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With the development of advanced digital infrastructure in new wind power plants in
China, the individual wind-turbine level data are available to power operators and can
potentially provide more accurate available wind power estimations. In this paper,
considering the state of the wind turbine and the loss in the station, a four-layer
spatio-temporal neural network is proposed to compute the available power of wind
farms. Specifically, the long short-termmemory (LSTM) network is built for eachwind
turbine to extract the time-series correlations in historical data. In addition, the graph
convolution network (GCN) is employed to extract the spatial relationship between
neighboring wind turbines based on the topology and patterns of historical data. The
case studies are performed using actual data from awind farm in northern China. The
study results indicate that the computation error using the proposed model is lower
than that using the conventional physics-based methods and is also lower than that
using other artificial intelligence methods.
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1 Introduction

In recent years, the installed capacity of wind power has gradually increased, and the
proportion of new energy power generation has gradually increased. In July 2022, the Global
Wind Energy Council released the “Global Wind Report 2022.” This report shows that the new
installed capacity of global wind power is 93.6 GW. By the end of 2021, the cumulative installed
capacity of global wind power reached 837 GW, a year-on-year increase of 12.4%. However, due
to the random, fluctuating, and intermittent characteristics of wind power, it brings significant
challenges to real-time dispatching of power grids (Li et al., 2019a). In this work, we focus on the
available power estimation of wind farms, which refers to the theoretical power subtracting the
power output of wind turbines under losses in wind farms (State Grid Corporation of China,
2018). Accurate available power is important for system operators to determine the optimal
dispatch on the wind farm and other types of generators. It could also serve as an important
input for many real-time monitoring and control systems.

At present, the theoretical power computation and prediction of wind farms can be divided
into physics-based methods, statistics-based methods, artificial intelligence-based methods, and
hybrid methods. The physics-based method mainly uses the numerical weather forecast model
to calculate the future wind speed. Then, the predicted wind speed is brought into the relevant
wind farm power curve (Tascikaraoglu et al., 2014) (usually provided by the wind farm
manufacturer) to predict the wind farm power generations. The physical methods include the
prototype machine method (Ding et al., 2016), the wind measurement tower extrapolation
method (Guo et al., 2019), and the nacelle wind speed method (Jiang et al., 2014). When using
the prototype method, using the prototype data to represent other wind turbine data of the same
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model will result in large errors. Since the wind tower extrapolation
method needs to consider several factors, such as the topography,
humidity, and pressure of the wind farm, the macro- and micro-
climate model is very complicated. In addition, the estimation
accuracy is acceptable for larger regional levels. However, for the
wind farm level, it suffers from poor performance.

The statistical method is based on the statistical analysis of the
correlation between wind farm power generations, wind speed, and
wind direction data and establishes the mapping relationship between
wind speed and wind direction and the output power of the wind farm.
In the literature (Rajagopalan and Santoso, 2009), according to the
actual measurement data of the wind farm, the model is based on the
autoregressive moving average model (ARMA). Since ARMA can only
handle stationary time series, the researchers applied the
autoregressive integral moving average model (ARIMA), which can
handle non-stationary time series, to wind power forecasting.
However, statistical methods only analyze the superficial
relationship between variables in time series. It is difficult to deal
with complex and non-linear relationships.

