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This work considers using a novel heuristic population-based evolutionary
algorithm [viz., the moth flame optimization (MFO) algorithm] to regulate the
conventional controller installed in an autonomous power system (APS). Themoth
flame optimization algorithm intends to produce the optimal magnitudes of the
proportional-integral-derivative plus second derivative (PIDD2) controller
parameters along with its first- and second-order low-pass filter constraints
(installed in the investigated autonomous power system). The present task
includes a comparison of the voltage response profiles of the investigated
system obtained by the proposed moth flame optimization-based
proportional-integral-derivative plus second derivative controller and those
obtained by other algorithms (conveyed in current state-of-the-art literature)
based on a proportional-integral controller. A fast-acting Sugeno fuzzy logic (SFL)
technique is used to achieve the dynamic online results of the investigated
autonomous power system model for online, off-nominal operational
circumstances. Under step perturbations, the time-domain transient
investigation in reference to voltage and/or mandate of load for the proposed
autonomous power systemmodel is inspected. Additionally, the robustness of the
proposed moth flame optimization-based proportional-integral-derivative plus
second derivative controller is investigated to test its behavior. An investigation has
been provided by varying the model components of the studied autonomous
power system model. It may be reported, as per the results obtained from the
simulation, that the proposed moth flame optimization-based proportional-
integral-derivative plus second derivative controller is an effective control
strategy for the autonomous power system. The current research effort
indicates that the proposed moth flame optimization algorithm, along with
Sugeno fuzzy logic, may be useful for the actual time process of an
autonomous power system.
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1 Introduction

Power sector deregulation, increased environmental concern,
and sustainable development/supply security make the power
system extremely decentralized; as a result, it is largely
responsible for the shift from large central generation to scalable
distributed generation (DG). DG generates electricity in smaller
quantities closer to end users (Huda and Zivanovic, 2017), which
remarkably boosts energy efficiency, reduces carbon emissions,
improves grid resilience, and curbs the requirement for new
transmission investments. However, in order to effectively use
DG technology, the various generators have to be synchronized
and fine-tuned to sustainably serve the growing digital and
automated infrastructures, and excess energy in low load-demand
conditions must be fed to the grid efficiently. Thus, fine-tuning
various distributed generators for the system to efficiently carry out
these functions introduces a new set of problems to the power
system, necessitating the development of new techniques to keep up
with the trail of these challenges. As a result, the focus of this work is
primarily to model and optimize an optimal automatic voltage
regulator (AVR) controller for the autonomous distributed power
model.

Regardless of the load condition, the AVR loop guarantees that
the voltage profile remains within acceptable limits by constantly
tracking the generator terminal voltage and correcting the generator
exciter voltage accordingly. Thus, for effective AVR performance, a
controller is often incorporated in the loop, and as a result, different
controllers such as proportional integral PI (Hussain et al., 2017),
(Eke et al., 2021), proportional integral derivative PID and its
variants (Lahcene et al., 2017; Sambariya and Gupta, 2017;
Blondin et al., 2018; Mosaad et al., 2018; Ali et al., 2020; Bhullar
et al., 2020; Veinovi, 2022), integral double derivative with filter
IDDF (Rajbongshi and Saikia, 2017), and many others (Moschos
and Parisses, 2022), (Sikander et al., 2018) have been investigated

over the years for AVR control. However, optimal controller
parameter tuning is achieved by employing various techniques
such as metaheuristic optimization techniques, artificial
intelligence techniques, or a combination of the two to maximize
the benefits of each distinct approach.

Metaheuristic optimization techniques are collections of
coherent and effective intelligent techniques used to solve
complex, high-order, non-linear engineering problems even with
time delays; their efficacy and consistency can be seen in almost all
power systems disciplines such as operation, control, scheduling, and
energy management (Ma et al., 2016; Ayalew et al., 2019; Bukar and
Tan, 2019; Ghalambaz et al., 2021; Rodrigues et al., 2021), although
of significant importance AVR control is well highlighted in
(Hussain et al., 2017), (Sambariya and Gupta, 2017), (Lahcene
et al., 2017), (Mosaad et al., 2018), (Moschos and Parisses, 2022),
(Banerjee et al., 2012; Gözde et al., 2017; Bourouba et al., 2019;
Mosaad et al., 2019; Jumani et al., 2021; Micev et al., 2021), a brief and
comprehensive study, particularly on the new metaheuristic
technique used on AVR, can be seen in (Kouba and Boudour,
2019) and (Oladipo et al., 2020). However, despite being a
promising technique for solving engineering problems, the
metaheuristic optimization technique often suffers from
inefficiency due to difficult parameter tuning and non-assurance
of convergence because its performance is highly dependent on fine
parameter tuning (Madic et al., 2013). As a result, few parameters or
parameter-free techniques, as seen in Mosaad et al. (2018), Bhullar et
al. (2020), Eke et al. (2021), are required for greater performance.

