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Microalgae are versatile, profitable, and promising sources of bioenergy and high-
value products, having various applications in the biotechnology industry. Herein,
G. emersonii KNUA204 was isolated from Ulleungdo Island, South Korea, and
exposed to stressors, i.e., MgCl2 (75 and 150 mM) and NaCl (200 and 400mM), to
investigate improvement in its biomass productivity and feasibility of the
application of biomass. Treatment with mild MgCl2 (75 mM) afforded the
highest specific growth rate (μ = 0.13 d−1), dry cell weight (3 g L−1), and total
carbohydrate content (29.87%). Although all salt treatments decreased chlorophyll
and carotenoid contents, treatment with high NaCl concentration (400mM)
afforded the highest zeaxanthin content (0.3 mg g−1). The proximate and
ultimate analyses of biomass following treatment with 150 mM MgCl2 revealed
93.85% volatile matter and 22.55 MJ kg−1 calorific value, respectively, indicating
that Graesiella emersonii KNUA204 can be potentially used as bioenergy
feedstock. The biodiesel quality was established based on the fatty acid methyl
ester profiles, and MgCl2 treatment increased the cetane number more than the
control. Therefore, the treatment of G. emersonii KNUA204 with MgCl2 during
cultivation could provide a microalgae-based bioenergy feedstock with high
productivity.
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1 Introduction

The climate crisis and fossil fuel depletion have increased the demand for sustainable
energy and stimulated interest in bioenergy, especially because alternative energy sources are
urgently needed worldwide to reduce environmental pollution (Sarkodie et al., 2019;
Londoño-Pulgarin et al., 2021; Abbasi et al., 2022). Efforts to achieve carbon neutrality
by fixing renewable carbon constitute an effective strategy to develop the full potential of the
bioenergy industry (Su et al., 2017; Li et al., 2020). Microalgae exhibit a short cultivation
period, high biomass productivity relative to land area, non-competition with crops, and the
ability to fix carbon via photosynthesis (De Bhowmick et al., 2019; Musa et al., 2019; Yin
et al., 2020; Shanmugam et al., 2021). Consequently, they have emerged as a third-generation
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energy source through industrial-scale cultivation and appropriate
refinery processes (Jambo et al., 2016; Saad et al., 2019; Abbasi et al.,
2021; Ananthi et al., 2021). Microalgae can produce various high-
value compounds, including lipids, polysaccharides, pigments, and
bioactive products (Michalak and Chojnacka, 2015; Deviram et al.,
2020; Castillo et al., 2021; Wu et al., 2021). Extensive research has
been conducted to obtain high-efficiency biomass to ensure more
production of these high-value compounds (Yu et al., 2015; Gomaa
et al., 2016; Sun et al., 2018; Shahid et al., 2020; Sivakaminathan et al.,
2020).

Salinity constitutes a major stress factor used in research
regarding microalgae productivity and high-value compound
production (Chen et al., 2017; Liyanaarachchi et al., 2021; Ren
et al., 2021). Salt exposure of cells activate complex physiological
and biochemical mechanisms, such as the recovery of turgor pressure,
regulation of ion uptake and release via cell membranes, and
accumulation of osmotic pressure–protective solutes and stress
proteins (Hejazi and Wijffels, 2004; Ishika et al., 2018; Figler et al.,
2019; Shetty et al., 2019). Therefore, salt stress can increase microalgal
growth and lipid content alongside the production of several bioactive
compounds (von Alvensleben et al., 2016; Kim et al., 2021; Mohseni
et al., 2021). Various studies have reported that salt stress generally
increases lipid accumulation, with the proportion of saturated fatty
acids increasing and that of polyunsaturated fatty acids decreasing.
However, other studies have revealed that under high salt stress
conditions, the fatty acids in membrane lipids become unsaturated,
resulting in an increase in the proportion of unsaturated fatty acids
and a decrease in that of saturated fatty acids (Atikij et al., 2019). Not
only lipid but also carotenoid content increased under salinity stress,
especially MgCl2, and NaCl (Kobayashi et al., 1997; Rad et al., 2011;
Pourkarimi et al., 2020; Lu and Lu, 2022).

