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Series arc fault is the main cause of electrical fire in low-voltage distribution
system. A fast and accurate detection system can reduce the risk of fire effectively.
In this paper, series arc experiment is carried out for different kinds of electrical
load. The time-domain current is analyzed by Morlet wavelet. Then, themultiscale
wavelet coefficients are expressed as the coefficient matrix. In order to meet the
data dimension requirements of neural networks, a color domain transformation
method is used to transform the feature matrix into an image. A regularization
method based on gamma transform is proposed for small sample data sets. The
results showed that the proposed regularization method improved the validation
set accuracy of ResNet50 from 66.67% to 96.53%. The overfitting problem of
neural network was solved. In addition, this method fused fault features of
64 different scales, and provided a valuable manually labeled arc fault dataset.
Compared with the threshold detectionmethod, this methodwasmore objective.
The use of image features increased intuitiveness and generality. Compared with
other typical lightweight networks, this method had the best detection
performance.
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1 Introduction

1.1 Introduction to arc faults

Arc is a kind of abnormal discharge phenomenon in insulating medium. The arc can
keep burning when the circuit voltage is higher than 20 V and the current is greater than
0.1A (Qu and Wang, 2018). It is easy to injure people or produce electrical fire. In low-
voltage power distribution system, arc fault may be caused by irregular circuit connection
and the aging electronic equipment. When series arc fault occurs, the residual current of the
circuit is usually less than the cut-off threshold of low-voltage circuit breaker. The circuit
cannot be cut off in time. A real-time and accurate arc fault detection system can reduce the
risk of fire effectively.
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In the 1940s, Cassie and Mayr established the arc model by
studying the relationship between arc dissipated power and current.
Since then, the research on arc faults mainly focuses on the
simulation of arc models. As these two arc models are suitable
for circuits with different voltages, some studies are aimed at
improving and integrating the arc model to make it applicable to
more occasions (Xiang and Wang, 2019) (Shu and Wang, 2018).

1.2 Research gap

In recent years, the researches of arc fault detection are not
limited to the arc mathematical model. In fact, some circuit
parameters may have a mutation when an arc fault occurs. The
purpose of fault detection can be achieved by identifying the circuit
parameters as features. In practical application, it is difficult to
collect the photothermal physical characteristics of the arc in real
time due to the random arc generation. As a result, the common
feature extraction method is time-frequency domain analysis of
voltage or current. Fast Fourier analysis (FFT) is the main method of
frequency domain analysis. In addition, literature (Humbert et al.,
2021) realizes the detection of series arc faults of different loads
through the change rate of voltage spectral dispersion index (SDI) of
low-voltage power line. Literature (Chu et al., 2020) designed a high-
frequency coupling sensor to detect the high-frequency
characteristics of arc generation, and established a fault
identification model according to the different high-frequency
characteristics of different loads. In literature (Joga et al., 2021),
time-domain information and frequent-domain information are
fused by wavelet analysis. The fused features are fed into the
convolutional neural network for detection.

The extraction of time domain features has also changed from
the original phase analysis to empirical mode analysis (EMD) or
noise processing (Ji et al., 2020; Lala and Subrata, 2020; Cui and
Tong, 2021). However, a single feature has great uncertainty in the
face of arc faults with many singularities. The fusion of fault feature
has become a new challenge in the research of detection method.

As a time-frequency analysis method, the multi-resolution
characteristic of wavelet analysis is efficient in many fields. The
fusion of fault features in time-frequency domain ensures the real-
time detection (Xiong and Chen, 2020) (Liu and Du, 2017).