Artificial intelligence techniques, on the other hand, execute
tasks that typically require human intelligence, and their ability to
operate in real time is of particular interest. In generally, when AI
techniques are used to tune controller parameters or to optimize a
process, consistently good results are obtained, as seen in Elsisi
(2019); but their operation requires complex analysis with a long
convergence time (Mosaad et al., 2018).

FIGURE 1
Block diagram of the investigated APS’s transfer function.
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However, a good balance, particularly between exploration and
exploitation, is achieved by hybridization; thus, superior
performance is guaranteed when these techniques are combined,
as seen in (Al Gizi et al., 2015a; Al Gizi et al., 2015b; Al Gizi, 2019; Ali
and Khaniki, 2020; Mokeddem and Mirjalili, 2020; Ozgenc et al.,
2020). Hence, this work is focused on modeling and optimizing an
autonomous distributed power system using a high-performance
proportional-integral-derivative-second order derivative (PIDD2)
controller improved using the Moth flame optimization (MFO)
technique (Mirjalili, 2015) and/or in conjunction with real-time
Sugeno fuzzy logic (SFL). MFO was suggested and well deliberated
in Mirjalili (2015), and has been used since then in different fields
(Shehab et al., 2020), including power systems, as seen in Mohanty
(2019), Chatterjee et al. (2020), Chatterjee and Mohammed (2022).
Moreover, MFO variants were well studied in literature; the authors
of (Nadimi-Shahraki et al., 2021a) propose a migration-based moth-
flame optimization (M-MFO) technique that is projected to avoid
risk of local optima entrapment. The primary focus of M-MFOs is

on taming the location of unlucky moths by traveling them
stochastically in the initial iterations using an arbitrary migration
(RM) operator, sustaining the result modification by distinctly
storing new skilled results in a controlling archive, and finally
manipulating around the locations protected in the controlling
archive using a guided migration (GM) operator. Further, an
improved moth-flame optimization (I-MFO) algorithm is
proposed by the authors of (Nadimi-Shahraki et al., 2021b) to
deal with established MFO problems by positioning stuck moths
in local optima by defining memory for each moth. The stuck moths
have a tendency to eliminate the local optima by using the enhanced
wandering around search (AWAS) strategy. Also, (Nadimi-Shahraki
et al., 2022) postulated an operational hybridization of the whale
optimization algorithm (WOA) and an improved moth-flame
optimization algorithm (MFO) named WMFO to resolve the
OPF problem. The WOA and the improved MFO work together
in the WMFO to effectively determine capable zones and offer high-
quality results.

FIGURE 2
Fuzzy-based PIDD2 controller.

FIGURE 3
Membership functions of the MFO-SFL-based PIDD2 controller (A) input (ΔeorΔ _e) and (B) output (u).
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It should be noted that the introduction of SFL to carry
parameter specifications in real-time makes the techniques
presented here behave as if they are parameter-free, allowing for
easy achievement of good balance. Consequently, the main
objectives of this work are:

a) To tune the offline parameters of the PIDD2 controller using the
MFO technique for the APS being considered.

b) To explore the utility and applicability of SFL-based controller
tuning in online real-time situations.

c) To compare the voltage profile response obtained from the
proposed technique with that acquired by other studied techniques.

d) To investigate the model’s performance for a wide range of
important system parameters and disturbances for practical
implementation.

2 Methodology

2.1 Power system modeling

A standard distributed energy generator (DEG) consisting of an
AVR, speed governor, and controller is depicted in Figure 1; the
upper half of the blocks are the mechanical model of the speed

governor with an integrator of gainKii and droop R, while the lower
half of the blocks are the electrical model of the AVR system of the
studied DEG system with a PIDD2 controller. The integral controller
eliminates the studied system’s steady-state frequency error, which is
modeled by the transfer function given in Eq. 1.

GIntegral � Kii

s
(1)

The generator inertia (H), damping constant (D), and governor
controller variables are the key features influencing frequency
aberration. On a diesel engine, the inertia constant (H) can be
documented as the ratio of energy deposited in revolving
components of the diesel generator to the rated apparent power,
whereas the actuator is normally implemented to refer to the fuel
system’s actuator, which controls the volume of diesel fuel inserted
into the engine. The transfer function of Eqs 2–4 models the DEG,
valve actuator, inertia, and load of the power system under
consideration, where τD and τV are respectively the time
constant of the diesel generator system and valve actuator system
whileH andD are respectively the inertia and damping constants of
the DEG under consideration (Banerjee et al., 2012).

GDEG � 1
1 + sτD

(2)

GVA � 1
1 + sτV

(3)

GIL � 1
2Hs +D

(4)

The AVR system comprises four major parts: a generator, an
exciter, an amplifier, and a sensor. The sensor detects the voltage at
the synchronous generator’s terminal indefinitely. The signal is rectified
and smoothed and then directed to the comparator for comparison
with a pre-set signal. The comparator’s voltage error is then amplified
through the amplifier and directed to the exciter to regulate the
windings of an alternator field. Furthermore, the transfer function of
an amplifier, exciter, and generator is modeled by a gain and a time
constant, as shown in Eqs 5–7, where KA and τA, KE and τE and KG

and τG, respectively, denote the gain and the time constant of the
amplifier, modern exciter, and generator systems (Banerjee et al., 2012).

