same hierarchical ADMM structure but not considering the
reactive power optimization from four-quadrant EV chargers. According
to Table 2, the average hourly power factor during a day with the
proposed charging strategy is 0.9998, around 0.1 higher than the one with
uncoordinated charging, 0.8986, and 0.05 higher than the coordinated
charging case without reactive power management. The comparison
between the highest and the lowest hourly power factor between different
charging strategies shows that the proposed four-quadrant EV charging
strategy enables the highest and most stable power factor for the EVA
during a day. Accordingly, it leads to the lowest daily power factor
penalty, $0.09, much lesser than the penalties under uncoordinated
charging, $6.23, and penalties under coordinated charging with only

FIGURE 4
Price signals in a 24-hour period. (A) TOU price from LADWP, (B) locational marginal price from CAISO.

TABLE 1 Hierarchical ADMM parameters.

Parameter Value

ε (ADMM1) 0.5

λ1 (ADMM2) 2

λ2 (ADMM2) 5

ThADMM1 0.1

ThADMM2
P

0.1

ThADMM2
Q

0.1

FIGURE 5
Dual residuals per iteration for ADMM1 and ADMM2.
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active power managed, $3.55. The electricity cost of the proposed EV
charging strategy is $126.03, which is $20.73 less than the case with
uncoordinated charging. The total cost, the sum of the electricity cost and
the power factor penalty, in Table 2 shows the proposed charging
strategy’s good performance in minimizing the cost of the EVA. More
specifically, by utilizing the proposed EV charging strategy, there is a
98.55% smaller power factor penalty and 17.58% lower electricity costs for
each EVA, as compared to the uncoordinated charging scheme.

The performance of the four-quadrant EV charging in absorbing
the reactive power generated by charging demand of EVs with standard

chargers is shown in Figure 7. The yellow lines represent the sum of
reactive power consumed (charged) by the EVs with four-quadrant
chargers from the grid during the 24-hour period, while the blue lines
are the sum of reactive power injected (discharged) into the grid from
EVs with standard chargers. It is clear that by applying the proposed
hierarchical EV charging strategy, the EVA containing four-quadrant
chargers can locally track and consume the reactive power that is
generated by EVs with the standard chargers. It can be observed that a
small amount of reactive power generated by standard chargers between
approximately 5pm and 6pm and near the end of the day is not

FIGURE 6
EV charging profiles by (A) standard charger and (B) four-quadrant charger.

TABLE 2 Power factor, power factor penalty, and electricity cost of one EVA during a day under different charging strategies.

Proposed coordinated P-Q charging Uncoordinated charging Coordinated active power charging

Average hourly PF 0.9899 0.8986 0.9383

Highest and lowest hourly PF 0.9999, 0.8808 0.9533, 0.7432 0.9989, 0.8079

Power factor penalty ($) $0.09 $6.23 $3.55

Electricity cost ($) $126.03 $146.80 $126.03

Total cost ($) $126.12 $153.03 $129.58

FIGURE 7
Reactive power under the hierarchical ADMM charging scheme at EVA1 (A) and EVA2 (B).
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absorbed by the EVs with the four-quadrant chargers under the
coordinated charging scheme. One possible reason for this may be
the lack of EVs with four-quadrant chargers available during that time-
period. This shows that the ratio of the number of four-quadrant
chargers to the total number of chargers managed by the EVA can
influence the performance of reactive power balancing by the proposed
EV charging model. The higher the ratio , the higher the availability of
EVs utilizing four-quadrant chargers to compensate for the reactive
power injected onto the grid by the EVs with standard chargers.

The variation of reactive power profiles under different EV
charging strategies for the EVAs in this study are shown in
Figure 8. Compared to the large variation of reactive power
under uncoordinated charging, the variation of reactive power
under coordinated charging is negligible.

The EV active power charging load profiles under the proposed
coordinated and uncoordinated charging strategies, along with the total
load at the DSO level, are shown in Figure 9. It can be seen clearly in
Figure 9A that the EV charging load profile under the coordinated
charging has a maximum power at around 400kW and is much
smoother with no spikes as compared to the uncoordinated EV
charging load, which has four major peaks during a day with the
highest peak at around 1200 kW. Figure 9B shows the total load profile

including both EV charging load and the net load at the DSO level. It is
clear that under the proposed charging strategy, the total load, including
EVs, is much smoother and has fewer spikes than the total load with
EVs under uncoordinated charging. Further, compared to the net load,
the total load with EVs under the proposed charging strategy shows
successful load valley filling, including less variation between the highest
load peak and the prior load valley, 921.142kW, while the peak-valley
variation of the netload is 992.149kW.

4.2 Simulation Results on 13-bus IEEE
system

The proposed approach is tested on the IEEE 13-bus test case using
the pandapower module in Python (Thurner et al., 2018), in order to
observe its impact on the distribution system. It is assumed that the EV
charging load of the EVAs and the net load considered in the previous
section are located at node 634 of the IEEE 13-bus system, shown in
Figure 3. The simulation result is shown in Figure 10.

