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The power Internet of Things generates a large amount of data at any time, which
can be transformed into precise decisions with the help of artificial intelligence
approaches. However, the owners of electricity data with boundaries are often
concerned with data leakage. Therefore, when building models that feed big data
into deep learning artificial intelligence approaches for precise decision-making
within the power Internet of Things, it is essential to ensure the data’s security. This
paper proposes a framework for model training and decision making system
applied to the field of power IoT, which consists of two parts: data security sharing
and hierarchical decision making. The proposed framework utilizes a
homomorphic encryption-based federated learning approach to protect
private data from leakage. In addition, data augmentation and transfer learning
are used to address the issue of insufficient local training data. Moreover, the
framework attempts to incorporate the specialized nature of traditional manual
decision-making in the power field by fusing expert and model values after
stratifying the requirements. Experiments are conducted to simulate the
decision requirements in the field of power Internet of Things (e.g., electrical
material identification), using image recognition as an example. The experimental
results show that the proposed models can achieve high accuracy rates and the
fusion approach is feasible.
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Introduction

In recent years, the rapid development of science and technology has facilitated the
gradual integration of Internet of Things (IoT) technology into various aspects of people’s
daily lives, making it an integral and closely connected part of modern life. IoT technology
has an important role in public services (Wu and Xiao, 2022), smart homes (Choi et al.,
2021), medical security (Wu et al., 2020), labour free farms (Ratnaparkhi et al., 2020) and
smart grids (Alhariry et al., 2021), which brings a lot of convenience to people’s lives. Power
IoT constitutes a crucial component of IoT development, which can provide important
support for the intelligence, digitalization and transparency of the electricity grid through the
collection and transmission of electricity grid data to cloud platform for processing and
analysis (Zhang et al., 2022a).

Modern society is highly dependent on electric energy, which is related to the people’s
lives and the stability of the country, and is a strategic energy source for the country (Li et al.,
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2020). A smart grid is the integration of a traditional power grid with
a communication system and network (Mashal, 2022), which is also
one of the most important applications of IoT (Gunduz and Das,
2020). The application of IoT in the smart grid is called power IoT.
Power IoT generates a large amount of data under the edge cloud
architecture, and the way these data are processed is very critical
(Jiang et al., 2020). Effectively utilizing such data through advanced
methods like machine learning can help power companies make
accurate and informed decisions, leading to a significant
improvement in economic efficiency (Gilanifar et al., 2020).

However, the current power IoT still in need of effective
solutions for data security sharing and decision-making. The
direct collection of electricity consumption data from customers
for efficient energy management is insecure from an information
point of view (Wang et al., 2021). For example, users regularly report
electricity consumption data to the power company through smart
meters, thereby rendering their privacy exceedingly vulnerable (Xia
et al., 2022). Consequently, the privacy, security and trustworthiness
of data remain unconsidered in the current power IoT. The research
of user information security for power data has become a hot
research topic (Yan et al., 2020).

With the continued promotion of information technology in
today’s society, data has become increasingly valuable to humans
(Corallo et al., 2022) and fine-grained security management in the
IoT requires effective access control (Pal et al, 2022). However, the
data collected in power IoT is often diverse and data-intensive. A
large scale of data makes old supporting parsing systems and
decision-making systems seem overwhelming in their presence,
leading to a situation where it is challenging to tap into the total
value of more data in the field.

Figure 1 shows a simple schematic of smart grids in the area of
the Internet of Things for electricity. A smart grid with a well-
arranged IoT path can be used to rationalize the deployment of
power resources or to efficiently identify the level of wear and tear of

power equipment by obtaining data from smart city devices (e.g.,
smart meters, smart monitors and high-performance IoT sensors). It
is worth noting that most electricity data is private data, and for
entities with boundaries, a secure way of sharing data is required,
e.g., data masking and federated learning. However, potential
security threats, such as reconstruction attacks, membership
inference and model inversion, may arise in this scenario.