TABLE 1 Control rules of the MFO-SFL-based PIDD2 controller.

Input 1→
input 2↴

NL NM NS ZR PS PM PL

NL PL PL PL PM PM PS ZR

NM PL PM PM PM PS ZR NS

NS PL PM PS PS ZR NS NM

ZR PM PM PS ZR NS NM NM

PS PM PS ZR NS NS NM NL

PM PS ZR NS NM NM NM NL

PL ZR NS NM NM NL NL NL

FIGURE 4
Signal surface plot with(Δe) and (Δ _e).
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TABLE 2 MFO-optimized controller gains and transient response parameters with varying KG and τG.

KG τG Controller type KP KI KD KD2 N T (s) ND TD (s) TS (s) TR (s) MP (p.u.) FOD

0.7 1.2 MFO_PIDD2 1.3100 0.8000 0.4700 0.0404 29.000 0.0100 29.000 0.02 2.4781 0.2983 0.0102 0.8082

MFO_PID 0.1015 0.0900 0.0050 — — — — — 5.4944 2.2227 0.0102 1.2098

TLBO_PID 0.1003 0.0855 0.0033 — — — — — 5.8356 2.3646 0.0101 1.2830

QOHS_PID 0.1010 0.0802 0.0050 — — — — — 6.6497 2.5743 0.0101 1.5054

GA_PID 0.0644 0.0525 0.0050 — — — — — 10.3079 4.6189 0.0101 2.0989

1.4 MFO_PIDD2 1.3100 0.8500 0.4700 0.0420 29.000 0.0200 26.000 0.01 3.2309 0.3067 0.0102 1.0819

MFO_PID 0.1090 0.0850 0.0049 — — — — — 5.7893 2.4112 0.0102 1.2491

TLBO_PID 0.1000 0.0800 0.0040 — — — — — 6.0849 2.6057 0.0102 1.2861

QOHS_PID 0.1000 0.0801 0.0050 — — — — — 6.1007 2.6041 0.0102 1.2925

GA_PID 0.1000 0.0763 0.0050 — — — -— — 6.5141 2.7605 0.0101 1.3869

0.8 1.2 MFO_PIDD2 1.3100 0.8000 0.4700 0.0420 30.052 0.0131 29.461 0.01 2.4257 0.2519 0.0102 0.8059

MFO_PID 0.1080 0.0850 0.0040 — — — — — 5.1820 1.9656 0.0101 1.8887

TLBO_PID 0.1000 0.0819 0.0050 — — — — — 5.3543 2.0757 0.0101 1.2123

QOHS_PID 0.1000 0.0803 0.0045 — — — — — 5.4973 2.1237 0.0101 1.2472

GA_PID 0.0889 0.0644 0.0138 — — — — — 8.6800 2.9788 0.0101 2.1033

1.4 MFO_PIDD2 1.3110 0.8000 0.4700 0.0390 29.0662 0.02 30.5356 0.01 3.3526 0.2889 0.0103 1.1333

MFO_PID 0.1100 0.0810 0.0050 — — — — — 5.3694 2.1320 0.0102 1.1971

TLBO_PID 0.1091 0.0823 0.0038 — — — — — 6.8901 2.1049 0.0102 1.7665

QOHS_PID 0.1000 0.0782 0.0039 — — — — — 7.7254 2.2560 0.0103 2.0182

GA_PID 0.0945 0.0762 0.0057 — — — — — 7.8935 2.3334 0.0103 2.0515

0.9 1.0 MFO_PIDD2 1.3100 0.8000 0.4700 0.0420 29.000 0.0199 31.00 0.010 2.2865 0.1559 0.0100 0.7899

MFO_PID 0.1000 0.0850 0.0050 — — — — — 4.6402 1.6332 0.0100 1.1124

TLBO_PID 0.1020 0.0819 0.0030 — — — — — 4.9107 1.6937 0.0101 1.1896

QOHS_PID 0.1013 0.0801 0.0039 — — — — — 5.4273 1.7314 0.0101 1.3658

GA_PID 0.0895 0.0813 0.0050 — — — — — 6.9489 1.7471 0.0101 1.9196

1.2 MFO_PIDD2 1.3101 0.8003 0.4710 0.0427 29.8929 0.0162 30.5595 0.010 2.3558 0.2059 0.0102 0.7972

MFO_PID 0.1090 0.0850 0.0050 — — — — — 4.5986 1.6758 0.0102 1.0815

TLBO_PID 0.1079 0.0833 0.0050 — — — — — 4.6851 1.7112 0.0102 1.1003

(Continued on following page)
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GAmplifier s( ) � KA

1 + sτA
(5)

GExciter s( ) � KE

1 + sτE
(6)

GGenerator s( ) � KG

1 + sτG
(7)

2.2 Controller modeling

Unlike the conventional PID controller, which has three
main components for improving system performance, the
PIDD2 controller employed here has an additional component
called second-order derivative gain (KD2) for better performance.
As a result, the four parameters, namely, KP, KI, KD and a
second-order derivative gain (KD2), must be carefully modeled
according to the transfer function expressed by Eq. 8.