In addition, some statistics of the circuit can also be used as
fusion features, such as information entropy wavelet energy entropy
and power spectrum entropy of signal (Cui and Li, 2021a) or the
fusion of proportional coefficient of arc zero rest time and
normalization coefficient of low-pass filter (Zhao and Qin, 2020).
These features detect the fault state of the circuit by setting the
weight and threshold of parameters. Due to the limitation of
experimental conditions, threshold setting is faced with the
disadvantages of poor reliability and low efficiency. In order to
improve the accuracy of detection, the fault feature data of arc can be
input into machine learning algorithm for processing (Miao et al.,
2023). Machine learning can be subdivided into unsupervised
learning and supervised learning. Typical unsupervised learning
including cluster analysis, principal component analysis (PCA)
(Ku et al., 1995) and singular value decomposition (SVD)
(Vozalis and Margaritis, 2006), etc. As a basic algorithm, SVD
plays a role in many machine learning algorithms, especially in

the current era of big data, SVD can realize parallelization withmany
algorithms. Common applications include DWT-SVD, RDWT-
SVD and K-SVD dictionary learning (Chen et al., 2014; Kadian
et al., 2019; De et al., 2021). PCA is widely used as a data dimension
reduction method. In literature (De et al., 2021) the high-
dimensional phase plane at the center of the moment, the radius
vector offset, Correlation dimension and K-entropy were used as
fusion features. Then PCA is used to reduce the dimension of
features to extract the main features of fault detection. In
addition, PCA is applied to data preprocessing as a way of
dimensionality reduction (Xia et al., 2022). The effect of
unsupervised learning is affected by the sparsity of data and
singular value points to some extent. The randomness of arc
fault data brings great challenges to the use of unsupervised learning.

With the good performance of supervised learning in various fields,
neural networks and support vector machines (SVM) have also been
applied to arc fault detection. As an example, the authors of literature
(Cui and Li, 2021b) proposed a method to input the fusion features of
variational modal decomposition (VMD) andmulti-scale fuzzy entropy
(IMFE) into SVM for classification, and the accuracy of classification
was verified through experiments. Supervised learning is a data-driven
algorithm. Fewer fault data samples may result in the accuracy
decreasing of neural network. Literature (Wang et al., 2021) solved
the impact of less fault data on the accuracy of neural network by using
the method of adversarial data enhancement, and proved the
effectiveness of data enhancement through the detection of
convolutional neural network.

In fact, feature data can exist in the form of more intuitive
images. As proposed in literature (Lu et al., 2021), quantitative
recursive analysis (RQA) was performed on the sequential periodic
phase space trajectory diagram of load faults to extract fault
characteristics of different loads.

According to the questions above, the research of this paper aims
to improving the performance of detection methods through the
following three aspects:

1) Data acquisition and processing

The selection of fault features should consider both diversity and
real-time. The arc fault data of different loads are obtained by
experiments, and the wavelet coefficient matrix of 64 scales is
obtained by Morlet-wavelet analysis. This means that the neural
network can obtain a wider field of perception from the features.

2) Image conversion and algorithm construction

In order to handle fault features in an intuitive manner, we
converted features into images and a computer vision network is
built for classification. “A colormap index method” is proposed to
transform fault features into image features, and the fault dataset is
manually annotated. ResNet50 with better performance was used for
classification and detection of image data. The data set can reduce
the data cost of migration learning.

3) Optimization of detection algorithm

The randomness of arc fault results in a small number of
experimental samples. Aiming at the phenomenon of neural
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network overfitting caused by small sample data a data enhancement
method named “Gamma transform” is proposed. Compared with
other regularization methods, the regularization method based on
image feature enhancement can reduce the cost of neural network
pre-training and improve the detection performance better.

This method also provides a new idea for regularization research
based on data enhancement.

The research process of this paper is shown in Figure 1.
In Figure 1, the blue rectangle shows the specific content of the

research steps, and the blue arrow shows the process of the research
steps.

2 Experiment and data processing

In order to restore the real arc fault data, we set up an arc fault
experiment platform according to the international standard

UL1699. Six kinds of common loads in low-voltage circuits
are connected with the arc fault generator in series. The
sampling resistance method is used to measure the current
time domain signals of six loads in normal working state and
fault state. The load types and sampling resistance values are
shown in Table 1.

In 220 V, 50 HZ power grid environment, the six kinds of loads
above are tested in normal operation and fault state for 4 times
respectively. In the power grid, harmonics have little influence on
the signal with the harmonic frequency higher than 20 times. In view
of this, the sampling frequency of the experimental current is set as
25 KHZ according to Nyquist sampling theorem. Nyquist’s theorem
can be expressed by Eq. 1:

fs ≥ 2fm (1)
Where fs is the non-destructive sampling frequency and fm is the
highest harmonic frequency of the time domain signal.

