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With the advantages of high energy density, long cycle life and high stability,

lithium-ion batteries have been used in a large number of fields such as electric

vehicles and grid scale energy storage. To ensure the safe and reliable operation

of battery systems, it is important to make an accurate and rapid estimation of

the state of health (SOH) of Li-ion cells. A Li-ion cell is a complex nonlinear

dynamic system. The SOH of a Li-ion can not be measured directly in actual

working conditions; it can only be estimated indirectly by external characteristic

parameters that reflects the extent of cell aging. It is difficult to ensure the

reliability of method based on a single aging feature or model. Therefore, this

paper proposes a multi-feature SOH estimation method that combines data-

driven XGBoost and a Kalman filter. Firstly, a principal component analysis

algorithm to reconstruct multiple battery aging features based on data is used,

and an XGBoost online estimation model incorporating multiple features based

on the reconstructed feature data is constructed. Finally, the joint optimal

estimation of SOH of Li-ion cells by introducing a time-domain Kalman filter

based on the real-time correction of the XGBoost model is achieved in this

method. The results show that the method improves the accuracy and

robustness of the estimation model and achieves a high-precision joint

estimation of SOH for Li-ion cells.
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1 Introduction

The standard definition of the state of health (SOH) of a cell is the ratio of the current

capacity to the nominal capacity of the cell (Yang et al., 2022). The SOH of a new cell is

100%, which decreases continually with the continuous decline in the cycle performance

of the cell. According to IEEE standards, a cell has been aged and cannot be used when the

SOH drops to 80%, which should be replaced timely. SOH indicators serve as an
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important parameter for battery management systems (BMSs)

and fault detection, and SOH estimation plays an important role

in improving cell life and ensuring system safety (Berecibar et al.,

2016; Li et al., 2021). With the rapid development of large-scale

battery energy storage stations, the functions of such enhanced

BMS need to be improved (Carkhuff et al., 2018). At present,

SOH estimation is the weak point of the BMSs, which directly

affects the efficiency, safety, and reliability of the Li-ion cell usage.

As one of the core parameters of BMSs, the main methods for

SOH estimation can be divided into three categories: direct

measurement methods, model-based methods and data-driven

methods (Xiong et al., 2018; Tan et al., 2022). Each of the three

categories contain multiple specific methods as shown in

Figure 1. The direct measurement method estimates the SOH

by experimentally measuring the maximum capacity or internal

resistance of the cell (Waag et al., 2013; Gholizadeh and

Yazdizadeh, 2020). The capacity measurement is usually

carried out by charging and discharging the Li-ion cell at

100% depth under specific standard operating conditions, and

the cell capacity is obtained by the Ampere countingmethod. The

model-based methods mainly include the electrochemical model

and the Equivalent circuit models ECM (Lai et al., 2020). The

electrochemical modelling method has a high accuracy and is

built from the molecular level perspective of the internal reaction

mechanism of the cell, providing insight into its internal

microscopic working mechanism. The ECM is built from the

perspective of a circuit, which is composed of an ideal voltage

source, a capacitor, resistor, and constantphase elements, and it is

used to describe the behavior of nonideal electric double layer

capacitors (Chen and Wang, 2014; Shi et al., 2021). The data-

driven methods treat the cell as a black box, eliminating the need

to study its complex chemistry and internal structure (Jain et al.,

2021). These methods mine aging information from historical

operation data and achieve the SOH estimation of a new cell by

using the pre-trained model. The direct measurement methods

are usually used in calibrating the true value of SOH. The

estimation accuracy of the direct measurement is not

satisfactory due to the single aging characteristic and high

equipment accuracy requirement. However, the

electrochemical modelling method have high complexity, and

contains a large number of parameters that cannot be measured

externally (Zhang et al., 2022). Therefore, the electrochemical

modelling method is generally used in the laboratory for

theoretical research and are hardly applied in practical

engineering.