With the introduction of emerging concepts such as Industry 4.0
(Hong et al., 2021; Priya et al., 2021), the industrial and power IoT
sector has put forward new requirements for mining and utilizing
various electricity data. The industry is eager to obtain sufficient data
from smart meters (Ahammed and Khan, 2022) or other intelligent
power devices for decision-making purposes, such as using power
consumption data for rational allocation of power resources, using
power equipment implementation images for equipment wear and
tear identification and early warning, using images data to ensure
physical security of IoT devices (Yang et al., 2022) and using cross-
regional electricity data to develop top-level strategies with solid
generalization.

Data such as customer usage information, regional distribution
lines, and internal electricity equipment is often identified as private
data that needs protection. However, there exists a scarcity of
credible data that can be controlled by the decision-making
entities themselves on a national or even global basis. Such
entities may include many electricity companies, regions, or even
countries with boundaries. The difficulty in aggregating data across
regions to derive practical benefits while ensuring data privacy
protection poses significant challenges for these decision-making
entities. Furthermore, existing machine learning methods that rely
on data suffer from issues related to accuracy and reliability. With
the development of the smart grid, the safety of electric power
materials has attracted widespread attention, and the safety of
electric power equipment is a key part of it. Since power
equipment may cause some safety accidents due to overheating,

FIGURE 1
Entities with data boundaries.
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effective identification and temperature detection of power
equipment is extremely important, which can guarantee the
safety of the energy supply (Ni, 2020).

Traditional power IoT business decision-making relies on
experts’ professional experience and knowledge, with layers of
feedback and modifications before making decisions. This
approach relies heavily on expert authoritative knowledge, and
requires reconstructing the expert knowledge base if the structure
of the power IoT changes. At the same time, the accuracy of the
decisions made using this approach gradually decrease over time
due to the accumulation of obsolete knowledge. Spending a lot of
cost to update the knowledge base is often not a good choice. To
address these challenges, more and more companies are building
their automated decision-making solutions, hoping to fully exploit
the value of power IoT data with the assistance of computers.
However, these decision-making systems are typically based on
traditional data analysis methods, and many aspects require
manual intervention, which is time-consuming and low
resource utilization. Traditional decision-making systems for
the power IoT are often based on a small data level of model
training, which may have problems with effectiveness and
generalization. It is worth noting that traditional electricity
decision-making systems have difficulty ensuring the secure
sharing of data across regions. Private data cannot be secured,
significantly impacting the power IoT if the data is compromised.
Fortunately, research for artificial intelligence decision-making
systems has also been in order at recent stages (Kaur et al., 2022).
Many teams are studying the decision task of introducing artificial
intelligence methods into the field of power Internet of Things,
which is also the place to explore in this field. It is still a challenge
to transfer the task from the traditional decision-making method
to the application of artificial intelligence. For the traditional
machine learning method, a large number of available features
are required, while for the deep learning method, a large number of
standard available data sets are required.

To address the limitations of the existing decision-making
system in the field of power Internet of Things, and maximize
the adaptation of new industrial equipment such as smart grid in
popularity, the work of this paper integrates traditional expert
decision-making and in-depth learning methods. Furthermore, in
order to reduce the risk of privacy data leakage, which accounts for a
large proportion of data in the field of power Internet of Things, this
work also focuses on integrating a new data security sharing method.
The proposed data security sharing and decision-making approach
for the power IoT consist of two main parts: data security sharing
and the decision-making approach. The data security sharing
scheme for the power IoT is based on federated learning and
homomorphic encryption, which integrates data within each
region after determining the boundaries of a specific scenario.
The model’s performance at small data levels is further improved
by using data augmentation and transfer learning. The proposed
decision-making approach is a hierarchical model that integrates an
expert knowledge base and machine learning (ML) decision-
making. The scenario-specific requirements are hierarchically fed
into the decision-making system. The machine learning model
generates plausible values with expert knowledge base values to
produce a decision score. The weighted fusion of models and
decisions can reduce the possible effects caused by federated

learning features, such as intermediate data being recovered by
attackers and leading to leakage (Zhang et al., 2022b).

In summary, the main contributions of this paper are as follows.

• A security-driven decision model is proposed for the power
IoT that enables deep learning-based big data analysis and
decision-making for the power IoT under high security.
Machine learning tools and expert knowledge bases are also
integrated into the decision-making process to produce a
comprehensive decision result.