FIGURE 1
The process of arc fault detection method.

TABLE 1 Load parameters and sample resistance values.

Load name Rated power (W) The load type The load properties Sampling resistance(Ω)

Lamp 100 Resistive load Linear load 100

Lamp and inductor in series 100 Resistive and inductive load Linear load 100

Electric blower 500 DC motor load Non-linear load 50

Induction cooker 1200 Eddy current load Non-linear load 1

Computer 90 Switching power Non-linear load 50

Hand drill 500 Series motor load Non-linear load 50
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The 48 groups of data obtained from the experiment are
reproduced in Matlab. Taking incandescent lamp and computer
of linear load and non-linear load as examples respectively, which
experimental results are shown in Figures 2, 3.

The spectrum in the figure is obtained by fast Fourier analysis
transform (FFT) of time-domain signals. It can be seen from the
figure that the “flat shoulder” phenomenon occurs near the zero
crossing of non-linear load when it fails. Ac arc in the current zero
moment, the arc will automatically extinguished, and after the

current zero, if the conditions are available, it will restart the arc.
This phenomenon of the arc going out before and after the current
crossing zero is known as the “zero-rest” of the AC arc. In the
frequency spectrum, the linear load has a higher odd number of high
harmonics during the failure. In addition, the total harmonic
distortion (THD) rate reaches 54.94%, which is much higher
than 6% under normal operation. By contrast, the time domain
current of non-linear load presents high randomness, higher
harmonic component and complete distortion of signal. In

FIGURE 2
Experimental results, (A) is the time-frequency information under the failure of the incandescent lamp, (B) is the time-frequency information under
the normal operation of the incandescent lamp.

FIGURE 3
Experimental results, (A) is the time-frequency information under the failure of the computer, (B) is the time-frequency information under the
normal operation of the computer.
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normal operation, the non-linear load also produces odd high order
harmonics and the harmonic amplitude is higher than that of the
linear load. In the research of arc faults, fault features are usually
combined with machine learning algorithms to ensure the accuracy
and rigor of detection (Johnson and Kang, 2012) (Cao et al., 2013).

3 Morlet continuous wavelet analysis

By using FFT, we can obtain the frequency domain
distribution of the continuous signal over the sampling period.
At the end of Section 2, we verify that the arc fault of non-linear
load cannot be judged by spectrum alone. The fault features used
for detection need deep fusion as well as generality and typicality.
Wavelet analysis can be used to process the time domain signal.
For the multi-resolution characteristic of wavelet function,
continuous wavelet analysis can obtain the overall and detailed
features of signal at different scales. 1D wavelets are mainly used
to process ordinary 1D signals, while 2D wavelets are mainly used
to process image signals. In addition, the cost of1d wavelet
analysis is lower. Therefore, Morlet 1D wavelet, which is more
suitable for 1D current signal in this paper, is selected. The
continuous wavelet transform can be expressed as:

T a, b( ) � 1��
a

√ ∫∞

−∞
f t( )ψ* t − b

a
( )dt (2)

The meaning of Eq. 2 is as follows: After the mother wavelet
ψ(t) is displaced by b, the inner product operation is carried out
with the time domain signal f(t) at different scales a (Mallat and
Zhong, 1992) (ByPaul, 2016). The “*” indicates that the complex
conjugate of the wavelet function is used in the transform. In
order to obtain more fault features at different scales, the typical
Morlet continuous wavelet is selected to analyze the current
signal (Ferracuti et al., 2021). The Morlet mother wavelet
function is as follows:

Ψ x( ) � Ce−x
2/2 cos 5x( ) (3)

Where C is the approximate coefficient. The continuous wavelet
transform is an integral transform, which is the same as the Fourier
transform. The continuous wavelet transforms the mother wavelet
by continuous translation and scaling, and then the wavelet
coefficient is obtained. The wavelet coefficient is a binary
function composed of translation and scaling, and the continuous
wavelet transform can be expressed as:

C Scale, Position( ) � ∫∞

−∞
f t( )Ψ scale, position, t( )dt (4)

The Morlet continuous wavelet transform coefficient can be
expressed as:

Ψf a, b( ) � ∫∞

−∞
f t( ) exp −iw0

t − b

a
( )( ) exp − t − b( )2

2a2
( )dt (5)

Where w0 is the center frequency, a is the scale coefficient and b is
the translation coefficient. The current time-domain signal obtained
in the experiment was taken as the original signal for Morlet
continuous wavelet analysis with the maximum scale of 64.
Taking the incandescent lamp fault as an example, the wavelet

coefficient with the change of time when the central scale a = 32 was
shown in Figure 4:

Fusion of more features can improve the accuracy of the
detection algorithm. In the next section, we try to use computer
vision network to classify and detect fault features. Therefore, we try
to transform fault features which fused with more scales into images.
The wavelet coefficients obtained from each experiment are
arranged into a 64 × 2500 matrix according to the scale of 1–64.
The phase space depth diagram of continuous wavelet transform is
made by mapping the coefficient matrix into the phase space of “hsv
colormap”, as shown in Figure 5. The method of “Colormap index”
works by mapping matrix values onto a preset colormap. One thing
to note, Different from the familiar HSV-color mode, the “hsv
colormap” in Matlab is also coded by RGB mode (Gonzalez,
Woods) (Hartley and Zisserman, 2003). By using this method,
the image is convolved in the form of three-channel (RGB)
respectively. A wider receptive field can be obtained during the
traversal operation of the convolution kernel (Morteza et al., 2021),
thus achieving higher recognition accuracy.

The significance of Figure 5 is that the color index at the bottom
of the image represents the size of the wavelet coefficient from small
to large. The horizontal axis is the sampling time axis, and the
vertical axis is the scale axis. By adjusting the color value at the
bottom of the image, the color domain of the phase space depth map
can be changed to obtain different images. Figure 6 is the phase space
map with the color domain changed. The above processing is
applied to the data we obtained from 48 groups of experiments,
and the 480 images are labeled artificially according to load types
and working conditions. The data sets are set for subsequent
classification detection. The use of “hsv colormap” will also be
more convenient for the image enhancement method above.

By this way, we obtain the time-frequency domain
characteristics of arc faults at various scales. Image
transformation can fuse features better and meet the
requirements of subsequent neural networks for data dimension.
In addition, compared with complex data features and matrix
feature, graph features is more friendly to users without prior
knowledge. In fact, wavelet analysis can be combined with
control algorithm to achieve the purpose of optimizing
performance in engineering field. For example, combining with
particle swarm optimization algorithm to adjust the wavelet
parameters and improve the performance of pattern recognition
algorithm, or using Morlet wavelet function as the activation
function of neural network to fit the parameters of robot travel
(Dutta et al., 2013) (Vázquez et al., 2015). We attempt to improve
the performance of neural networks for small sample datasets from
the perspective of image feature engineering in the following
sections.

4 ResNet50 arc detection model

Deeper convolutional neural networks can learn deeper data
features. The identity mapping of neural networks between network
layers is realized by updating network weights. The learning process
of neural networks is the process of updating the weights between
network layers through the back propagation of gradients between
network layers (Amora et al., 2022). According to the chain
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FIGURE 4
Original time domain signal and wavelet coefficient value curve of incandescent lamp fault.

FIGURE 5
Depth map of phase space of continuous wavelet transform.

FIGURE 6
Phase space image of wavelet coefficients after changing color domain.
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derivative rule, gradient disappearance or gradient explosion will
occur with the increase of neural network layers. Normalization of
data can alleviate this phenomenon.

4.1 Batch-normalization

In order to prevent the simple linear relationship between the
input and output of neural network neurons, we use ReLU as the
activation function to add non-linearity to the neurons. The
processed function can approximate any non-linear function.
ReLU function can be expressed as Eq. 6:

ReLU x( ) � x, if x> 0
0, if x≤ 0

{ (6)

For deep neural networks, the distribution of neuron input
values will shift with the training process. The overall
distribution will approach the extreme value of non-linear
function generally. The addition of batch-normalization fixes the
distribution of input values across layers to a standard normal
distribution with an expectation of 0 and variance of 1 (Huang
et al., 2021). One-hot labels are set for the four data sets, and
8 images in each sub-data set are used as mini-batch for training to
improve training efficiency. Batch-normalization for input of
neurons in layer K of neural network through input value X after
activation function can be expressed as Eq. 6:

x
∧ k( ) � x k( ) − E x k( )[ ]�������

Var xk[ ]√ (7)