GPIDD2 � KP + KI

s
+ s KD + s2KD2 (8)

However, two low-pass filters have been employed in the controller
design for smoother and better response; these are the first-order low-
pass filter for first-order derivatives and a second-order low-pass filter
for second-order derivatives in their corresponding tracks, as shown in
Eqs 9, 10. Thus, the overall transfer function of the employed PIDD2

controller can be represented by Eq. 11 whereN andND are the filter
coefficients and T and TD are the time constants.

GFirst Filter s( ) � s

s 1
N( )T + 1

(9)

GSecond Filter s( ) � s2

s2 1
ND
( )2T2

D + 2s 1
ND
( )TD + 1

(10)

GPIDD2 s( ) � KP + KI

s
+ s KD

1
s 1/N( )T + 1

( )
+ s2 KD2

1

s2 1
ND
( )2T2

D + 2s 1
ND
( )TD + 1

⎛⎝ ⎞⎠ (11)

The suitability of the proposed technique is assessed by a flexible
time domain performance index known as the “figure of merit” (FOD),
represented in Eq. 12; it is implemented using the system’s essential
dynamic attributes based on desired specifications and constraints.
Consequently, the main target of this optimization task is to minimize
FOD, which is directly dependent on the system’s transient response
parameters. It should be noted that the β magnitude in Eq. 12 is set to
1.0. Therefore, based on Eq. 12, the design constraints are the controller
parameter limits, which are characterized by Eq. 13 as the set of
minimum and maximum specified design variables.

FOD � 1 − e−β( ) MP + ESS( ) + e−β TS − TR( ) (12)
KP

min ≤KP ≤KP
max

KI
min ≤KI ≤KI

max

KD
min ≤KD ≤KD

max

KD2

min ≤KD2 ≤KD2

max

N min ≤N≤N max

T min ≤T≤T max

ND
min ≤ND ≤ND

max

TD
min ≤TD ≤TD

max

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(13)
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2.3 SFL for online tuning of the PIDD2

controller

Fuzzy control deviates from conventional control theories to
a greater extent because it attempts to model logical reasoning
with a vague statement rather than the usual true or false. Sugeno
fuzzy logic (SFL) is an efficient fuzzy control technique for a
system with fast-changing dynamics like AVR; it can modify the
controller’s parameters with precision even online and in a real-
time environment. Real-time operations guarantee that balance is
achieved between load and generation at all times by making the
best use of asynchronous data and control to accommodate
changing conditions and delays in communication; fuzzy
control is extensively discussed in (Mohagheghi and Harley,
2004). Figure 2 shows the structure of a fuzzy logic-based
PIDD2 controller, the implementation of which necessitates
two inputs to yield a control signal (u): incremental change in
error (Δe), and derivative of the incremental change in error,
(Δ _e).

The incremental change in error shown in Eq. 14 is the
difference between the change in reference voltage and the
change in terminal voltage, whereas the derivative of incremental
change in error shown in Eq. 15 is the rate of change of incremental
change in error, where Δ ei and Δ ei−1 are the incremental change in
error at the time i and (i − 1), respectively, while t is the sample time
in seconds.

Δe � ΔVref − ΔVs( ) (14)

Δ _e � Δei − Δei−1
t

(15)

These two inputs ((Δe); (Δ _e)) are split into seven fuzzy classes:
positive large (PL), positive medium (PM), positive small (PS), zero
(ZR), negative small (NS), negative medium (NM), and negative
large (NL). The membership functions of this fuzzy control, which
show the degree of membership of the real variable in the
corresponding fuzzy variable, are displayed in Figure 3 for the
input (Δe) and (Δ _e) for the output (u). The membership
function is made up of two trapezoidal memberships and five
triangular membership components, making up seven MFs with
two inputs and one output, as depicted in Figure 4 and the
corresponding control values specified in Table 1. Therefore, as
indicated in Table 1, the output MF is determined by two input MFs
in each cell of the control rule. Hence the control rules are realized as
follows: if input 1 and input 2 are both true, then output 1 is true.
Figure 4 depicts the surface plot profile of the control signal with the
deviation of the incremental change in error and the derivative of the
incremental change in the error signal.

3 MFO overview

Moth Flame Optimization (MFO) is inspired by moth night
navigation features; fundamentally, MFO mimics the unwanted
behavior of moths while navigating in the presence of artificial
light and performs its optimization. MFO was proposed and
extensively discussed in (Mirjalili, 2015), and it has since been
used in a variety of fields (Shehab et al., 2020), including power
systems, as seen in (Mohanty, 2019; Chatterjee et al., 2020;
Chatterjee and Mohammed, 2022). It is a population-based
algorithm that employs two important components: moths and

TABLE 3 Robustness examination for MFO-based PIDD2 technique.