• Federated learning is used to ensure the secure sharing of
power IoT data by unifying different entities for collaborative
training and unified management by a trusted third party
without revealing sensitive data. This approach enables
reasonable exploitation of data value while ensuring data
security.

• Homomorphic encryption is used to prevent malicious
activities, such as inference attacks, that may occur in
federation learning. Homomorphic encryption processes the
data without decryption, thus securing the intermediate data
in the power IoT.

The remainder of this paper is organized as follows.
Section 2 provides an overview of the related work. Section 3

focuses on design details and a description of the methods for the
power IoT. Section 4 shows the experimental data and analysis of an
example scenario, along with a discussion of the results. Section 5
makes a summary of the paper and future perspective.

Related work

In this section, some work similar to the topic of this paper will
be presented, mainly covering decision systems and privacy
protection elements.

Decision-making methods

Most decision-making methods in the field of power IoT are
based on traditional manual analysis or single-user machine
learning. Al Metrik and Musleh (2022) proposed a medium-term
prediction model that can predict electricity consumption for a
given location. Predicting energy use ensures the stability of the
power supply. Wang et al. (2022) have constructed a structured
LSTM based on a prediction-guided autoencoder. A single model
enables the accurate prediction of short-term loans for all types of
users. Guang et al. (2021) proposed a decision-making approach.
Power communication resource data features are analyzed and
combined with data mining algorithms to design and propose
intelligent application scenarios geared towards grid and
communication network collaboration and assisted decision-
making. Tian and Dong (2021) proposed a long-term investment
decision model for transmission grid frames containing flexible
transmission devices. Due to the nature of the power IoT
domain, specific tasks are targeted.

Most decision-making approaches in the power IoT field are
based on a single independent machine learning model or other
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methods. These methods may work well for specific tasks but are not
highly generalizable and will be challenging to extend to other tasks.
There is also a risk of privacy breaches in handling sensitive data,
which is often not shared securely with the power data.

Data security sharing

Friha et al. (2022) proposed a federated learning-based intrusion
detection system. They used federated learning for a specific task
(i.e., intrusion detection) to protect the infrastructure of the Internet
of agriculture. Their experiments demonstrate the excellence of
federated learning in the Internet of agriculture. Image
recognition is the main task theme in the IoT for electricity, for
example, identifying wear and tear on electrical equipment. Tanwar
et al. (2021) proposed a privacy-preserving image recognition model
for encrypted data over the cloud. Their proposed block-based
image encryption scheme can be effective in securing private
images. Bhansali et al. (2022) presented a system with secure
data collection and transmission for IoMT architecture integrated
with federated learning and illustrated the value of this system in the
medical field. The same type of federated learning is used in the
medical field, Xu et al. (2021) proposed a general multi-view
federated learning approach using multisource data, and it can
extend the traditional machine learning model to support
federated learning across different institutions or parties. To
address the issue of user privacy protection in federated learning,
Mugunthan et al. (2020) proposed PrivacyFL, a scalable, easily
configurable and extensible simulator for federated learning
environments. Miao et al. (2021) proposed a federated learning-
based secure data sharing mechanism for IoT called FL2S, which
improves data security and data quality. Li et al. (2021) proposed a
novel privacy-preserving FL framework based on an innovative
chained secure multi-party computing technology called chain-
PPFL to address the leakage of participants’ sensitive information
due to exchanging model data in federated learning.

It is worth noting that the amount of data available for each local
user may be very small after applying federal learning, resulting in a
certain degree of overfitting and poor accuracy. Therefore, this paper
uses federated learning, transfer learning, data augmentation
methods, and model weighting fusion methods to improve the
model’s accuracy.

Materials and methods

In this section, the data security sharing and decision-making
approach for the power IoT is introduced.

Problem formulation

This part focuses on abstract modeling of data security sharing
and decision-making within the field of power IoT and illustrates the
main processes and specific details of the approach proposed in this
paper.

Problem description
Consider the set ENV � env1, env2,/, envn{ } of requirements

that may need to be decided within the power IoT, and for each
env ∈ ENV, determine the region boundary LOC �
loc1, loc2,/, locm{ } for collaborative training while dividing the
env hierarchically into sub-requirements eij, where n and m are
the total number of requirements and the total number of region
boundaries, respectively. i and j are the jth division of the ith layer,
respectively.