Where, E[x(k)] andVar[x(k)] are the expectation and variance of the
whole data set, and the normalized result y(k) can be obtained
through network parameters γ(k) and β(k) changes:

y k( ) � γ k( )x
∧ + β k( ) (8)

Accordingly, the variance and expectation in Eq. 6 should be the
unbiased estimation of corresponding statistics in the mini-batch
composed of every 8 images.

4.2 ResNet50 network structure

ResNet is a typical model in the field of computer vision. The
proposal of ResNet enables convolutional neural network to avoid
network degradation even when the number of network layers
increases to a large extent (Qu et al., 2019a). As we known, deep
neural networks take multi-convolutional layers as parameter
mapping. According to the chain rule, deep networks face the
problem of gradient explosion or gradient disappearance when
calculating gradients. The idea of ResNet is to make the deep
network obtain the gradient of the shallow network through the
mapping of residuals. When the input parameter X maps to H (X),
the residual can be expressed as:

F x( ) � H x( ) − x (9)
ResNet takes the residuals as amapping. The input and output of

the network layer are identical mappings even when gradient
disappearance occurs, thus preventing the network performance

degradation caused by gradient disappearance. In practical
applications, the residual is usually not 0, so the network layer
can learn new features from the input features to improve the
accuracy of the network. The convolutional block structure of
ResNet50 can be expressed in Figure 7.

ResNet can be expressed as the mathematical model shown in
Eq. 10:

y � F x, Wi{ }( ) + x (10)
Where x is the input vector, y is the output vector, and F is the residual
mapping, which is part of network training. The convolutional Block in
Figure 7 skips two layers, and its residual mapping can be expressed as:

FIGURE 7
ResNet50 convolutional block structure.

TABLE 2 ResNet50 detects network structure.

Layer name 50-layer

Conv1 7 × 7,6, stride 2

Conv2_x 3 × 3, max pool, stride 2

1 × 1, 64
3 × 3, 64
1 × 1.256

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ × 3

Conv3_x 1 × 1, 128
3 × 3, 128
1 × 1, 512

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ × 4

Conv4_x 1 × 1, 256
3 × 3, 256
1 × 1, 1024

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ × 6

Conv5_x 1 × 1, 512
3 × 3, 512
1 × 1, 2048

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ × 3

average pool,1000-d fc, softmax
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F � W3σ W2σ W1x( )( ) (11)
We use different convolution kernels for convolution with step

2 and maximum pooling respectively, and then restore ResNet using
convolution block as shown in Figure 7. Softmax layer is added in
the output layer of the network to predict the type of feature and the
maximum value is the prediction category. The specific model of the
network is shown in Table 2:

4.3 Implementation of the detectionmethod

The process of arc fault detection can be summarized as the
following steps:

1. The arc fault current data of different loads are obtained by
experiments.

2. The fault features of 64 scales were obtained by Morlet wavelet
analysis.

3. “Colormap index method” is used to convert numerical features
into image features. Image data is preprocessed using data
enhancement graph.

4. The fault dataset is put into ResNet50 for classification detection.

4.4 Classification and detection results of
arc fault

The image data set is divided into training set and test set
according to the ratio of 9:1, and the hyperparameters of the neural
network are adjusted through repeated training so that the neural
network can obtain higher classification accuracy. Since 480 images
are relatively small image samples, Adam algorithm is added to
dynamically adjust the learning rate of neural network in order to
prevent the increase of loss caused by uneven distribution of image
samples in each iteration. Hyperparameters are adjusted through
several experiments. The pre-trained model with the highest
accuracy is selected as the result. The final neural network
hyperparameters are shown in Table 3.

All the algorithms above are implemented based on Keras
platform interface Tensorflow. The neural network is trained on
Intel I7-9750H processor (8G RAM) and the graphics card is
NVIDIA RTX 2060 (6G).