Ulleungdo is located east of the Korean Peninsula and is a
volcanic island formed by flows of lava derived from volcanic
eruptions. Various microbial communities can be discovered in
streams originating from the island’s groundwater. However,
bacteria and fungi are actively being analyzed, and barely know
about microalgal communities (Chang et al., 2002). Studies
regarding microalgae originating from Ulleungdo Island are
relatively few, thus a more systematic approach is required.
Furthermore, the discovery of unique species arising
independently on an island far from the Korean Peninsula is
possible. Thus, the biochemical characteristics of isolated
microalgae strains and the possibility of using them as bioenergy
feedstock warrant investigation.

Herein, we isolated the freshwater microalga Graesiella
emersonii KNUA204 from Ulleungdo Island, South Korea, and
characterized its biomass productivity, biochemical composition,
and potential application as bioenergy feedstock under salt stress of
MgCl2 and NaCl.

2 Materials and methods

2.1 Isolation and identification of Graesiella
emersonii KNUA204

Freshwater samples were collected from Ulleungdo Island,
South Korea, in April 2021. Subsequently, the collected samples

were inoculated into BG-11 media to obtain an axenic strain based
on previously described methods (Jo et al., 2020). The isolated
microalga was observed under a light microscope (Zeiss Axio
Imager A2; Carl Zeiss, Göttingen, Germany). For molecular
identification, genomic DNA was isolated and amplified using
polymerase chain reaction (PCR), with each primer set located
within the internal transcribed spacer (ITS) region, as previously
reported (Abou-Shanab et al., 2011). Each PCR amplicon was ligated
into a pGEM T-Easy Vector (Promega, Madison, WI, United States)
and transformed into Escherichia coli DH5α. The resulting plasmid
DNA was sequenced, and the closely matched sequences were
identified using the national center for biotechnology information
(NCBI) BLAST tool. A phylogenetic tree was constructed using the
maximum likelihood (ML) method with 500 bootstrap replicates
(Soltis and Soltis, 2003).

2.2 Growth measurements

2.2.1 Growth conditions
The experiment was performed at 25°C under a light/dark cycle

of 16/8 h and 135 μmol m−2 s −1 light intensity using an orbital
shaker at 160 rpm (Vision Scientific Korea, Bucheon, Korea). Cell
cultures were grown until the optical density at 680 nm (OD680)
reached 1.0. Each culture was centrifuged, and the collected pellet
was inoculated into the media. Furthermore, salts at four different
concentrations (75 mMMgCl2, 150 mMMgCl2, 200 mM NaCl, and
400 mMNaCl) were added to each culture medium. The specific salt
concentrations were determined through preliminary research,
which indicated that G. emersonii KNUA204 exhibited better
growth characteristics under salt stress compared with those of
other candidate strains (Supplementary Figure S1).

2.2.2 Measurements of growth rate and biomass
productivity

The growth rate of microalgae was monitored via OD680

measurements using a spectrophotometer (Optimizer 2120 UV
spectrophotometer, Mecasys, Daejeon, Korea), and their biomass
productivity was determined via dry cell weight (DCW)
measurement using the gravimetric method, as previously
reported (Jo et al., 2020). The OD680 and DCW measurements
were conducted every 2 days for 2 weeks. The maximum specific
growth rate (μ) was calculated using the following equation
(Levasseur et al., 1993):

μ � ln N2/N1( )/ t2 − t1( ) (1)
where N2 and N1 denote the values of OD680 at t2 and t1 days,
respectively.

2.3 Measurement of physicochemical
properties and pigment analysis

2.3.1 Chlorophyll and total carotenoid contents
The cells were harvested after 14 days, and 2 mL cells were

collected and centrifuged at 16,022 ×g for 5 min. The collected
cells were suspended in 2 mL ethanol to measure the chlorophyll a
(Chl-a), chlorophyll b (Chl-b), and total carotenoid contents. The
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samples were sonicated using a probe-type ultrasonicator (Branson
Ultrasonics Sonifier 450; Danbury, CT, United States) at a resonance
frequency of 40 Hz and then incubated at 4°C for 24 h in the dark.
Following incubation, the samples were centrifuged at 16,022 ×g for
20 min, and the supernatant was assessed using a UV-VIS
spectrophotometer at 470, 649, and 664 nm. Pigment
concentrations were calculated using the following equations:

Chl − a � 13.36A664 − 5.19A649 (2)
Chl − b � 27.43A649 − 8.12A664 (3)

Total carotenoid � 1000A470 − 2.13Chl − a − 97.63Chl − b( ) /209
(4)

2.3.2 Pigment analysis using high-performance
liquid chromatography

High-performance liquid chromatography (HPLC) analysis was
performed as described by Yang et al., 2020. The extracted pigments
were dissolved in HPLC-grade acetone and filtered through a 0.2-
µm membrane filter (Minisart syringe filter, Sartorius Stedim
Biotech, Göttingen, Germany). Then, the pigments were analyzed
using Agilent 1,200 series gradient HPLC system (Agilent
Technologies, Palo Alto, CA, United States) equipped with a
C30 carotenoid column (250 mm × 4.6 mm, 5 μm, YMC, Kyoto,
Japan). A mixture of 92% methanol and 10 mM ammonium acetate
was used as solvent A and tert-butyl methyl ether as solvent B at a
constant flow rate of 1 mL min−1 for 1 h. Carotenoid standards (β-
carotene, lutein, and zeaxanthin) were purchased from Sigma-
Aldrich (St. Louis, MO, United States). The profiles of the
standards and extracted pigments were determined via OD
measurements at 450 nm.

2.4 Biochemical composition of the
microalgal biomass

The harvested microalgal biomass was freeze-dried using a
freeze dryer (PVTFD20R, Ilshin Lab, Suwon, Korea), pulverized
using a mortar and pestle, and sieved through a test sieve (ASTM
No. 230 mesh, opening = 63 μm, Chunggye, Gunpo, Korea). The
total carbohydrate content was determined using the
phenol–sulfuric acid method, as described previously (Laurens
et al., 2012). The total lipid content was determined using the
sulfo-phospho-vanillin colorimetric method (Mishra et al., 2014).
The protein content was calculated using the conversion factor
(×6.25) of nitrogen, and the nitrogen content was derived from
the ultimate analysis (Mariotti et al., 2008).

2.5 Proximate and ultimate analysis

Proximate analysis was performed via the thermogravimetric
method using a thermal analyzer (DTG-60A, Shimadzu, Kyoto,
Japan). After ~10 mg biomass was utilized, the moisture content was
determined by measuring the weight loss before the temperature
reached 100°C under nitrogen (N2) supply, volatile matter
corresponded to a weight loss between 100°C and 900°C, and
the remaining biomass indicated the amount of fixed carbon and

ash (Bi and He, 2013). Alpha-alumina (α-Al2O3) powder was used as
a reference. Nitrogen (N2) gas was continuously supplied at
25 mL min−1 to protect the microalgal biomass from oxidation.

For the ultimate analysis, the carbon, hydrogen, oxygen,
nitrogen, and sulfur contents were determined using Flash
2000 elemental analyzer (Thermo Fisher Scientific, Milan, Italy).
The calorific value (CV) was calculated using the following equation
(Given et al., 1986):

CV MJ kg−1( ) � 0.3278C + 1.419H + 0.09257S − 0.1379O + 0.637

(5)

2.6 Fatty acid analysis and biodiesel
properties based on fatty acid methyl ester
profiles

Lipid extraction was conducted using a previously described
method with slight modifications Breuer et al. (2013). The
extracted lipids were transesterified to fatty acid methyl ester
(FAME) by adding methanol with 5% (v/v) sulfuric acid and
then incubated for 3 h at 70°C. All the samples were filtered
before analysis, and the resulting FAME was analyzed via gas
chromatography–mass spectrometry (GC–MS) (Agilent 7890A
GC equipped with 5975C MSD; Agilent Technologies, Santa
Clara, CA, United States) using a DB-FFAP column (30 m ×
250 μm × 25 μm). GC–MS was conducted based on our
previous study (Jo and Do, 007, 2020).