For the decision approach, the hierarchical output of the
plausible decision values Sugi of the expert knowledge base,
combined with the possible values mValue given by the
collaboratively trained completed machine learning model
Model, and results in the corresponding solution set
Solution � sol1, sol2,/, solv{ }, where i is the division of the
hierarchy and v is the number of solutions.

For the model to be run so that it can be trained efficiently and
give credible decision recommendations, a complete description of
the scenario is as follows:

• Input: i) The basic set of requirements ENV �
env1, env2,/, envn{ } for which decision information may
need to be obtained and the region boundaries LOC �
loc1, loc2,/, locm{ } for collaborative training. ii) A trusted
central server CServer for federated learning and a
hierarchical algorithm for partitioning requirements. iii)
Homomorphic encryption algorithms, models for migration
learning, and an expert knowledge base.

• Output: A set of solutions Solution � sol1, sol2,/, solv{ }
corresponding to each actual requirement.

• Objective: Maximize machine learning model accuracy ACC′
and complete data security sharing and decision making.

The overall flow of the proposed approach
This paper proposes a data security sharing and decision-

making model to solve the problem described in the above
scenario. The overall process is shown in Figure 2. The model is
divided into three parts: data preparation, regional collaborative
training, and output of decision making. Data preparation is mainly
responsible for collecting, cleaning, and data augmentation.
According to the overall training standard, these parts are mainly
carried out in the local area.

The regional collaborative training component is responsible for
securely sharing power IoT data. The use of federated learning and
homomorphic encryption ensures private data security. The use of
migration learning reduces costs and improves training effectiveness
on small volumes of data. All methods are carried out under the
integration of a trusted central server. The decision output part is
mainly responsible for outputting credible decision values given by
the decision hierarchy algorithm to give plausible suggested values
by the expert knowledge base. The plausible suggested values are
weighted and combined with the reasonable discounts offered by the
model in the previous session to provide reference values that can be
used for decision-making. The first and second of these parts are
described in the following sub-section. The detailed step-by-step
description is shown below:
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• STAGE Ⅰ: Data preparation

Step 1.Using smart electricity devices, such as smart meters, collect
local data. Data collection, in this case, is a locally trusted operation;

Step 2. The regions pre-process private data. The primary check is for
data consistency, followed by processing invalid and missing values;

Step 3. Due to the specific features of some of the data in the power
IoT, local areas with boundaries often do not share private data with
others. The methods of data augmentation vary for different tasks,
e.g., for the task of identifying and warning about the wear and tear
of power equipment, the main focus is on enhancing the picture data
of power equipment;

• STAGE ⅠⅠ: Collaborative training

Step 4. The model proposed in this paper evaluates the possibility
of applying migration learning in actual experiments for different
power IoT decision tasks;

Step 5a. Local model training. Each local model training is done by
trusted operations and data;

Step 5b. Use homomorphic encryption to ensure secure sharing of
data. Here the intermediate data of the local model training process
is encrypted and transmitted to the central server;

Step 5c. The central server averages the local intermediate data and
then distributes it to all local models;

Step 6. Output information about the completed training model.
There is not necessarily only one model used for transfer in a

decision process, and therefore not necessarily only one model
information is output;

• STAGE ⅠⅠⅠ: Decision making

Step 7. The expert knowledge base is used to support the decision
from the other side and is set to 0 if no matching decision
information is found.

Step 8. The expert experience is packaged according to a
hierarchical approach to electricity demand, all of which is
provided to the subsequent decision model;

Step 9a. If multiple models are used in the co-training section, then
all models are weighted and fused here;

Step 9b. If multiple sub-requirements are used in the co-training
section, then all sub-requirements are weighted and fused here;

Step 9c. Weighted fusion of data from Step 9a and Step 9b.

The data security sharing approach

This part focuses on the first part of the model proposed in this
paper, i.e., the data security sharing approach for the power IoT,
mainly consisting of data preparation and collaborative training.

Data collection and cleaning
Data is collected by uniform standards for all smart power

devices in areas with boundaries. For example, for electricity
consumption data, from a uniformly deployed smart meter
platform, the data is collected and stored by category number,

FIGURE 2
Overall flow of model.
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with different regions lending themselves to a uniform standard for
implementation between them.