At present, artificial intelligence-based methods are generally used
for wind power forecasting and available power estimations. The
artificial intelligence method uses historical power data, NWP data,
etc., as input information to establish a non-linear mapping
relationship between the output and multi-variables. Compared
with statistical methods, the adaptability and self-learning ability of
artificial intelligence methods have been significantly improved. Li
et al. (2019b) used the Spearman rank correlation coefficient method
to determine the hyperparameters of the long short-term memory
(LSTM) network prediction model, which can effectively determine
the initial step size range. Compared with the BP neural network, the
wind power prediction accuracy based on the LSTM model is higher.
Kisvari et al. (2021) combined the grid search method to adjust the
hyperparameters of the gated recurrent unit (GRU) neural network.
The proposed method achieves high accuracy with low computational
cost. It shows robustness and low sensitivity to noise. The
aforementioned wind power prediction methods only consider
historical time-series features and do not consider complex spatial
relationships. Therefore, the convolutional neural network (CNN) is
used to extract the spatial features of wind farms to improve the
accuracy of wind power prediction. Bai et al. (2018) redesigned the
structure of CNN and proposed a temporal convolutional network
(TCN). The research object of the aforementioned literature is only a
single wind farm, and in most cases, regional prediction of wind power
is required. Therefore, the temporal and spatial correlation between
multiple wind farms needs to be further considered. Wang et al.
(2022b) considered the dynamic spatio-temporal correlation between
adjacent wind farms and calculated the spatio-temporal correlation
matrix, modeling a graph structure with dynamic spatio-temporal
correlation information as a graph convolution network (GCN) input.
Experiments prove that the prediction accuracy of theoretical power
generation of wind farms has been improved.

A combinedmodel is a combination of two or more models, which
eliminates the limitations of the individual models by combining their
advantages in order to maximize the advantages of each method and
improve the accuracy of wind farm power prediction. In a study by He
et al. (2022), the weather is divided into different types according to
the meteorological characteristics, and the IOWA operator is applied
to assign different weight coefficients to the CNN and LSTM. The final
power prediction is obtained by weighting the outputs of the two

models. In a study by Liang et al. (2021), a method of CNN combined
with LSTM is proposed to obtain spatial distribution characteristics of
the long-term wind speed and short-term time-series characteristics.
Since the CNN can only be used to process regularly arranged images,
the GCN is proposed to enable feature extraction for non-Euclidean
structured data. Kan and Liu (2019) used the LSTM model to extract
temporal features from historical data and used the graph convolution
technique to extract spatial features frommultiple PV plant data in the
same region. Liao et al. (2022) combined the GCN and LSTMnetwork,
adopted the GCN, captured the complex spatial correlation between
adjacent wind farms through the adjacency matrix, and learned the
dynamic change of the wind power curve based on LSTM. Compared
with the single wind power prediction method, the combined method
predicts the wind farm power with higher accuracy (Chen et al., 2021),
which can retain the advantages of each model. Therefore, wind farm
power prediction models based on combined methods have received
extensive attention from researchers. In recent years, some scholars
have adopted more advanced hybrid models, including the
correlation-constrained and sparsity-controlled vector
autoregressive models for spatio-temporal wind power forecasting
(Zhao et al., 2018), feature extraction of meteorological factors for
wind power prediction based on the variable weight-combined
method (Lu et al., 2021), spatial model-based short-term wind
power prediction (Ye et al., 2017), and ultra-short-term combined
prediction approach based on kernel function with a specially
designed switch mechanism (Peng et al., 2021).

Most of the existing wind farm power prediction methods used
numerical weather forecast data or measurement data from weather
towers in wind farms as model inputs and the theoretical power of the
whole wind farm as the model output. Since the state of the wind
turbines and the loss in the field are not taken into account, they can
only be used for theoretical power generation calculation and
theoretical prediction of wind farms. Few studies have been
conducted to calculate the available power of wind farms.

The previous theoretical power estimation is aimed at using
numerical weather forecasts to estimate the total power generated
by the entire wind farm, which cannot be accurate to each wind
turbine, and the error is large. The emergence of a stand-alone
information system can provide the nacelle wind speed of each
wind turbine so that the grid dispatching department can be based
on stand-alone actual measurement data to more accurately estimate
the wind turbine and wind farm available power generation. Second, in
most areas of the country, the only data available to the grid
dispatching department are the weather forecast data and the
active power of the grid connection point, which does not include
the status of waiting for wind, planned shutdown, unit failure
shutdown, and other wind turbine operating conditions. However,
the active power emitted by the wind turbine in the normal power
generation operation state reflects the real power generation capacity
of the wind turbine.