The biodiesel properties of biomass were determined by
assessing the saponification value (SV), iodine value (IV), cetane
number (CN), degree of unsaturation (DU), long-chain saturated
factor (LCSF), cold filter plugging point (CFPP), oxidation stability
(OS), kinematic viscosity (υ), and density (ρ). The following
equations were used to estimate the biodiesel quality of biomass
using fatty acid composition, as reported previously (Ramos et al.,
2009; Islam et al., 2013; Yang et al., 2016):

IV � ∑
254 × N × D

MW
(6)

SV � ∑
560 × N
MW

(7)

CN � 46.3 + 5458
SV

− 0.255 × IV( ) (8)
LCSF � 0.1 × C16( ) + 0.5 × C18( ) + 1 × C20( ) + 1.5 × C22( )

+ 2 × C24( ) (9)
CFPP � 3.1417 × LCSF( ) − 16.477 (10)

DU � MUFA + 2 × PUFA( ) (11)
OS � 117.9295

X
+ 2.5905 0< 100( ) (12)

v � −12.503 + 2.496 × ln MW( ) − 0.178 × N (13)
ρ � 0.8463 + 4.9

MW
+ 0.0118 × N (14)

In these equations, N, MW, D, and X represent the percentages
of each fatty acid content, molecular weight, number of double
bonds, and linoleic and linolenic acid contents in each FAME value,
respectively. MUFA and PUFA represent the contents of
monounsaturated and polyunsaturated fatty acids, respectively.
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2.7 Statistical analysis

All experiments were performed in triplicate. Data are presented
as the average of three values, and error bars represent standard
deviation.

3 Results and discussion

3.1 Isolation and identification of Graesiella
emersonii KNUA204

In the preliminary research, several indigenous microalgae were
isolated from Ulleungdo Island, South Korea, and cultivated with
different concentrations of MgCl2 and NaCl to enhance biomass
productivity. KNUA204 was selected as the candidate microalga
strain because compared with other strains, it exhibited the highest
tolerance and sufficient growth level under both mild (75 mM
MgCl2 and 200 mM NaCl) and high (150 mM MgCl2 and
400 mM NaCl) salt concentrations (Supplementary Figure S1).
KNUA204 was non-motile and ellipsoidal in shape with globose
cells, and the size of a single cell was ~5 μm (Supplementary Figure
S1A). Based on the ITS sequencing data, the ML analysis indicated
that the isolate was phylogenetically close to G. emersonii
(Supplementary Figure S1B).

3.2 Measurement of growth rate and
biomass productivity

Previous studies have reported that the growth rate of
microalgae decreases with increase in salt concentrations;
however, some microalgae species exhibit increased growth rate
in mild salt stress conditions (Talebi et al., 2013; Pandit et al., 2017;
Elloumi et al., 2020). The growth rate of G. emersonii KNU204 was
not significantly reduced by mild salt concentrations. A mild
concentration of MgCl2 (75 mM) resulted in the highest growth
rate (μ = 0.13 d−1) and DCW (3 g L−1) after 14 days of cultivation.

The growth rate and DCW of microalga cultivated in media
supplemented with 200 mM NaCl were μ = 0.12 d−1 and
2.6 g L−1, respectively, which were similar to those in the
control (BG-11). However, doubling the concentrations of both
the salts in the media negatively affected microalgae growth
(Figure 1).

3.3 Physicochemical properties and
carotenoid analysis

In G. emersonii KNU204, >45% Chl-a and Chl-b contents
decreased following exposure to MgCl2 and NaCl (Figures 2A,
B). The magnitude of decrease in the total carotenoid content
was higher in the NaCl-treated cells than in the MgCl2-treated
cells (Figure 2C). The highest carotenoid/chlorophyll ratio was
achieved with 150 mM MgCl2, suggesting that G. emersonii
KNU204 reduced the antenna size to protect themselves against
salt stress–induced photo-oxidative damage (Figure 2D) (Pancha
et al., 2015). As high carotenoid/chlorophyll ratio is considered an
appropriate stress response of microalgae, the addition of 150 mM
MgCl2 to the microalgal cultures was possibly the strongest stress
factor among those tested here (Saha et al., 2013). Salt stress modifies
the concentrations of photosynthetic pigments in numerous
microalgae (Romanenko et al., 2017; Elloumi et al., 2020; Fal
et al., 2022). The contents of none of the major carotenoids
extracted from G. emersonii KNU204 increased under MgCl2
exposure (Figures 2E–G). Previous studies have reported that salt
stress leads to increase in β-carotene and xanthophyll contents in
microalgae (Chokshi et al., 2017; Sun et al., 2018). Herein, no
significant differences in the contents of β-carotene and lutein
were observed between the control and salt-treated cells (Figures
2E, F). However, zeaxanthin content increased by more than twice
when treated with 400 mM NaCl compared with that in the control
(Figure 2G). The overall pigment content in G. emersonii
KNU204 decreased in salt-supplemented media, signifying that
MgCl2 and NaCl did not efficiently enhance carotenoid and
chlorophyll contents. However, treatment with high NaCl