Figure 10 shows the variation of voltage and voltage angle at node
634 during a day with EVs under the different EV charging strategies.
The uncoordinated EV charging causes more fluctuation in the node
voltage and voltage angle profiles, as compared with fewer fluctuations
in the node voltage and voltage angle under the proposed ADMM-
based EV charging strategy. It is worth mentioning that the proposed
EV charging model including reactive power management does
successfully balance the reactive power generated by EVs, but it
could be further expanded to consider the reactive power demand
from the grid side to provide reactive power related ancillary services
and lead to more stable node voltages.

4.3 Discussion

A major challenge with increased EV penetration is mitigating
the spikes in peak demand as well as reduction in power factor due to
reactive power generated during charging events. Thus, major topics
in EV and smart grid research have been effective charging
scheduling and, to a lesser extent, reactive power management.

However, optimization packages like CPLEX, SCIP, BARON
cannot be directly applied in solving the proposed large-scale EV

FIGURE 8
Reactive power profiles under the proposed EV charging and
uncoordinated charging schemes at EVAs.

FIGURE 9
EV load profile (A) and total load profile (B) at the DSO level during a day.
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charging model due to the large number of binary variables and
constraints (Kou et al., 2020). The ADMM structure proposed in this
paper, which naturally aligns with the hierarchical EV charging
system (DSO-EVA-EV), enables the centralized optimization to be
solved in a distributed manner. Here, we include the charging and
discharging status of both active power and reactive power, which
doubles the complexity of the optimization problem in comparison to
models used in previous research. The active and reactive power
charging and discharging management is achieved through a
combination of four-quadrant EV chargers and standard EV
chargers managed by the EVAs. When compared with an
uncoordinated charging model, the efficacy of this proposed model
is successfully demonstrated through a 300% decreased peak EV load
for the DSO, 28% lower electricity costs for EV users, and 98.55%
smaller power factor penalty, along with 17.58% lower overall
electricity costs, for EVAs. It also shows good performance in
valley filling as well as the node voltage/voltage angle stability at
the DSO level, compared to the uncoordinated EV charging scheme.
The only information exchanged between the DSO, EVAs and the
EVS are the dual variable updates in the hierarchical ADMM
structure. This protects users’ privacy and makes the approach
more practical. It is worth noting that the randomness of EVs’
availability was assumed to be known by the EVAs, so the
inaccurate prior knowledge of the uncertainty would have a
negative impact on the efficiency of the proposed EV charging
strategy. The prediction of the EVs’ availability at each EVAs can
be achieved by applying machine learning algorithms based on
historical data.

The first major outcome from the ADMM-based EV charging
scheme conducted in this paper is that it is feasible to conduct load
curtailment of active power for EVAs and valley filling for the DSO.
The second major outcome of this paper is the successful
demonstration of an EVA utilizing four-quadrant EV chargers to
balance reactive power generated from standard EV chargers, without
the need to install extra SVC. Finally, this paper demonstrates the
ability of the proposed algorithm to minimize costs to the EVA by
reducing power factor penalties, which can be a serious issue for
aggregators managing large numbers of charging stations and EVs.
Cost comparison and reductions are shown in Table 2. Finally, the

hierarchical structure proposed here enables information from each
EV to be managed by the EVA without direct communication with
the DSO, thus preserving the privacy of the EV customer.

5 Conclusion

In this study, a scalable EV charging optimization model is
proposed for the hierarchical network structure, composed of a
DSO, EVAs, and EVs. Typically, EV charging optimization models
are not directly solvable by centralized optimization packages due to the
size of the scheduling problem and the large number of binary variables
and constraints for the increasing number of EVs. Therefore, ADMM is
utilized to decentralize the optimization model into sub-problems at
different levels and solve them in a distributed manner, which is
especially applicable for a distribution network with a large number
of EVs. The proposed EV charging scheme optimizes the active and
reactive charging and discharging power of EV chargers managed by
EVAs, with the goals of 1) benefitting theDSO throughminimized peak
load, 2) benefitting EVAs through reactive power management for
reduced power factor penalties, and 3) benefitting EV owners by
minimizing electricity costs.

One limitation of this work is that the estimation of reactive
power generated by standard chargers is assumed to be a piecewise
linear model, which could be improved to a dynamic model in future
work. Further, in this paper, EVs with four-quadrant chargers are
utilized for balancing reactive power generated by EVs with standard
chargers, which in the future could be further expanded to balancing
overall reactive power demand on the grid and participation in
ancillary service markets. The influence of different ratios of four-
quadrant chargers to the standard chargers on the performance of
the proposed model, as well as the economic analysis of the different
scenarios, is another piece that can be studied in the future.

Finally, future work could also include modeling a greater
number of EVs and EVAs, as well as modeling a scaled up
testcase that includes multiple nodes of a distribution network.
These models would be able to demonstrate the efficiency of the
ADMM model for different scales, an important step towards
implementation.

FIGURE 10
Variation of voltage (A) and voltage angle (B) under coordinated and uncoordinated EV charging during a day at the node 634 of the IEEE 13-bus
system.
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