Regional control centers in China enhanced the existing SCADA
system to collect each wind turbine’s operating status, wind speed, and
wind direction from every wind farm, which provides an opportunity
for accurate computation of available power of each wind farm. In this
paper, we propose a deep spatio-temporal neural network for
calculating the available power generation in wind farms based on
the data to integrate wind farm’s SCADA into the control center’s
SCADA. Long short-termmemory (LSTM) is used to extract temporal
information, and the graph convolutional network (GCN) is used to
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describe the topology between wind turbines in wind farms and then
solve the problem of spatial correlation and station loss.

In this paper, in order to improve the prediction accuracy, based
on the real-time meteorological information of each wind turbine
provided by the stand-alone information system, an ultra-short-term
available power calculation method is proposed. This method
combines the GCN and LSTM and considers the spatio-temporal
correlation of wind farms and station losses. The key contributions are
as follows:

1) Stand-alone information systems are used in wind power
forecasting. They can provide real-time meteorological
information such as the wind speed of each wind turbine and
the information on the operating status of the wind turbine.

2) A novel graph neural network-based hybrid approach is proposed
for ultra-short-term power prediction. LSTM is used to excavate
the temporal characteristics of the wind speed of the wind turbine.
The spatial position relationship of the wind turbine constitutes
graph data, which is used as an input to the GCN to capture spatial
dependence.

3) Based on the construction of the electrical topology connection
diagram, the station loss problem is solved in combination with
the GCN.

2 Problem formulation of available
power estimation of wind farms

The available power of a wind farm refers to the maximum power
theoretically available from the wind energy subtracting the power
output of a wind turbine under maintenance and line losses in the
wind farm. Additionally, instead of the actual power output of the
wind farm, it may also be subject to curtailment and dispatch signals.
To estimate the maximum available power of a wind farm, the wind
speed information is used as the input. In this work, we used the
historical wind speed data measured at each turbine and the turbine
output power data under the maximum power point tracking working
condition. Therefore, the summation of power generations of all the
turbines, subtracting the total losses of the wind farm, equals the
maximum available power of the wind farm.

Pavai,i � G swindspeed,i( ), (1)
Pfarm � ∑n

1
Pavai,i − Ploss, (2)

where swindspeed,i is the wind speed at the ith wind turbine and G(•) is
the estimation method which takes the wind speed as the input and
outputs the maximum power generation of the turbine. Pavai,i is the
available power of the ith turbine. n is the total number of turbines, and
Ploss is the loss within the wind farm. Pfarm is the estimated maximum
available power of the wind farm.

The aforementioned available power calculation does not take into
account the in-station losses. Since the sources of loss in the station are
diverse and difficult to estimate, therefore, it is proposed to construct
an electrical connection diagram of wind farm wind turbines based on
the GCN using the wind farm electrical main wiring diagram, and the
characteristics of the loss in the station are included in the wind
turbine electrical connection diagram.

There is a correlation between the available power generation of
wind turbines and the historical nacelle wind speed. The LSTM neural

network layer can be constructed to effectively mine the time-series
correlation information of wind turbine wind speed data. The complex
topography and wake effects in the wind farm space have an impact on
the power generated by the wind turbines. There is a correlation
between adjacent wind turbines. Due to the different spatial
distribution of WTGs and their own operating conditions, even the
available power generation of WTGs of the same model varies.
Therefore, based on the GCN, the fan relationship connection
diagram is considered to extract spatial features.

3 The spatio-temporal NN-based
algorithm for available power estimation

In terms of the structure of the proposed algorithm, in this work, a
two-stage deep neural network-based algorithm is proposed, which
mainly consists of four major layers. The first stage contains the first
two layers, namely, the LSTM layer and the GCN layer. LSTM is a type
of recurrent neural network that is proven to be very effective in terms
of handling the input data with temporal relationships. The time-
series wind speed data are used as the input of the LSTM layer. The
GCN layer is implemented to extract the spatial topology of the wind
dynamics in the wind farm to help the estimation of the available
power. In the second stage, a third GCN layer is used to calculate the
losses in the wind farm, where the topology of the wind farm is also
used. The last layer is a fully connected layer for the final output. It
should be noted that the layer here refers to a section of small network,
which contains multiple sub-layers, like single GCN layers, activation
function, and pooling layer. The first stage and the second stage can be
pre-trained separately under the supervised learning scheme with SGD
and then combined together for fine-tuning the parameters. Figure 1
shows the general framework of the proposed model, which
demonstrated the structure of the proposed model. The details of
the model are presented in the following sub-sections.