As described in Figure 3A, the regions pre-process the privacy
data. The data is first checked for consistency, starting from a
prepared rule set and screens for data that does not match the
characteristics of the power IoT. For example, the existing electricity
theft may influence the data from smart meters (Xia et al., 2021).
Then the processing of invalid and missing values is carried out, and
the method used in this paper is to use sample means instead of
invalid and missing values.

The third step carries out the processing of duplicate values, and
the same data are deleted to reduce the model training cost.

Due to the small amount of data in this region, there may be
cases where the amount of data is below the standard training
threshold set after cleaning. Suppose the training requirements are
still not met after data augmentation. In that case, the model
proposed in this paper uniformly flags all data in this region
with boundaries, and some parameters will be modified in the
subsequent training process to reduce overfitting.

Local training data augmentation
Due to the unique data features in the power IoT, local areas

with boundaries tend not to share private data with other regions. A
possible direct result is that the dataset for local training is extremely
limited, and for many machine learning models, the quality of the
trainedmodel is largely influenced by the amount of data. This paper
uses data augmentation to expand the datasets in the local areas.

As described in Figure 3B, the data augmentation methods vary
for different tasks. For example, for the task of identifying and
warning about the wear and tear of electrical equipment, the main
focus is on augmenting the picture data of electrical equipment. In
this paper, the data augmentation methods for tasks involving
image recognition include random cropping, image rotation, and
flipping.

For random cropping, use the transformation as shown in
Formula 1.

li, wi( ) ← αli, βwi( ) (1)

where li is the length of the ith image, wi is the width of the ith image,
α and β are the parameters in the transformation. Here a tuple is
used to store its length and width attributes. Adjust the image to a
uniform aspect ratio after cropping:

image′i � resize imagei( ) (2)
Where imagei and image′i are the i

th image before and after the
random crop is completed, respectively, and resize(·) is a
conversion function to maintain the aspect ratio.

For image rotation and flipping, use the transformations shown
in Formulas 3, 4:

x′
y′[ ] � cos θ −sin θ

sin θ cos θ
[ ] x

y
[ ] (3)

x′
y′[ ] � −1

0
0
1
w
0

[ ] x
y

[ ] (4)

where, y and x′, y′ are the position of pixel points in length and
width before and after rotation and flip, respectively. θ is the rotation
angle and w is the width of the image.

For other tasks within the power IoT, such as text processing,
this paper uses random removal and disruption methods commonly
used in the field for text data augmentation.

Transfer learning based on practical assessment
Considering a power IoT decision-making task where a local

area with boundaries has only a small amount of controllable data,
this paper incorporates the transfer learning method in the proposed
model.

Transfer learning transposes a well-established model trained on
the source domain with a large amount of data to the target domain
with a small amount of local data so that the target model can also
achieve excellent results. The model proposed in this paper evaluates
the possibility of applying transfer learning in practical experiments
for different power IoT decision-making tasks. For example, in the
task of identifying and warning about the wear and tear of power
equipment, this paper uses a model-based transfer learning
algorithm. At the model level, the source and target domains can

FIGURE 3
Pre-processing stage. (A) Data collection and data cleaning (B) Data augmentation.
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share some of the parameters and then be trained with fine-tuning in
the local domain to obtain a usable target model with stronger
generalization performance.

Iterate through local area information to generate LOC;

for rd in range (Round) do

for loci in LOC do

if loci meet the requirement then

Vi
c � doEnc(Ci, PK)

end if

end for

Vc ← Transmits intermediate data and integrated into the

central server

Vp � UD(V′
p, Vc)

V � doDec(Vp, SK)
for loci in LOC do

C′
i � UDLoc(V,Ci)

end for

end for

return model

Algorithm 1. The model with federated learning.
The details of the experiments on the image task are described in

the next section.

Federated learning based on homomorphic
encryption

Federated learning is a typical example of a small data scale
model training approach, where distributed learning can effectively
break down the problems caused by “data silos.” At the same time,
much of the private data that is not expected to be shared can be
securely trained in a local bounded area, which is greatly protected
by the inclusion of homomorphic encryption.