In order to reflect the changes in the accuracy of training set and
validation set in each epoch during the training process, the average
accuracy and loss changes in each epoch are made into curves, and
the training results were shown in Figure 8.

The accuracy rate in the figure is the average of each epoch, and
the image on the right is the change curve of the cross-entropy loss
function.

In order to compare the training connection of the network, the
accuracy of training set better, the accuracy of verification set and
the loss value of epoch18-20 are expressed in numbers, as shown in
Table 4:

As can be seen from Figure 8, the accuracy of the verification
set began to be lower than that of the training set since the epoch
is 11. When the epoch is 20, the accuracy of the training set still
showed an upward trend, while the loss tended to converge. The
accuracy of the verification set is 30% lower than that of the
training set, which indicates that the network has a certain over-
fitting phenomenon. Due to the small number of samples in the
dataset and the image data obtained through color domain
transformation, many images may have certain similarity.
Insufficient sparsity of data samples may lead to uneven
distribution of samples.

5 Image data enhancement

5.1 Image preprocessing

Neural networks achieve the purpose of classification by fitting
the distribution of the training dataset. Suppose the data distribution
P (x, y) is known, where x is the feature, y is the label, Given a specific
loss functionL (·), for a model assuming h∈H. We expect a machine
learning algorithm to minimize its expected risk, which is defined as
Eq. 12.

R h( ) � ∫L h x( ), y( )dp x, y( ) � E L h x( ), y( )[ ] (12)

In fact, the data distribution P (x, y) is usually unknown, so it is
difficult to be integrated. Propose that the number of samples with
labels is I. We approximate this distribution with the sampling
results, and seek to minimize the empirical risk. Here, “experience”
means the data set obtained by sampling. Eq. 12 can be rewritten as
Eq. 13

RI h( ) � 1
I
∑I

i�1L h xi( ), yi( ) (13)

The parameter h can be represented in the following ways:

h
∧ � argmin

h R h( ) (14)
Where ĥ is the theoretical assumption optimal value. Because the
data distribution of the sample set is unknown, the value of ĥ cannot
be found.

h* � argmin
h∈HR h( ) (15)

Where h* is the constraint value assumed to minimize the expected
risk in the data space h ∈ H.

hI � argmin
h∈HRI h( ) (16)

This equation represents the optimal hypothesis hI obtained by
optimizing on a specified data set of amount I and minimizing the
empirical risk under the specified hypothesis space h∈ H.

TABLE 3 Neural network training hyperparameters.

Hyperparameter Value

Image size 100 × 100

Batch size 8

Epoch 20

Target category 4
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Two error forms of the assumed distribution and the actual
distribution can be obtained through the three equations above.

Eapp H( ) � E R h*( ) − R ĥ( )[ ]
Eest H, I( ) � E R hI( ) − R h*( )[ ] (17)

Where Eapp denotes the difference between the optimal solution h*
of the hypothetical spaceH and the ideal value ĥ under the expected
loss. Eest represents the error between the data sample and the
assumed data distribution. The performance of the network can be
improved by reducing the above errors. When the amount of
training data increases, the neural network will get more
supervision information. R(hI) can approximates R(h*) better
(Wang et al., 2019) (Zhang et al., 2021). The performance of the
network can be improved by reducing the above errors. In order to
solve the problem of neural network overfitting caused by small
sample data sets. We used the following two kinds of non-linear
image transformation methods to amplify the dataset.

1) Random gamma variation of the image

Gamma change is also known as the curve gray change of color
image. In the field of image processing, gamma change of image is
often used to adjust the contrast. Gamma change is a non-linear
change acting on pixel gray value, which can be expressed
mathematically as Eq. 18:

S � T r( ) � Crγ (18)
Where, S is the gray value after gamma changes, and C is the gray
scale coefficient, which is 1 in this paper. “r” is the gray value of the
image input, and its value range is [0,1]. γ is the gamma influence
factor, we change the value of gamma randomly to amplify the
original image. When the gamma value is greater than 1, the area of
the image with lower gray value will be stretched, and the part with
higher gray value will be compressed. For gamma values less than 1,
the reverse action is performed. The image is converted to grayscale
image to make the subsequent image computation less. The
description of gray image, like color image, still reflects the
distribution and characteristics of the overall and local
chromaticity and highlight level of the whole image. The images
after gamma changes are shown in Figure 9.