3.1 The correlation of time sequence
extraction by the LSTM algorithm

There is a correlation between the available power generation of
wind turbines and the historical nacelle wind speed (Wang et al.,
2021). As a typical time series, forecasting the current wind power is
not only related to forecasting the current input but also to the
previous input and output. In order to fully exploit the information
contained in the historical wind speed, this paper uses a long short-
term memory network to extract the potential time-series information
of wind turbine wind speed data for the estimation of available power
generation of wind turbines.

The long short-term memory network is a variant of the recurrent
neural network (RNN), which solves the problem of RNN gradient
explosion and gradient disappearance. Based on the RNN, LSTM
changes the single neural network layer in the RNN to one with four
neural networks.

By changing the structure of neurons, LSTM introduces the gate
mechanism and removes and adds information in the neurons
through the gate mechanism (Hochreiter and Schmidhuber, 1997).
The LSTM network can consist of one or more LSTM units that
represent the data independent of each other in the time series and the
data of multiple consecutive moments on the data of the current
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moment. The structure principle is shown in Figure 2. In Figure 2, xt

represents the nacelle wind speed and the individual operating state at
moment t; ht represents the power generated by the WTGs at moment
t; and ct represents the effect of the power generated by the WTGs at
moments t-4, t-3, t-2, and t-1 on the power generated by the WTGs at
moment t.

The LSTM unit consists of four parts: information storage chain,
forgetting gate, memory gate, and output gate. The information
storage chain runs through all the LSTM units before and after the
LSTM network and is responsible for the storage and transmission of
wind speed and operation status information of wind turbines at
historical moments, and the information in the information storage
chain of each LSTM unit is updated. ω and b denote the weight vector

and offset value in each gate mechanism, respectively; σ is the sigmoid
activation function.

The role of the forgetting gate is to selectively forget the wind
speed and operating status information components of some
historical moments and to avoid too much information from the
historical moments to affect the neural network’s processing of the
wind speed and operating status inputs of the wind turbine at the
current moment. By the effect of the forgetting gate, the
information in the historical moments of WTGs that are not
strongly correlated with the estimated moments can be
eliminated. The mathematical expression of the forgetting gate
is shown in Eq. 3.

ft � σ Wf. ht−1, xt[ ] + bf( ). (3)

The memory gate is the control unit used to control whether the
wind speed and operating status data of the WTGs at time t (now)
are incorporated into the network cell state. First, the tanh function
layer is used to extract the valid information from the present
vector, and the output is ~Ct; then, the sigmoid function is used to
control "how much” of this memory is to be put into the unit state,
and the output is it. By using the memory gate, the strong
correlation between the WTG historical moments and the
estimated moments can be retained in the network cell state and
passed to the next moment. The mathematical representation of the
memory gate is as follows:

~Ct � tanh Wc. ht−1, xt[ ] + bc( ), (4)
it � σ Wi. ht−1, xt[ ] + bi( ). (5)

The output gate integrates the output data processed by the
forgetting gate and the memory gate as the output of the power
generated by the wind turbine at moment t. The mathematical
expression of the output gate is as follows:

ot � σ Wo. ht−1, xt[ ] + b0( ), (6)
ht � ot*tanh Ct( ). (7)

FIGURE 1
Model general frame diagram.

FIGURE 2
LSTM internal structure diagram.
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The network unit status is used to store information about the
current WTG power, wind speed, and operating status and pass it to
the next moment, which affects the output of the WTG power at the
next moment. The update equation of the network unit status is shown
in Eq. 8.

Ct � ft*Ct−1 + it*~Ct. (8)
The LSTM neural network layer can be constructed to effectively

mine the time-series correlation information of wind turbine wind
speed data. The key historical moments of wind speed are first
screened out, and then the wind speed and operation status of the
key historical moments are passed into the LSTM network as input
vectors, and the valid information in the key historical moments is
selected through memory gates and forgetting gates to update the
network unit states, thus making the LSTM network fully consider the
temporal correlation when estimating the available power generation
of wind turbines and thus improving the available power estimation
accuracy.