At present, research on the SOH estimation method of

lithium-ion cells is not sufficient: the aging characteristics of

lithium-ion cells are relatively single, and the reliability and

accuracy of the model requires improvement. Data-driven

methods establish an estimation model based on data through

statistical laws, so as to establish a nonlinear mapping

relationship between the external cell characteristics

parameters and the SOH. These methods effectively avoid the

complexity of the model building and have ideal estimation

accuracy and practicality, making them the most ideal

methods for estimating the SOH at present (Chang et al.,

2021). The limitations of data-driven methods are an

excessive dependence on historical data and a lack of model

variation with structural time series trends. The prediction results

of such methods may be affected by the uncertainty of the data.

Therefore, more in-depth research is necessary to improve the

reliability of the parameters characterizing the SOH. In

summary, it is important to find an accurate and fast method

for estimating the SOH of lithium-ion cells to improve the safety

and reliability of battery energy storage systems.

With the improvement’ of computer hardware, the

emergence of artificial intelligence algorithms, and the advent

of the era of big data, data-driven methods have gradually

FIGURE 1
Classification of SOH estimation methods.

Frontiers in Energy Research frontiersin.org02

Xu et al. 10.3389/fenrg.2022.999676

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.999676


become the mainstream research direction. Machine learning as

a data-driven method to achieve artificial intelligence has been

widely used in various fields in recent years, which only needs to

monitor the battery voltage and current data to achieve a battery

SOH estimation. For example, machine learning applications

such as autoregressive models, Gaussian process regression,

support vector machines, and neural networks have been

applied to the prediction of battery SOH and remaining

service life (Widodo and Yang, 2011; Liu et al., 2013; Long

et al., 2013; Klass et al., 2014), and good results have been

achieved.

By improving the data-driven estimation model, this paper

combines XGBoost and adaptive Kalman filter to learn from each

other’s strengths. In this paper, the XGBoost algorithm is used to

build a data-driven online estimation model, and the Kalman

filter is introduced to correct the adverse effects of historical data

on the XGBoost model by using its state equation based on time-

domain recursion. A data validation analysis shows that the

method improves the accuracy and robustness of the model,

making the final estimation results smoother and more accurate.

The rest of this paper is organized as follows. In the second

section, the relevant principles about the Kalman filter and the

adaptive filter are introduced. The third section investigates the

XGB-AKF-based SOH estimation method for lithium-ion cells

for battery energy storage and verifies the accuracy of the method

through experiments. The fourth section summarizes the entirety

of this study.

2 Introduction of related principles

2.1 XGBoost algorithm

The XGBoost algorithm is an optimization algorithm

proposed by Chen at the University of Washington in

2015 based on the idea of gradient boosting, which has gained

widespread attention due to its excellent learning ability and

efficient learning speed. The weighted quantile method in the

XGBoost algorithm (used to search for the approximate optimal

split point), parallel and distributed computing, and efficient and

fast processing methods for large amounts of data based on

chunking technology have led to significant improvements in the

computational speed and prediction accuracy of the model. A

sparse perception algorithm based on decision trees can

automatically learn the splitting direction for samples with

missing feature values, which improves the accuracy of

estimation results in the case of missing features in the test

set. XGBoost, in comparison with GBDT and AdaBoost, avoids

the model overfitting problem and improves the adaptability of

the model due to the inclusion of the regularization-oriented

structural loss function as the optimization objective function.

The XGBoost algorithm used in this paper uses integrated

learning based on CART regression trees, which use the Gini

index to select the segmentation features. The Gini index is the

probability that a randomly selected sample is misclassified in the

sample data. The magnitude of the Gini index indicates the

probability that the selected sample is misclassified. The smaller

the value, the higher the purity of the set; in other words the Gini

index (Gini impurity) is equal to the probability that the sample is

selected multiplied by the probability that the sample is

misclassified. The equation for the Gini coefficient is shown

below (Jing-tai and Wang., 2022).

Gini(p) � ∑K

k�1pk(1 − pk) � 1 −∑K

k�1pk
2 (1)

where pk denotes the probability that the selected sample belongs

to category k. The probability that the sample is misclassified is

(1-pk).

