AUTHOR=Nader Andrew , Dubois Marc-André , Kundur Deepa TITLE=Exploring quantum learning in the smart grid through the evolution of noisy finite fourier series JOURNAL=Frontiers in Energy Research VOLUME=11 YEAR=2023 URL=https://www.frontiersin.org/journals/energy-research/articles/10.3389/fenrg.2023.1061602 DOI=10.3389/fenrg.2023.1061602 ISSN=2296-598X ABSTRACT=
The decentralization and softwarization of modern industrial control systems such as the electric grid has resulted in greater efficiency, stability and reliability but these advantages come at a price of higher likelihood of cyberattacks due to the resulting increase in cyberattack surface. Traditional cyberattack detection techniques such as rule-based anomaly detection have an important role to play in first response. However, given the data-rich environment of the modern electric grid, current research thrusts are focused on integrating data-driven machine learning techniques that automatically learn to detect anomalous modes of operation and predict the presence of new attacks. Quantum machine learning (QML) is a subset of machine learning that aims to leverage quantum computers to obtain a learning advantage by means of a training speed-up, data-efficiency, or other form of performance benefit. Questions remain regarding the practical advantages of QML, with the vast majority of existing literature pointing to its greater utility when applied to