3.2 The temporal correlation by the GCN
algorithm

The complex topography and wake effects in the wind farm space
have an impact on the power generated by the wind turbines. The
wind turbines are not distributed in isolation in the wind farm space,
and the data of neighboring turbines have a large contribution to the
estimation of the available power generation of wind turbines. From
the perspective of wind speed in wind turbine nacelle, the nacelle wind
speed of a WTG at moment t in a certain wind direction has a strong
correlation with the nacelle wind speed of an upstream WTG at a
moment t before, and when the wind direction changes, the upstream
unit of that turbine will also change. In addition, due to the different
spatial distribution ofWTGs and their own operating conditions, even
the available power generation of WTGs of the same model varies.
Therefore, in this paper, we will analyze the spatial correlation of
WTGs based on the Pearson correlation coefficient of the nacelle wind
speed of each WTG and construct a WTG connection relationship
diagram. Then, we use a GCN to extract the spatial information within
the wind farm based on the output information of the LSTM network
in the previous section and establish a differentiated WTG available
power generation estimation model for the wind farm.

Traditional convolutional neural networks are limited to modeling
Euclidean spatial data only, while graph convolutional networks can
process non-Euclidean spatial data using graph representation, which
makes them more suitable for modeling all wind turbines in a wind
farm. In the wind farm available power estimation, the graph data are
first constructed based on the WTG connection relationship graph
and the nacelle wind speed and operation status data of WTGs, and
then the extraction of spatial features among WTGs is completed
based on the graph convolutional neural network.

Before extracting the spatial features of wind farms using the GCN,
the wind turbine connection relationship graph should be constructed
based on the correlation of all wind turbines in the wind farm. Each
wind turbine in the wind farm is abstracted into nodes, and the
correlation of nacelle wind speed between all wind turbines in the wind
farm is analyzed by the Pearson correlation coefficient, and the units
with the correlation coefficient greater than the set threshold can be
judged as having a correlation, and the units with a correlation are

connected to form edges. Taking a wind farm with six wind turbines as
an example, the connection relationship diagram of wind turbines in
the wind farm is constructed, as shown in Figure 3.

The GCN is a neural network that performs feature extraction on
graphs. A graph consists of a set of vertices and edges connecting the
vertices [27]; the vertices are the objects studied, and the edges are
specific relationships between two objects. In the wind power plant
turbine connectivity graph, turbines are abstracted as nodes, and units
with a strong correlation with each other constitute edges. The fan
connection relationship graph notation can be expressed as � (V, E),
where V is the set of nodes (turbines) and E is the set of edges. The
connections between turbines can be represented by the adjacency
matrix ~A, and the number of edges directly connected by a given
turbine is represented by the degree matrix ~D. The adjacency and
degree matrices for the aforementioned example are constructed and
shown in Figure 4.

The graph convolutional neural network uses the structural
information of the edge–vertex connections of the WTG
connectivity graph ~A and the input data H of each WTG to
perform feature extraction of the implicit graph information. The
message propagation between layers is given by Eq. 9, and the feature
aggregation between turbines is given by Eq. 10.

H l+1( ) � σ ~D
−1
2 ~A ~D

−1
2H l( )W l( )( ), (9)

~D
0.5 ~A ~D

0.5
H( )

i
� ~D

0.5 ~A( )
i

~D
0.5
H

� ∑
k

~D
0.5

ik
~Ai

⎛⎝ ⎞⎠ ~D
0.5
H

� ~D
0.5

ii ∑
j

~Aij ∑
k

~D
0.5

jk Hj

� ~D
−0.5
ii ∑

j

~Aij
~D
−0.5
jj Hj

� ∑
j

1������
~Dii

~Djj

√ ~AijHj

. (10)