For a sample set D the Gini index is (FEI Chen et al., 2022):

Gini(D) � 1 −∑K

k�1(|Ck|
|D|)

2

(2)

A feature (A) is divided into v subsets (D1, D2, . . . , Dv) by v
different values, and the value with the smallest Gini index

(i.e., the largest information gain) is determined to be the

splitting point. Then, the Gini index of feature A is related to

data set D as in Eq. 3 (Ma and Cheng, 2022):

Gini(D,A) � ∑V

y�1
|Dv|
|D| Gini(D

v) (3)

The feature that minimizes the Gini index of the sample is

used as the attribute of the split node when building the

regression decision tree. For an arbitrary division of data for

feature A, suppose the corresponding division point (s) is divided

into data sets D1 and D2 on both sides, and the feature and

eigenvalue division point that minimizes the Gini index of the

respective sets ofD1 andD2, while the Gini index ofD1 andD2 is

minimized, is selected. The expression is as follows.

min[min c1∑xi∈D1(A,s)(yi − c1)2 +min c2∑xi∈D2(A,s)(yi − c2)2]
(4)

where c1 is the sample output mean of dataset D1 and c2 is the

sample output mean of dataset D2. We then iterate through the

feature variables and scan cut point s for fixed featureA, select the

best cut point (A, s) that minimizes the value of Eq. 4, and

calculate the corresponding leaf node output values (c1,c2) to get

two sub-regions (D1, D2). We continue to traverse the feature

variables to divide the subregions until either the number of

samples is less than the threshold or there are no features. Finally,

the input samples are divided into m subregions

(D1, D2, . . . , Dm) to generate the decision tree:

f(x) � ∑M

m�1cmI(x ∈ Dm) (5)

At the core of the XGBoost algorithm is a Boosting

optimization model based on decision trees, which combines
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weak learners into strong learners through iteration. XGBoost

uses CART regression trees as weak learners, first determines the

optimal structure of the tree (number of leaf nodes, depth), and

adopts a stepwise forward additive model; in each generation of a

single tree, the weight of the data from the previous division of

error is adjusted upward before acting on the current tree. The

overall error of the model is gradually reduced by continuously

adding trees until the end of training. XGBoost training is

performed for each tree, whose model can be written as follows:

ft(x) � wq(x), w ∈ RT, q: Rd{1, 2,/T} (6)

where w is the leaf node score. x denotes the input sample data,

q(x) denotes the leaf node corresponding to sample x, and T is

the number of leaf nodes in the tree. The formula for adding

thetth

Tree to the model is as follows.

ŷ(t)
i � ∑t

k�1
fk(xi) � ŷ(t−1)

i + ft(xi) (7)

For the training of a single CART tree it is first necessary to

determine the objective function.

Obj(θ) � ∑n
i�1
L(yj, ŷ

(t)
i ) +∑t

k�1
Ω(fK) (8)

The objective function is divided into two parts: a loss

function (L) and a regularization term (Ω). As a regression

problem the loss function is usually chosen as L2 loss (i.e., the

square of the residuals between the predicted and true values) to

evaluate the degree of model fit, and the regularization term is

used to penalize the complexity of the model to prevent

overfitting. The regularization term is defined as follows

(CHAI et al., 2022).

Ω(ft) � rT + 1
2
λΣT

j�1w
2
j (9)

where T is the number of leaf nodes, wj is the L2 norm for the

fraction of leaf nodes, and r and λ are used as parameters to

control the tree complexity. From this expression, the

regularization term can be calculated, and then Eqs 6 and Eqs

7 are included in the objective function and expanded using the

second-order Taylor formula to obtain the tth tree leaf node form

(Wu et al., 2022).