Model parameters Change in rate (%) MP (p.u.) TS (s) TR (s)

τA −50% 0.0100 2.4829 0.0918

−25% 0.0100 2.4238 0.1119

+25% 0.0104 2.4426 0.1445

+50% 0.0107 2.6094 0.1586

τE −50% 0.0110 2.8215 0.0534

−25% 0.0102 2.5513 0.0883

+25% 0.0103 2.8618 0.1697

+50% 0.0106 3.1287 0.2077

τG −50% 0.0117 2.9629 0.0491

−25% 0.0105 2.4752 0.0845

+25% 0.0102 2.8521 0.1821

+50% 0.0104 3.3807 0.2360

τS −50% 0.0100 2.4332 0.2079

−25% 0.0100 2.3733 0.1577

+25% 0.0104 2.3369 0.1170

+50% 0.0110 2.4157 0.1087
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TABLE 4 SFL-based controller gains, Transient characteristics, and FOD values.

KG τG Controller type KP KI KD KD2 N T (s) ND TD (s) TS (s) TR (s) MP (p.u.) FOD

0.72 1.42 MFO_PIDD2 1.4883 0.8993 0.5100 0.0415 30.0334 0.01 31.7791 0.0156 3.3483 0.2895 0.0104 1.1316

MFO_PID 0.1488 0.0878 0.0042 — — — — — 6.9115 2.0992 0.0101 1.7764

TLBO_PID 0.1553 0.0901 0.0048 — — — — — 7.1049 1.9989 0.0101 1.8844

QOHS_PID 0.1530 0.088 0.0040 — — — — — 7.3151 2.0742 0.0101 1.9340

GA_PID 0.0798 0.0525 0.0050 — — — — — 10.3273 4.4918 0.0101 2.1527

0.87 1.89 MFO_PIDD2 1.3100 0.6103 0.5033 0.0320 29.1134 0.011 28.7601 0.0127 2.8867 0.3128 0.0102 0.9531

MFO_PID 0.2101 0.0902 0.0030 — — — — — 4.3495 1.4952 0.0101 1.0562

TLBO_PID 0.1889 0.0889 0.0050 — — — — — 4.4952 1.6037 0.0102 1.0635

QOHS_PID 0.1811 0.0815 0.0045 — — — — — 4.8687 1.7436 0.0101 1.1632

GA_PID 0.0881 0.0516 0.0050 — — — — — 7.6373 3.4715 0.0102 1.5387

0.95 1.67 MFO_PIDD2 1.3003 0.7002 0.5055 0.0331 29.0334 0.02 30.9911 0.0145 2.7182 0.2459 0.0103 0.9159

MFO_PID 0.1600 0.08119 0.0020 — — — — — 4.4839 1.5766 0.0101 1.0757

TLBO_PID 0.1553 0.08011 0.0030 — — — — — 4.5448 1.6153 0.0101 1.0838

QOHS_PID 0.1430 0.0788 0.0029 — — — — — 4.6596 1.7114 0.0102 1.0908

GA_PID 0.0948 0.0555 0.0050 — — — — — 6.8742 2.7631 0.0101 1.5185

1.01 1.96 MFO_PIDD2 1.4153 0.8993 0.5100 0.0415 30.0001 0.0213 29.9911 0.0219 3.9157 0.2735 0.0106 1.3463

MFO_PID 0.1730 0.0799 0.0048 — — — — — 5.5550 1.5266 0.0103 1.4882

TLBO_PID 0.1488 0.0788 0.0042 — — — — — 7.0817 1.6834 0.0105 1.9922

QOHS_PID 0.1411 0.0766 0.0045 — — — — — 7.4583 1.7592 0.0105 2.1028

GA_PID 0.0762 0.0315 0.0050 — — — — — 13.0286 5.6841 0.0101 2.7077
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flames. Therefore, it is randomly initiated in space by establishing
candidate solutions (moths), then computing their fitness levels and
aligning with the flames, which is the best position moths can reach.
Afterward, exploitation and exploration are adaptively ensured by a
progressive and systematic reduction in the number of flames; thus,
for a moth to attain a greater position, it must update its position
over and over again according to the position of the flame until
convergence is achieved, at which point the process is terminated.
The relevant equations required for executing the algorithm are
established in (Mirjalili, 2015; Shehab et al., 2020; Chatterjee and
Mohammed, 2022), and the general formulation for implementing
the MFO algorithm as used in APS is specified in Algorithm 1,
(Chatterjee and Mohammed, 2022).

3.1 MFO algorithm

The MFO algorithm assumes that the moths are the candidate
result and that their location in space is the variable quantity of the
problem. As a result, the moths can fold away in 1-d, 2-d, 3-d, or
hyper-dimensional space by changing their location vectors. Because
this is a population-based algorithm, the set of moths is described in
a matrix that is well-defined in Eq. 16 (Mirjalili, 2015)

M �

m1,1 m1,2 .... .... m1,d

m2,1 m2,2 .... .... m2,d

. . . . .