In Eq. 9, H(l) represents the input data of WTGs in the layer l
network after l-1 network aggregation, H(l+1) represents the output
data of the layer l network, n is the total number of turbines in the
turbine connectivity graph, and each turbine is represented by a
d-dimensional feature vector; ~A � A + IN, where if A is multiplied
directly with H, only the neighboring turbine features are considered,
so it is common to add the self-loop, i.e., the unit matrix, to take into
account the turbines’ own ~D, which is the degree matrix of the
undirected graph, ~Dii � ∑j

~Aij; W(l) is the training parameter
needed for the model and h is the output dimension; σ is the
activation function, usually ReLU or Sigmoid. After aggregation
and multiplication by the weight parameter matrix, the input of
the next layer of the network is obtained after the non-linear
activation function H(l+1).

The spatial correlation problem between wind turbines can be
effectively solved by using the GCN, and the schematic diagram of
extracting spatial features using the GCN is shown in Figure 5. In the
wind farmwind turbine connectivity graph, the initial attribute of each
node, i.e., the input, is the temporal feature vector of each wind turbine
extracted after LSTM. After the first layer of the GCN, the wind speed
and operation status information of each wind turbine’s neighboring
units are fully aggregated, and the feature vector of each node is
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FIGURE 3
Schematic diagram of building a connection diagram of wind turbines.

FIGURE 4
Adjacency matrix and degree matrix.

FIGURE 5
Schematic diagram of extracting spatial features by the GCN.
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transformed into one dimension, outputting N*1 dimensional data, so
that the model considers both the temporal characteristics of the wind
speed and the spatial characteristics within the wind farm, and the
output of this layer is the available power generated by the wind
turbine.

3.3 The station loss problem based on the
layer 2 GCN algorithm

Station losses also need to be taken into account when making
available power estimates. Wind turbines in the wind farm through the
transformer step-up, and the power lines are connected together, and
they finally go through the wind farm main transformer step-up
voltage to the grid. This process will inevitably produce line losses,
box transformer losses, main transformer losses, etc., which are
collectively referred to as station losses. Because the station loss is
not part of the power sent through the grid connection point, the
station loss does not belong to the wind farm available power
generation. The calculation of the wind farm available power
generation needs to subtract this part of the power loss. However,

station losses come from a variety of sources and are difficult to
estimate, making it difficult to eliminate the impact of direct
calculation on their accuracy.

Using the graph convolutional neural network, the wind turbine
electrical connection relationship diagram can be constructed
according to the main wind farm electrical wiring diagram, and the
characteristics of the station losses are implied in the wind turbine
electrical connection relationship diagram so as to indirectly complete
the calculation of the losses of the convergence line, the main
transformer in the wind farm. The schematic diagram of the wind
turbine electrical connection relationship diagram is shown in
Figure 6.

The wind turbines are abstracted as nodes in the second layer of
the GCN graph, and the power transmission paths are abstracted as
edges between the nodes. The propagation process of the nodes’ own
attributes in the GCN well-simulates the losses occurring in the power
transmission process of theWTGs’ power generation. The input of the
second GCN layer is the output matrix of the first GCN layer
H1 � R(N*l), and the output features are the available power
generation of each WTG in the wind farm, H2 � R(N*l). Finally,
after the fully connected layer, the node characteristics of N wind

FIGURE 6
Electrical connection topology of the wind turbines.

FIGURE 7
Construction of the wind farm wind turbine connection diagram.
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turbines H2 are used as the input to output the available power
generated by the whole wind farm.

4 Case study

The actual operation data of a wind farm are used as an example to
test the model of this paper. The installed capacity of the wind farm is
100 MW, including 50 turbines with a single capacity of 2 MW, one
main transformer with a rated capacity of 120 MW, 50 box

transformers with a rated capacity of 2,300 kW, and six
convergence lines; the turbine models are consistent. The wind
farm data include the actual power of wind turbines, wind speed,
and the actual power of wind farm grid connection points, and the
data sampling interval is 1 December 2020–31 December 2020, with a
sampling frequency of 1 min/point and a total of 44,640 samples. To
use the data more efficiently for training, testing, and validation, the
10-fold cross validation is used.