Simple homomorphic encryption-based federated learning can
be easily described. As in Figure 4, suppose there are n local-area
data holders L � l1, l2,/, ln{ }, each of whom has private data

Di(i ∈ [1, n]) that is not shared. A trusted central server CServer
is set up, and multiple local-area clients are coordinated by it for
collaborative training.

It is further described that each local client freezes the
parameters of the first k layers and initializes the remaining
layers randomly after determining the original model. The local
area client performs a training round and encrypts the intermediate
data upon completion:

Vi
c � doEnc Ci, PK( ) (5)

where doEnc(·) is the encryption function, Vi
c is the information of

the ith local area client after encrypting the intermediate data, PK is
the public key of the encryption process, and Ci is the actual
intermediate data of the ith local area client.

The trusted central server receives the encrypted
intermediate data from the local area client and performs the
parameter update:

Vp � UD V′
p, Vc( ) (6)

where V′
p is the encrypted intermediate data received by the central

server from local clients in the previous round, Vc is the total set of
intermediate data received from all local geographical clients
(Vc � V1

c , V
2
c ,/, V3

c{ }), UD(·) is the data processing function of
the central server, and in this paper, the averaging method is used,
which means that the average of each intermediate data is taken, and
after the calculation is completed the central server issues a new
round of parameters Vp.

Each local client obtains the latest parameters from the central
server, decrypts them with the private key, and receives the actual
data in plaintext:

V � doDec Vp, SK( ) (7)

whereV is the latest round’s parameters from the central server after
decryption, doDec(·) is the decryption function and SK is the
private key. The local area client performs the update of the

FIGURE 4
Federated learning based on homomorphic encryption.
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parameters in the local model based on the data obtained in this
round:

C′
i � UDLoc V, Ci( ) (8)

where C′
i is the actual update of the parameters of the model for the

ith local area client for this round,UDLoc(·) is the parameter update
function for this local area client,V is the decrypted parameters from
the central server for the latest round, andCi is the intermediate data
for the ith local area client. The update here generally replaces the
parameters with the new decrypted parameters, or a weighted
average method can be used. For a more precise description of
the algorithm, see Algorithm 1. It has a time complexity ofO (rd×n).

The above homomorphic encryption-based federated learning
approach for the power IoT also requires a comparison with
traditional training methods, assuming that the model’s accuracy
obtained from the above process is ACC and considering traditional
training:

Model � Train ⋃ n
i�1Di( ) (9)

where Model is the trained model, Train(·) is the abstract process
representation of the training process, and the accuracy obtained
fromModel is represented as ACC′. The following comparisons are
generally considered:

ΔA � ACC′ − ACC
∣∣∣∣ ∣∣∣∣< δ (10)

where δ is a very small non-negative actual number, which has also
become one of the criteria for measuring federated learning.

The hierarchical fusion decision model

This sub-section focuses on the second part of the model
proposed in this paper, a hierarchical fusion decision model for
the power IoT, consisting of two main parts, demand hierarchy, and
decision credible value fusion.

Hierarchical power IoT demand
The delineation model is central to this subsection, considering

that the actual requirements of the power IoT are often complex and
diverse and usually consist of multiple sub-requirements, where
individual sub-requirements can clearly unambiguously express the
decisional boundaries.

Due to the complex features of the power IoT, existing
segmentation methods may not reach the goal. A better solution
is to cross natural language processing domain knowledge for
automatic delineation or to be supported by an expert knowledge
base for delineation. The hierarchical model proposed in this paper
focuses on using expert knowledge base support for the delineation.
The model subscribes to a single requirement (vectorized when
necessary) and retrieves the expert knowledge base to delineate
several linked sub-requirements. It is worth mentioning that the
hierarchical results are not always optimal.