FIGURE 1
(A) Growth curves and (B) dry cell weight of Graesiella emersonii KNUA204 cultured with different concentrations of MgCl2 (75 mM and 150 mM)
and NaCl (200 mM and 400 mM).
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FIGURE 2
Variation of pigment contents in Graesiella emersonii KNUA204 cultivated with different concentrations of MgCl2 (75 mM and 150 mM) and NaCl
(200 mM and 400 mM). Contents of (A) chlorophyll a, (B) chlorophyll b, (C) total carotenoid, (D) carotenoid/chlorophyll ratio, (E) β-carotene, (F) lutein,
and (G) zeaxanthin.
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concentrations (400 mM) could effectively produce zeaxanthin-rich
microalgae.

3.4 Biochemical composition of biomass

Salt stress–induced variations in carbohydrate, protein, and lipid
contents in microalgae are species-dependent (Fal et al., 2022; Haris
et al., 2022). Furthermore, the appropriate concentration of salt required
to alter the amount of bioactive compounds and biochemical products
varies from species to species. Herein, the carbohydrate and protein
contents ofG. emersoniiKNU204 increased by 7% and 3%, respectively,
undermild salt concentrations, and there was no significant variation in
lipid content. Conversely, the carbohydrate and lipid contents
considerably decreased under high salt concentrations by >14% and
21%, respectively (Table 1). Various studies have been conducted to
increase the lipid or carotenoid content of microalgae, such as of
Dunaliella sp., Tetraselmis suecica, Halochlorella rubescens,
Scenedesmus sp., Chlamydomonas reinhardtii, and Chlorella vulgaris
under salt stress (Pancha et al., 2015; BenMoussa-Dahmen et al., 2016;
Sun et al., 2018; Gour et al., 2020; Jo et al., 2020; Fal et al., 2022).

However, herein, lipid concentration decreased with increase in salt
concentrations. Only the mild MgCl2 concentration (75 mM) barely
maintained the same lipid content as that in the control. Comparedwith
the control, the protein content in the culture exposed to the high NaCl
concentration (400 mM) increased by 8.44% (Table 1). At this
concentration, protein content was also shown to increase in
Tetradesmus chuii, Isochrysis galbana, and Chlymydomonas
reinhardtii (Haris et al., 2022). As in other microalgae, the
accumulation of protein in G. emersonii KNU204 could be due to a
protective mechanism against osmotic stress (Anand et al., 2019).

3.5 Proximate and ultimate analysis

In the proximate analysis, the mild MgCl2 concentration
(75 mM) afforded the highest VM (93.85%) and the lowest MC
(2.38%) means that most of the calorific value would be released
(Sukarta_2018). However, the high NaCl concentration
(400 mM) increased MC (4.12%) and FC + ash contents
(6.90%) and decreased VM (88.98%) compared with those in
the control. In the ultimate analysis, the carbon content
(48.68%) and CV (22.55 MJ kg−1) were the highest in the
75 mM MgCl2–treated cells (mild concentration) and the
lowest in the 150 mM MgCl2–treated cell (high
concentration) (Table 2). VM is defined as a part of
discharged solid fuel with a content of up to 80% of biomass,
usually 63 %–80% for crop residue and 72 %–78% for wood
(Hong et al., 2016). High VM content (>80%) in microalgal
biomass is advantageous for bioenergy and biofuel production
(Awaluddin et al., 2016). The VM of microalgal biomass in all
salt stress conditions was higher than the range of VM in wood-
based biomass feedstocks. CV was also calculated to determine
the potential of this microalgal biomass as biofuel feedstock. All

TABLE 1 Biochemical composition (wt%) of Graesiella emersonii KNUA204.