. . . . .

. . . . .
mn,1 mn,2 .... .... mn,d

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(16)

Where n is the moth numeral data, and d is the variable
numerical data (dimension).

It is assumed that there is an array of the corresponding fitness
magnitudes for all moths, as stated in Eq. 17 (Mirjalili, 2015).

OM � OM1 OM2 . . OMn[ ]T (17)
It should be noted that the fitness magnitude for each moth will

be the return magnitude of the fitness (objective) function. The
fitness function sends the location vector (1st row in the matrix M,
for example,) of an individual moth, which then conveys the fitness
function’s output with the corresponding moth as its fitness
magnitude (OM1 in the matrix OM well-defined in Eq. 17, for
instance).

The MFO algorithm has an additional critical component
known as flames, for which, similar to the moth matrix, an
additional matrix is used as shown in Eq. 18 (Mirjalili, 2015).

FIGURE 5
Comparison of transient characteristics for (A) KG � 0.7; τG � 1.2 s, (B) KG � 0.8 and τG � 1.2 s, (C) KG � 0.9; τG � 1.0 s and (D) KG � 1.0 and τG � 1.6 s.
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F �

F1,1 F1,2 ... F1,d

F2,1 F2,2 ... F2,d

. . . .

. . . .

. . . .
Fn,1 Fn,2 ... Fn,d

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(18)

It is clear from Eq. 18 that the size ofM and F are identical. It is
also intended for the flames to have an array for capturing the
equivalent fitness magnitudes, as shown in Eq. 19 (Mirjalili, 2015).

OF � OF1 OF2 . . OFn[ ]T (19)
Individually, the moths and flames (both of which are results)

differ because their magnitudes change in each iteration. Moths are
actual searching agents that travel from place to place in the search
space, with flames being the best location attained so far.

The MFO algorithm is a three-tuple that estimates the global
desirable solution for the optimization issues and is expressed in Eq.
20 (Mirjalili, 2015).

MFO � I, P, T( ) (20)
In Eq. 20, I is a function that explains the fitness magnitudes of

an arbitrary population of moths. The analytical model of this
function is provided in Eq. 21 (Mirjalili, 2015).

I: ϕ → M,OM{ } (21)
The function P in Eq. 21 is the main function that transfers the

moths in the search space. This function, ultimately, yields a
modernized form of the matrix M after receiving it, as shown in
Eq. 22 (Mirjalili, 2015).

P: M → M (22)
If the conclusion condition is fulfilled, then the function T in Eq. 20

yields true; otherwise, it yields false, as given in Eq. 23 (Mirjalili, 2015).

T: M → true, false{ } (23)
The overall form of the MFO algorithm is defined in

Algorithm 1:

FIGURE 6
Comparison of transient characteristics for distinct disturbances at KG � 1.0 and τG � 1.0 s. (A) ΔVref � −0.01,ΔPd � 0.00, (B)
ΔVref � 0.00,ΔPd � −0.01, (C) ΔVref � −0.01,ΔPd � 0.01, (D) ΔVref � 0.01,ΔPd � −0.01, (E) ΔVref � 0.01,ΔPd � 0.01, and (F) ΔVref � −0.01,ΔPd � −0.01.
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M=I();

while T(M) is equal to fasle

M=P(M);

end

Algorithm 1:.Overall form of the MFO algorithm (Mirjalili, 2015).

The function Imust compute the objective function magnitudes
after producing preliminary results. In this function, the use of any

arbitrary distribution is permitted. The technique shown in
Algorithm 2 is employed by default.

for i=1: n

for j=1: d

M (i,j)=(ub(i)-Ib(i))*rand()+1b(i);

end

end

OM=Fitness Function(M)

Algorithm 2: Computation of the objective function (Mirjalili,
2015).

In Algorithm 2, there are two additional arrays named ub and lb
which outline the upper and lower constraints of the variable
quantities, respectively, as shown in Eqs 24, 25 (Mirjalili, 2015).

ub � ub1, ub2, ub3, . . . ., ubn−1, ubn[ ] (24)

where ubi represents the upper constraint of the ith variable.

lb � lb1, lb2, lb3, . . . ., lbn−1, lbn[ ] (25)
where lbi represents the lower constraint of the ith variable.

The location of individual moths is improved with respect to a
flame implementation Eq. 26 (Mirjalili, 2015).

Mi � S Mi, Fj( ) (26)

where Mi specifies the ith moth, Fj specifies the jth flame, and S
specifies the spiral function.

FIGURE 8
Voltage response profile of the MFO-optimized and PIDD2-controlled APS with variations in- (A) τA , (B) τE , (C) τG and (D) τS .

FIGURE 7
Comparison of convergence profiles for the studied APS with
KG � 1.0 and τG � 1.0 s.
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A logarithmic spiral, as used in the MFO algorithm in (Mirjalili,
2015), is presented in Eq. 27.