Objt(θ) � ∑n
i�1
[giwq(xi)

1
2
hiw

2
q(xi)] + 1

2
λ∑T
j�1
w2

j

� ∑T
j�1
⎡⎢⎢⎢⎣⎛⎝∑

ⅈ∈Ij

gi
⎞⎠wj + 1

2
⎛⎝∑

ⅈ∈Ij

hi+λ⎞⎠w2
j
⎤⎥⎥⎥⎦ + rT (10)

We let Gj � ∑
ⅈ∈Ij

gi and Hj � ∑
ⅈ∈Ij

hi Bringing into Eq. 10 and

taking the partial derivative of the objective function with respect

to wj and making the derivative function zero, we solve for wj:

w*
j � − Gj

Hj + λ
(11)

Plugging Eq. 11 into the objective function yields the

following expression:

Obj* � −1
2
∑T
j�1

G2
j

Hj + λ
+ rT (12)

Obj* serves as a criterion to evaluate the structure of a single

CART regression tree, and XGBoost enumerates the splitting

schemes of all features starting from the tree with depth 0 and

calculates their objective function values to determine the

optimal structure of the tree. When the tree reaches the

maximum depth, the sum of sample weights is less than the

set threshold (i.e., too few samples of leaf nodes), and the model

stops building the decision tree. The proportion of samples

drawn from each tree is controlled by the set parameters, and

the optimal structure of a tree is finally trained by adjusting the

parameters.

XGBoost uses Boosting for the next round of training after a

tree is trained (the objective function of the next tree contains the

previous prediction results), and the optimal model structure is

obtained through iteration. XGBoost multiplies the weights of

the leaf nodes by the learning rate after one iteration to weaken

the influence of each tree and allow more learning space forlater

trees. Finally, the optimal number of model iterations is

determined, namely, the number of decision trees need to

complete the training of the model.

2.2 Kalman filtering principle

The Kalman filter algorithm constructs a state equation

describing the linear system and substitutes the observation

data of the system input and output into Eequation 13) for

prediction and correction, so as to achieve the optimal estimation

of the system state (Sinopoli et al., 2004). The core of the Kalman

filter algorithm is to recursively update the estimates through a

series of recursive equations combined with the observed

parameters. The discrete state equations describing the linear

system are first established as follows (Li et al., 2020).

{xk+1 � Akxk + Bkuk + wk

zk � Ckxk +Dkuk + vk
(13)

where xk is the system state variable, zk is the observed variable,

and wk and vk denote the system state noise and the observed

noise, respectively.wk and vk are mutually independent Gaussian

white noise with zero mean. The variances ofwk and vk are Q and

R, respectively. uk is the external input to the system, which is

zero when there is no external input.

The Kalman filter substitutes the optimal state estimate at the

previous moment into the system state equation to derive the a
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priori state estimate, and it uses the Kalman gain to record the

measured values at one moment in the a posteriori estimate at the

next moment by multiplying them after obtaining the observed

values. That is, the posterior estimate at a certain time is the

maximum probability obtained by weighing the posterior

estimate at the previous time and the current observation

value. Thus, the current posterior estimate is an optimization

of the prior estimate. The Kalman filter expresses the error

between the estimated and true values in terms of the

covariance (Pk) as follows (Yan, 2016):
Pk � E[(xk − x+

k )(xk − x+
k )T], (14)

where xk denotes the true value of the parameter to be measured,

and x+
k denotes the estimated value at the kth moment.

The specific iterative steps of the Kalman filtering algorithm

are as follows (Zhu and He, 2019):

1) System initialization:

{ x+
0 � E[x0]

P+
0 � E[(x0 − x+

0 )(x0 − x+
0 )T] (15)

2) A priori state estimation:

x−
k � Ak−1x+

k−1 + Bkuk−1 (16)

3) Error covariance a priori estimation:

P−
k � Ak−1P+

k−1A
T
k−1 + Q (17)

4) Calculate the Kalman gain:

Kk � P−
kC

T
k [CkP

−
kC

T
k + R]−1 (18)

5) System status update:

x+
k � x−

k + Kk(zk − Ckx
−
k −Dkuk) (19)

6) Posterior covariance estimates:

P+
k � P−

k(I − KkCk) (20)

7) k = 2,3,4... Repeat steps 2–6 recursively.

The Kalman filter algorithm is widely used in parameter

estimation, which estimates system state x−
k at moment k under

system state x+
k−1 and system input uk−1, calculates the optimal

estimate x+
k by combining the current observation zk, filters the

Gaussian white noise in the data, and quickly tracks the changes

of the state and parameters.