Carbohydrate Lipid Protein

Control 27.74 ± 2.23 19.59 ± 0.85 33.97 ± 0.04

75 mM MgCl2 29.87 ± 1.51 19.44 ± 0.68 34.36 ± 0.14

150 mM MgCl2 23.26 ± 0.64 15.46 ± 1.58 28.36 ± 0.03

200 mM NaCl 28.77 ± 0.66 18.75 ± 0.90 34.91 ± 0.42

400 mM NaCl 21.98 ± 0.52 15.64 ± 1.57 37.07 ± 0.01

TABLE 2 Results of the proximate and ultimate analyses of Graesiella emersonii KNUA204 biomass.

Control 75 mM 150 mM 200 mM 400 mM

MgCl2 MgCl2 NaCl NaCl

Proximate analysis (wt%)

MCa 3.24 ± 0.16 2.38 ± 0.44 2.54 ± 0.32 2.55 ± 0.43 4.12 ± 0.75

VMb 91.64 ± 0.64 93.85 ± 0.60 88.46 ± 0.55 93.02 ± 0.76 88.98 ± 0.31

FCc + ash 5.12 ± 0.57 3.77 ± 1.04 9.00 ± 0.86 4.74 ± 0.77 6.90 ± 0.79

Ultimate analysis (wt%)

C 47.14 ± 0.04 48.68 ± 0.02 37.88 ± 0.29 48.53 ± 0.11 43.80 ± 0.12

H 6.92 ± 0.004 7.45 ± 0.01 7.02 ± 0.03 7.16 ± 0.06 6.49 ± 0.03

O 33.13 ± 0.68 33.73 ± 0.03 32.97 ± 0.003 33.31 ± 0.01 29.82 ± 0.18

N 5.43 ± 0.68 5.50 ± 0.03 4.54 ± 0.04 5.59 ± 0.16 5.93 ± 0.001

S 0.35 ± 0.68 0.38 ± 0.02 0.37 ± 0.02 0.43 ± 0.03 0.61 ± 0.05

CVd (MJ kg−1) 21.38 ± 0.11 22.55 ± 0.03 18.50 ± 0.14 22.15 ± 0.08 22.15 ± 0.08

aMoisture content.
bVolatile matter.
cFixed carbon.
dCalorific value.
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treatments afforded higher CV in the microalga compared with
that in terrestrial crops, except the high MgCl2 concentration
(150 mM) (17.0–20.0 MJ kg−1); thus, G. emersonii
KNUA204 biomass can be used as a potential sustainable
source of bioenergy (Ross et al., 2008).

3.6 FAME analysis and assessment of
biodiesel properties

The GC–MS results revealed that G. emersonii
KNUAU204 contained 26.40% SFA, 22.38% MUFA, and
40.25% PUFA. Based on the biodiesel properties indicated in
the FAME profiles, the higher the percentages of SFA and
MUFA, higher the CN (Yang et al., 2016), and a high CN of
biodiesel can help improve engine performance (Pinzi et al.,
2009). Both MgCl2 treatments increased SFA and MUFA
contents and decreased PUFA content. Conversely, both
NaCl treatments decreased SFA and MUFA contents and
increased PUFA content (Supplementary Table S1).
Therefore, MgCl2 treatment afforded higher CN than NaCl
treatment. Although several values, such as CFPP, OS, and
kinetic viscosity, were acceptable in terms of the required
biodiesel standards, the IV and CN of all biomass exceeded
the standard ranges (EN 14214, ASTM D6751). The cells treated
with the high MgCl2 concentration (150 mM) exhibited optimal
IV (≤120, EN14214) and the highest CN (Supplementary Table
S2). The lowest CN was observed in cells treated with the high
NaCl concentration (400 mM), which was attributed to the
highest PUFA contents (Ong et al., 2013). Thus, the supply
of proper amounts of MgCl2 to cultures can enhance the quality
of biodiesel obtained from microalgal biomass.

4 Conclusion

The characteristics of G. emersonii KNUA204, a freshwater
indigenous microalga, were investigated under various salt stress
conditions. Although the chlorophyll and carotenoid contents
decreased under all treatments, the highest specific growth rate
and biomass productivity were obtained with a mild MgCl2
concentration (75 mM). The VM and CV of the microalga
were higher than those of wood and other crops. Increased IV
was further investigated using FAME profiles. Overall, it was
confirmed that adequate salt stress conditions could enhance the
biomass productivity of G. emersonii KNUA204, thereby
rendering it a valuable bioenergy feedstock.
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