Decision credible value fusion
This paper introduces a weighted fusion strategy at the decision

level, referring to various existing model fusion strategies. It can be
shown in Figure 5. The weighted fusion strategy can reduce the

impact of errors from the model. Considering the sources of
plausible decision values: the data obtained after the completion
of federated learning of multiple models and the data provided by
the expert knowledge base, the weights of each fusion term should be
given after lightweight testing or dynamically adjusted during the
iterative training process, and the weighted fusion is given by
Formula (11):

V � 1
2m

∑m

j�1
Zj

ML

n
∑n

i�1w
j
i · vji + Zj

KL

k
∑p

k�1c
j
k · xj

k( ) (11)

Where m, n, and p are the number of decisions, the number of
fused models in federated learning, and the number of sub-
requirements divided by the expert knowledge base, respectively.
Zj
ML is the weight on the model side at the jth decision round, and

Zj
KL is the weight on the model knowledge base side at the jth

training round. wj
i is the weight of the i

th model fused in federated
learning at the jth decision round, and vji is the result of the i

th model
fused in federated learning at the jth decision round vector. cjk is the
weight of the kth sub-requirement divided at the expert knowledge
base level at the jth decision round, and xj

k is the result vector of the
kth sub-requirement divided at the expert knowledge base level at the
jth decision round. It has a time complexity of O (m×max{n,p}).

Results and discussion

In this section, several experiments are conducted to evaluate
the model proposed in this paper. In this paper, the proposed
model is implemented by PyTorch code framework in Python
language and tested on personal computers (PCs) such as i5-
7300HQ CPU, GTX1050Ti graphics card and 8 GB RAM. There
are many decision-making tasks in the field of power IoT that are
worth exploring (e.g., electrical material identification). To better
represent the fusion and decision-making approach proposed in
this paper, the experimental part will use the power equipment
wear and tear assessment task as the primary requirement. Due to
the high privacy of power data, the team could not obtain sufficient
data, so the experiments mainly used Caltech-256 dataset as an
example and attached the data collected by our team. The approach
proposed in this paper is fully extensible to specific tasks in the
power domain.

Model transfer learning with (Non-)
Federated learning

For the image task, this paper uses the VGG-19 and ResNet-50
models for federated learning. Using the transfer learning training
dataset, the parameters used in transfer learning are shown in
Table 1. For the training process, the transformation formula for
the learning rate is shown in Formula (12):

θe � θ min + 1
2

θinit − θ min( )(1 + cos(Ecur

Einit
)) (12)

where θinit is the initial learning rate, θ min is the minimum value of
learning rate and is set as 0 in this paper, Ecur is the current train
epoch.
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The models after adding federated learning were evaluated on
the server-side for model performance after the intermediate data
had gone through FedAvg. It is worth noting that the models used in
the experiments in this paper were pre-trained on ImageNet and

then downloaded during the first round of training. The
experiments used two clients to simulate.

The federated learning scenario, and the transfer learning used
the same two models mentioned above, with some specific
parameter settings in Table 2.

The effective range of the simulated federation learning used for
the experiments in this paper is within a local area network, using
homomorphic encryption to ensure secure data transmission. For
the security of cross-domain information transmission, it is not
considered in this paper for the time being. Also, due to transfer
learning, most neural network layers do not need to be updated with
parameters, dramatically reducing network communication’s
burden.

The model training results for the four combinations are shown in
Table 3. Excellent accuracy can be achieved for all the mature models
selected for training under transfer learning. The two models using
federal learning were generally better in terms of accuracy, with the time
spent on a single training session varying between models due to the fact
that the VGG-19 model used had far more parameters than ResNet-50.

Model fusion

The image task selected as an example in the experiments in this
paper is a simple stand-alone task, so fusing sub-requirements will not be
considered for use. This part focuses on model fusion. Model fusion
allows for better generalization performance of the completed training
model and can compensate for possible accuracy problems associated
with federated learning. This paper used the model-weighted fusion,
which reduces the impact on the overall model due to errors in one

FIGURE 5
Decision confidence value fusion process.

TABLE 1 The parameters used in transfer learning.

Parameters Value

Batch size 32

Initial learning rate 0.001

Optimizer SGD

Loss function Cross entropy

TABLE 2 The parameters used in federated and transfer learning.

Parameters Value

Batch size 32

Initial learning rate 0.001

Optimizer SGD

Loss function Cross entropy

Number of global iterations 30

Local training rounds 2

Regularization parameter 0.5
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model. When there is a significant difference in structure and
performance between the models to be fused, the better performing
models are given more substantial weight, and the average performing
models are given a lower weight, as shown in Formula (11).