The proposed deep neural network is trained with the
stochastic gradient descent (SGD) optimization algorithm and

FIGURE 8
Construction of the electrical connection diagram of the wind turbine.

FIGURE 9
Plot of wind speed versus power output for six turbines.
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the cross-entropy loss functions. The cross-entropy loss
increases as the predicted probability diverges from the actual
label. A perfect model has a loss of 0. However, balancing the
over and under fitting is important for the training process.
Therefore, the loss will not be 0 in reality. The SGD is an

iterative method for optimizing an objective function with
smoothness properties. It can be considered a stochastic
approximation of the conventional gradient decent optimization,
where an estimated gradient is used as the replacement of the actual
gradient.

TABLE 1 Errors in the test set of the theoretical power generation estimation model for wind turbines.

Model Root mean square (RMS) error (%) Mean absolute error (MAE) (%)

Proposed method (model_1) 2.005 1.679

Prototype machine method (Ding et al., 2016) (model_2) 9.486 7.269

LSTM-based method (Li et al., 2019b) (model_3) 3.265 2.169

Power curve method (Tascikaraoglu et al., 2014) (model_4) 5.286 4.568

LSTM + GCN method (model_5) 2.925 1.354

FIGURE 10
Estimated power output versus the real power outputs of the six turbines.
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In this paper, four models are compared with the proposed
method. The proposed model is marked as model_1, which
establishes a wind farm available output estimation model based on
LSTM and GCN considering the spatial and temporal correlation
within the wind farm and the loss within the wind farm; model 2 is the
prototype machine method (Ding et al., 2016), and model 4 is the
power curve method (Tascikaraoglu et al., 2014); model 3 considers
the temporal sequence within the wind farm, based on LSTM to
complete the estimation. The estimation of available power generation
of wind farms is done based on LSTM (Li et al., 2019b). Model_5 is an
estimation model based on LSTM and the single-layer GCN without
considering in-station losses.

After the adjustment of the model structure and parameters, the
parameters of the proposed model are as follows:

(1) LSTM layer: Since the input variables of the model are only the
nacelle wind speed and operation status, the dimension of the
input layer is 2; the number of key historical moments is
determined to be 4 based on correlation analysis, so the
number of time steps of the input layer is 5; for the estimation
of available power generation in wind farms, this paper only
considers a single-layer LSTM estimation model, so the number of
hidden layer parameters is 1; the dimension of the hidden layer is
generally chosen to be four times the number of input variables
Therefore, the number of hidden layer dimensions of the
model is 8.

(2) GCN layer: The model in this paper uses two layers of the GCN.
The graph topology of the first layer network is shown in Figure 7,
which is determined by the spatial correlation of WTGs, with
50 nodes and 736 edges, and the input layer dimension of each
node is determined by the hidden layer dimension of LSTM,
which is 8, and the output layer dimension is 1; the graph topology
of the second layer network is shown in Figure 8, which is
determined by the wind farm electrical connection diagram
with 50 nodes and 98 edges, each of which has an input layer
dimension of 1 and an output layer dimension of 1.

(3) Fully connected layer: The fully connected layer is selected as the
output layer of the spatio-temporal neural network. The input

layer dimension of this layer is 50, which represents the available
power generation of 50 wind turbines; the output layer dimension
is 1, which represents the estimated value of the available power
generation of wind farms.

Based on the data of pre-processed samples completed the
aforementioned four wind farm available power generation
estimation models, the test set in each model estimation results is
shown in Figure 9; the root mean square error and the average absolute
error of the estimated value of eachmodel and the real value are shown
in Table 1.

In Figure 9, the original data in terms of wind speed versus output
power are plotted for six different turbines. We have the data for all of
the turbines in the wind farm. Due to the space limitation, only six of
them are presented here. From the pattern in the figure, we can see that
the maximum power of each turbine is around 2 MW. The output
power of the turbines saturated around 2 MW. When the wind speed
is low, in addition to the dead zone of the turbines, there are also
chances that the wind turbines do not produce any power due to
operation dispatches. Furthermore, the data contain outlier points due
to maintenance or other reasons.