2) Random rotation of the image

Rotate the image at random Angle without changing the size of
the image. Fill the free part of the rotation with black and the images
after random Angle rotation are shown in Figure 10.

The original image is changed by the above two methods, and
5 new images are obtained for each image. The new dataset contains
960 images, which is two times the size of the original dataset.

5.2 Network training results after data
enhancement

On the basis of not changing epoch and mini-Batch parameters,
we use the enhanced data set to conduct neural network training of
ResNet50. After training, the average accuracy and average loss of
the training set and verification set on each epoch are shown in
Figure 11:

When the epoch is 23–25, the classification training results of
neural network can be expressed in Table 5:

FIGURE 8
Training accuracy and loss curves of ResNet50.

TABLE 4 ResNet50 training accuracy rate and loss change table.

layers Epoch Train
accuracy (%)

Valid
accuracy (%)

loss

50 18 86.34 54.86 2.21

19 86.57 66.67 2.28

20 91.43 57.64 1.31
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It can be seen that the over-fitting phenomenon of neural
network is solved after adding data enhancement to the data set.
The network obtained the highest accuracy of validation set and

training set when the epoch is 24. Compared with Table 4, the loss
value of the neural network is generally lower, indicating that the
neural network had learned more image features and the

FIGURE 9
Gamma change of the image, (A) is the original image, and (B) is the image after gamma change.

FIGURE 10
Random Angle changes of the image, (A) is the original image, (B) is the changed image.

FIGURE 11
ResNet50 training results after data enhancement.
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preprocessing of the data set is effective (Li et al., 2021) (Qu et al.,
2019b).

5.3 The comparison experiment

We set up a comparison method to verify the detection
performance of ResNet50. In addition, we consider verifying
whether our proposed method is suitable for classical lightweight
networks including AlxNet, InceptionV4 and VGG19. The image
data enhancement method also applied in the comparing methods.
To ensure convergence of the loss function, we increased the
hyperparameter epoch in the comparison test to 50. However, other
neural networks showed serious overfitting phenomenon. Hence the
“early stop” has been carried out. The network pre-training results are
shown in Table 6.

It can be seen that the accuracy of other typical networks is
maintained at 20%–30%. The loss function stays around 11 which
suggests that the network is not learning the deeper features of the
image. Due to the limitation of the fault conditions, it is difficult to
obtain large numbers of fault samples. Compared with ResNet, the
visual model above is prone to the problem of gradient
disappearance/explosion when dealing with small samples and
similar data.

6 Conclusion

This paper presents a series arc fault detection method
combining Morlet wavelet analysis and computer vision.
Common load arc fault current is sampled by sampling
resistance method. The Morlet wavelet with the scale of 64 is
applied to deep fault feature fusion.

The matrix composed of wavelet coefficients is mapped to
images by HSV color index. The image data is used as the

feature to establish the detection data set, and the data categories
are annotated manually. ResNet50 is applied to feature image
recognition. In addition, we propose a data enhancement method
of image random gamma transform and random rotation.
Experimental results show that data enhancement can effectively
improve the over-fitting phenomenon of neural network, and
improve the detection accuracy to 96.53%.

It is worth mentioning that the image feature extraction in this
paper provides a new method for feature selection. More researches
can be done on image features, such as dimensionality reduction of
image level data, image preprocessing that can change network
performance, and image expression of typical network
regularization.

Computer vision has brought a lot of convenience to our life.
Just like face recognition, we look forward to applying computer
vision to fault arc detection.
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TABLE 5 ResNet50 classification training results after data enhancement.

layers Epoch Train
accuracy (%)

Valid
accuracy (%)

loss

50 23 93.75 87.04 0.60

24 98.61 96.53 0.25

25 98.61 92.59 0.18

TABLE 6 Other typical computer vision network pre-training results.

Network Train accuracy (%) Valid accuracy (%) loss

ResNet50 98.61 96.53 0.25

AlxNet 24.77 12.5 11.09

InceptionV4 23.84 28.47 11.12

VGG19 24.68 12.5 11.09
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