S Mi, Fj( ) � Di . e
bt . cos 2 π t( ) + Fj (27)

where Di is the gap of the ith moth for the jth flame, b is a constant
for maintaining the shape of the logarithmic spiral, and t is an
arbitrary number in the range [-1, 1].

The variable quantity D can be designed as per Eq. 28 (Mirjalili,
2015).

Di � Fj −Mi

∣∣∣∣ ∣∣∣∣ (28)
where Mi specifies ith moth, Fj specifies jth flame.

The spiral traveling technique of moths is described in Eq. 27.
According to the equation, the succeeding location of a moth is
described with respect to flame. The spiral technique instructs the
moths to inform flames about their locations, making it the main
portion of the proposed methodology. The spiral equation allows a
moth to hover around a flame. As a result, the search space can be
guaranteed for its exploration and exploitation.

The chances of discovering better outcomes can be ensured by
taking the best results so far as flames. Hence, the current best results
attained are stowed in the matrix F. Then the moths must modify their
locations in relation to the matrix F throughout the optimization
process. It is contrived that t is an arbitrary number [r, 1] in order
to emphasize additional exploitation, where r is linearly weakened
from −1 to −2 throughout the iteration sequence. In this procedure, the
moths become more adept at exploiting their respective flames more
effortlessly, according to the number of iterations.

Similar flames aid the moths in varying their locations. The first
moth constantly modifies its location with respect to the best flame,
while the last moth modifies its position with respect to the
worst flame. In the search space, with respect to n dissimilar
positions, the location-modifying procedure of moths may

damage the exploitation of the best result. An adaptive technique
is employed to achieve the desired number of flames.

The equation in Eq. 29 can be implemented in this context
(Mirjalili, 2015):

flame number � round N − l*
N − 1
T

( ) (29)

where l signifies the current number of iterations, N specifies the
maximum number of flames, and T is the maximum number of
iterations. Exploitation and exploration of the search space are well-
adjusted by the decrease in the number of flames. The stages of the P
function are illustrated in Algorithm 3. The execution of the P
function continues in order to moves the moth in search space until
true magnitude of T function is reached. Then the finest moth is
returned as the finest optimized approached magnitude at the end of
P-function.

Update flame number using (29)

OM=Fitness Function (M)

If iteration==1

F=sort (M);

OF=sort (OM);

else

F=sort(Mt-1,Mt);

OF=sort(Mt-1,Mt);

end

for i=1:n

for j=1:d

Update r and t

Calculate D using (28) with respect to the

corresponding moth

Update M(i,j) using (26) and (27) with respect to

the corresponding moth

end

end

Algorithm 3: Overall stages of function P (Mirjalili, 2015).

4 Results and discussion

An autonomous fuel cell distributed power system depicted in
Figure 1, with system parameters presented in Appendix A (Banerjee
et al., 2012), is considered here for AVR systematic investigation, along
with an exceptional proportional-integral-derivative-second order
derivative (PIDD2) controller; the controller was tuned both offline
and online by MFO and SFL-MFO techniques under varying
generator gain and time constants. Also evaluated is system
performance (specifically voltage response) under various disturbances
and uncertainties. As a result, the important findings of this research are
discussed below, with the results of particular interest highlighted in the
respective tables. All simulations were carried out in MATLAB/
SIMULINK (version 7.10) on a 2.77 GHz, Intel Core™ i7 computer,
with the maximum number of iterations and population size set to
100 and 50 for each algorithm.

FIGURE 9
Typical comparative voltage response profiles of the online SFL
technique.
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4.1 Comparison of transient response
characteristics

In this section, the transient characteristics of the system are
investigated and compared under two conditions: distinct gain and
time constant of the generator (KG; τG) and distinct form of step
disturbances (ΔVref; ΔPd).

4.2 First condition: Distinct KG and τG
In the first case, the transient characteristics of the system

with varying gain and generator time constant values for the
various techniques considered (proposed and studied) are
examined and then compared for the same set of KG; τG.
The results highlighted in Table 2 show the optimized gain
and transient parameters obtained by each technique, with
an emphasis on the MFO-based PIDD2 technique (outlined
in bold text). The table shows that the MFO-based PIDD2

controller offers the best values for settling time (TS), rise
time (TR), and peak overshoot (MP), resulting in a lower
value of FOD being constantly incurred by the proposed
MFO technique. This performance is evident from the better
voltage response profile obtained by the proposed technique
in Figure 5 in comparison to other controllers for the different
sets of KG and τG.