As seen from the experimental results, ResNet-50
outperformed the VGG-19 model in front of the multi-
classification task in both experiments with and without
federated learning. Therefore, in the model-weighted fusion

experiments in this subsection, greater weight was given to
ResNet-50. A comparison of the experimental results is
shown in Table 4. It can be seen that the best results for
model fusion are obtained when the ratio is 2.33, with an
optimal accuracy of 95.2%. However, it is worth noting that
better than VGG-19 converges faster, and the convergence
speed of the fusion model is also affected in the case of its
low weights.

TABLE 3 Transfer learning effects of the two models with (non-)federated learning.

Model Epoch Training time (%) ACC-OPT (%) ΔA Security strategy

non-federated transfer learning & VGG-19 30 100 93.6 0.6% False

non-federated transfer learning & ResNet-50 30 275.07 94.4 ≈0% False

federated transfer learning & VGG-19 60 414.33 94.2 0.6% True

federated transfer learning & ReNet-50 60 334.96 94.4 ≈0% True

Average 281.09 94.15 0.3%

Bold values are highlighted for the average of the data in this column.

TABLE 4 Experimental results of model-weighted fusion.

ResNet-50: VGG-19 ACC-OPT (%) ΔA (VGG-19) (%) ΔA (ResNet-50) (%) Security strategy

1.5 94.3 0.7 0.1 True

2.33 95.2 1.6 0.8 True

4 93.1 0.5 1.3 True

9 94.2 0.6 0.2 True

Average 94.2 0.85 0.6

Bold values are highlighted for the average of the data in this column.

FIGURE 6
The specific experimental comparison data.
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Overall analysis

The experimental results for the two parts of the model are
obtained in the first and second part. At the same time, the
corresponding data are also available for the other model fusion
method, as shown in Figure 6 for the specific experimental
comparison data.

In comparing the best results for this task, model fusion can be
optimal, with the weighted fusion method obtaining the first place at
95.2%. However, its convergence is slower in the actual training
process. The fusion model is more generalizable than a single model
and gives better results.

The weighted calculated result vectors are not listed in the
experiments tables, as all experimental results are already
expressed in accuracy. As the expert knowledge base requires
a certain base reserve, the weight of this part is set to 0 in many
tasks of the experiments in this paper, but this is still very scalable
for tasks in the field of power IoT. In addition, the experiments in
this paper focus on the security protection of electricity data, and
the model is more interested in applying a secure method of
secure data sharing in the power IoT domain than accuracy.
From the data in Tables 3, 4, it can be seen that the experimental
group considering the security strategy and the experimental
group without incorporating federated learning have less than
1.7% bias in the experimental effect. The decision framework
proposed in the text for federated security policies for power IoT
can protect independent private data while ensuring accuracy. It
improves the confidence level of decision making compared to
traditional manual decision making, and it effectively and
securely partitions the training data for secure sharing for
privacy protection compared to the overall trained model. In
addition, the use of models as well as decision-level fusion can be

extended to a wide range of power decision tasks in the context of
smart grid. It is worth noting that although the proposed
approach in this paper is effective in the power IoT domain to
ensure that the privacy data used in power tasks are shared
securely, its convergence speed is slower than traditional training
methods (Figure 7) and requires additional communication time.
To test the extensibility of the framework in this paper, we also
tested the electricity price forecasting task under smart grid, and
the results were similar to this set of experiments, and the secure
sharing of private data was ensured from various aspects.

Conclusion and future work

To address the complexity of traditional decision-making
methods in the field of power IoT and the privacy protection of
power data, this paper introduces homomorphic cryptography-
based federated learning to the task of power IoT. Also, transfer
learning and model fusion are used to improve the performance
of the overall model. This paper also proposes a hierarchical
decision model that integrates traditional expert decision making
in the power IoT domain and deep learning decision making
under new industrial devices, combining machine learning
models and plausible values from expert knowledge bases to
obtain integrated decisions with excellent results.

Future research will focus on designing new machine learning
models for the data characteristics of the power IoT in order to
reduce the reliance on transfer models. In addition, we hope to
conduct targeted research on data types in the power IoT space to
incorporate more advanced security strategies and further adapt
to emerging industrial devices such as smart grids.

FIGURE 7
Comparison of convergence speed between different combinations.
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