In Figure 10, the estimated power output results of the proposed
method are shown for the six wind turbines. From the result, it can be
seen that the proposed method can provide relatively accurate results,
comparing with the real outputs.

From Figure 11, the estimation error of model_2 is unstable and
increases significantly when the wind farm is at high power generation,
and the estimation error of some samples is significantly larger than
that of others at low power generation, compared with the model
proposed in this paper (model_1), the LSTM model (model_3), and
the power curve method (model_4), which are more stable. The
estimated value of the LSTM model (model_3) is lower than the
real value when the wind farm is at high power generation and slightly
higher than the real value when it is at low power generation. The
estimated values of the proposed model (model_1) and the power
curve method (model_4) are slightly higher than the true values when
the wind farm is at high power generation and slightly lower than the
true values when it is at low power generation. As can be seen from
Figure 9, the difference between the estimated values and the true
values for all the samples tested in the proposed model (model_1) is
not large when the wind farm is at low power, while the difference
between the estimated values and the true values for some samples of
the prototype method (model_2) is small, but there are also some
samples that differ significantly from the true values.

From Table 1, it can be seen that the estimation error of the wind
farm available power estimation model (model_1) proposed in this
paper is 2.005%, and it is improved by 7.481% compared with the
model_2 and by 1.26%, 3.281%, and 0.92% compared with model 3,
model 4, and model_5, respectively. Model_5 adds a layer of GCN
relative to model_3 to consider the spatial correlation within the wind
field, reducing its root mean square error by 0.34%.

To sum up, based on the long short-termmemory network and the
graphical convolutional neural network, this paper establishes a model
(model_1) that considers the temporal order of the wind speed of wind
turbines and the spatial correlation of wind turbines inside wind farms
and the station loss and has a more stable performance than that of
model 2, model 3, model 4, and model_5, and its estimation error is
lower and closer to the real value; by comparing model_3 and model_
5 with the models proposed in this paper, it can be seen that the two-

FIGURE 11
Comparison of estimated power values and real power values of a
part of the test set.
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layer GCN in the model can effectively extract the spatial information
inside the wind farm and solve the problem of loss in the station.

5 Conclusion

We investigate the problem of estimating the available power
generation of wind farms and propose a model for calculating the
available power generation of wind farms based on long short-term
memory networks and graph convolutional networks.

When comparing the proposed method with the four available
power generation estimation methods, namely, the sample machine
method, the LSTM model, the power curve method, and the available
generation power estimation method that considers only the spatio-
temporal correlation method in the wind farm, the root mean square
error of the proposed method is 2.138%, which is 77.5%, 34.5%, 59.6%,
and 26.9% higher than that of the sample machine method, the LSTM
model, the power curve method, and the method that considers only
the spatio-temporal correlation within the wind farm, respectively,
proving the feasibility and superiority of the proposed method.

The improvement of the accuracy of the estimation of the available
power generation of wind farms will facilitate the online dispatching
and optimization of the strategy of the direct wind power AGC
(automatic generation control) system by the dispatching
department of the State Grid Corporation, promote the
consumption of new energy, and help the country achieve the
reduction of carbon emissions.

In terms of the findings, limitations, and recommendations, the
authors would like to share the following:

1) Due to the aerodynamics, the output power of wind farms has
strong spatial correlations.

2) With the help of the data from individual turbines, more accurate
estimation results in terms of available power can be generated
because the state of individual turbines can be considered,
including the rotating maintenance of turbines within the
wind farm.

3) The performance of the machine learning algorithms is limited by
the quality of the input/training dataset. Therefore, it is very
important to wash and clean the dataset and find the outliers,
resulting in improved estimation accuracy.

The limitation of the proposed method is also the data
availability. It is fortunate that we have the data of individual

wind turbines in terms of wind speed, output power, and operation
states. Therefore, the model can be developed in this work, and the
available power can be estimated based on individual turbine
outputs and losses. Otherwise, the conventional wind
forecasting is the best way to predict the output power of a
wind farm.
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