4.3 Second condition: Distinct ΔVref and ΔPd

In this condition, the transient characteristics of the system
for the different techniques considered (proposed and studied)
are examined and compared for the distinct values of reference
voltage and load perturbation ΔVref and ΔPd. Therefore, either
zero, negative or positive forms of ΔVref and ΔPd are applied
simultaneously to the system for the apparent value of KG � 1.0
and τG � 1.0s. The results, shown in Figure 6, demonstrate how
effectively the disturbances are handled by the system, as the
system itself was able to adjust, withstand, and fine-tune all the
deviations separately and concurrently. Furthermore, Figure 6
clearly illustrates the excellent performance of the proposed
technique in suppressing oscillations and recovering faster than
the other methodologies studied in this work for the same sets
of disturbances. To some extent, these have certainly validated
the flexibility of the proposed technique.

4.4 Convergence

The comparative convergence profile, which was established by
plotting the minimum FOD value against the number of iterations
(as shown in Figure 7), demonstrates the high performance of
the proposed technique; indeed, it converges faster and offers
a lower FOD value as compared to the other techniques
considered in this work.

4.5 Robustness analysis

Due to parametric uncertainties, models are an imperfect
representation of reality. Consequently, a controller that is
perfectly tuned to a model may reduce system performance or
stability. To avoid this problem, the MFO-based PIDD2

technique edge is checked using robustness analysis by
systematically subjecting the model to broad variations of some
essential parameters, such as τA,τE,τG and τS in the range of ±50%
and the step of ±25%. However, as highlighted in Figure 8
and supported by the transient characteristics presented in
Table 3, a ±50% deviation from the nominal specification of
the model did not result in the system exceeding requirements or
failing to meet intent; this undoubtedly indicates the technique’s
robustness to stochasticity.

4.6 SFL real-time response

Having obtained outstanding results with the MFO-based
PIDD2 technique offline, SFL control is introduced into the
system for parameter specification online and in real-time,
yielding the online optimum controller gains, transient
characteristics, and FOD values at a different set of KG and τG
for the different technique (proposed and studied) as shown in
Table 4. The optimum controller gains in real-time operation
for distinct values of KG; τG are determined via the fuzzy rule
and the Sugeno inference system. However, for each set of KG;
τG, the proposed techniques outlined in the bold text offer the
minimum value of settling time (TS), rise time (TR), and peak
overshoot (MP), implying that the proposed technique always
incurs a lower FOD value, even online after load perturbation.
This outstanding performance can be precisely grasped
graphically by comparing the typical voltage response profile
obtained by the proposed technique to the different techniques
studied (as seen in Figure 9).

5 Conclusion

This work used an autonomous distributed power model to
conduct a comprehensive investigation. First, the model was
investigated offline using the MFO-PIDD2 technique, which gave
an excellent transient response that died out and settled faster than
other techniques considered. Furthermore, the comparative
convergence and robustness analyses clearly demonstrated the
high performance and flexibility of the technique. Also, the study
was expanded to operate in online mode by synchronizing real-time
SFL with the MFO-PIDD2, which gave improved control that
outperformed other online techniques used in this study. Lastly,
the techniques presented here demonstrate improved resilience with
better control and coordination than previous techniques offered in
the recent literature on the model; thus, the technique can be used
as an effective instrument for enhancing systems with identical or
similar specifications.
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Appendix A

KA = 10.0, τA = 0.1 s, KE = 1.0, τE = 0.4 s, KS = 1.0, τS = 0.05 s,
τD = 2.31 s, τV = 0.82 s,K1 = 1K2 = 0.2,K3 = 1.5,H = 0.1,D = 2.22,

R = 0.074 and Kii = 0.1000. The values of KG and τG are load
dependent.

Frontiers in Energy Research frontiersin.org16

Chatterjee et al. 10.3389/fenrg.2023.1055845

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1055845


Glossary

The following abbreviations are used in this
document:

D DEG damping constant

ESS Steady-state error, p. u.

H DEG inertia constant

KA Constant gain of the amplifier

KD Derivative gain of the controller

KD2 Second-order derivative gain of the controller

KE Constant gain of the exciter

KG Constant gain of the generator

Kii Constant gain of the integral speed governor controller

KI Integral controller gain

KP Proportional controller gain

KS Constant sensor gain

MP Maximum overshoot, p. u.

N Filter co-efficient of the PIDD2 controller filter

ND Second-order filter co-efficient of the PIDD2 controller’s filter

R Constant droop of the speed governor

t Sample time, s

T Time constant of the PIDD2 controller filter, s

TD PIDD2 controller time constant, s

TR Rise time, s

TS Settling time, s

β Constant parameter of the figure of demerit

Δe Incremental change in terminal voltage error, p. u.

Δei Incremental change in terminal voltage error at time i, p. u.

Δei−1 Incremental change in terminal voltage error at time
(i − 1), p. u.
Δ _e Derivative of incremental change in error in terminal
voltage, p. u.

ΔVe(s) Error voltage, p. u.
ΔVref (s) Incremental change in reference voltage, p. u.

ΔVs(s) Feedback voltage, p. u.

ΔVt(s) Incremental change in terminal voltage, p. u.

τA Amplifier time constant, s

τD DEG time constant, s

τE Exciter time constant, s

τG Generator time constant, s

τS Sensor time constant, s

τV Time constant of the valve actuator, s.
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