2.3 Adaptive filtering principle

The Sage-Husa-based adaptive Kalman filter (AKF) is

composed of two parts: the classical Kalman filter algorithm

and a noise estimator. The adaptive adjustment process refers to

the real-time correction of system errors and observation errors

through the time-varying noise statistical estimator during the

iterative state-updating process of the Kalman filter, so as to

FIGURE 2
Experimental equipment for charging and discharging.

FIGURE 3
Training set with SOH and cycle number.
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reduce noise interference and improve model accuracy (Myers

and Tapley, 1976; Oldham, 2008). The AKF equation is as follows

(Garcia et al., 2019):

{ xk � Ak−1xk−1 + Bk−1uk−1 + qk−1
zk � Ck−1xk−1 +Dk−1uk−1 + rk−1

(21)

And the AKF noise estimator is as follows (Zhu and He, 2019):

ek � zk −Hk−1xk−1 − rk−1 (22)
rk � (1 − dk−1)rk−1 + dk−1(zk −Hkxk−1) (23)
qk � (1 − dk−1)qk−1 + dk−1(xk − Akxk−1) (24)

Qk � (1 − dk−1)Qk−1 + dk−1(Kkeke
T
kK

T
k + Pk − AkPkA

T
k ) (25)

Rk � (1 − dk−1)Rk−1 + dk−1(ekeTk −HkPkH
T
k ) (26)

dk � (1 − b)
(1 − bk−1) (27)

where rk represents the observed noise mean, qk represents the

system noise mean, Rk represents the observed noise variance,

and Qk represents the system noise variance. The noise estimator

is added to the Kalman filter iterative algorithm by the time-

varying noise-extreme a posteriori estimator to dynamically

update the noise variance rk+1 , qk+1 , Rk+1 and Qk+1
simultaneously after the kth iteration of the filter. dk in Eq. 27

denotes the forgetting factor, which is used to reduce the impact

of longer time data on the current rk, qk, Rk, andQk and enhance

the impact of data in the nearer moments. The forgetting factor

takes the value range of 0 < b < 1 and is usually set between

0.95 and 0.99, which not only aggravates the most recent

observations but also limits the memory length of the filter.

The introduction of the forgetting factor can regulate the weight

of the observations at different moments of the system. The

Sage–Husa-based AKF continuously adapts to the changes of

system parameters by adjusting the weights to reduce the model

estimation error.

2.4 Principal component analysis

Principal component analysis (PCA) is a multivariate

statistical method that converts n-dimensional features of data

into k-dimensional new orthogonal features by an orthogonal

transformation according to the maximum variance theory. The

reconstructed k-dimensional features retain most of the

information in the original data and are uncorrelated with

each other, and PCA minimizes information loss while

compressing the data. PCA is often used in data analysis and

processing for data dimensionality reduction, which can

maximize the simplification of attributes within the specified

loss range, remove the redundant interference of strong

correlation between features on the training process, and

improve the model training speed and accuracy.

The specific steps of PCA are as follows (Abdi and Williams,

2010):

(1) The sample feature data are composed of m rows and n

columns of sample matrix X by rows (one sample per row

and one dimensional feature per column).

(2) Calculate the covariance matrix (C) of the data set (X); the

covariance formula is as follows:

cov(Xi, Xj) � ∑n

i�1(Xi −Xi)(Xj −Xj)
n − 1

(28)

FIGURE 4
Cell one rest time greater than threshold cycle mark.

FIGURE 5
Cell two rest time greater than threshold cycle mark.
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whereXi andXj are the characteristic column data of the dataset

and n is the number of column samples.

(3) Calculate the eigenvalues (D) and eigenvectors (V) of

covariance matrix C. The eigenvalues are arranged in

descending order of values, and the first K eigenvectors

(u1, u2. . . , uk), which form the downscaling

transformation matrix (U), are obtained after the

downscaling transformation Z � X × U of X.

3 Joint XGB-AKF-based estimation of
SOH for Li-ion cells

Firstly, the joint XGB-AKF estimation method

establishes the nonlinear mapping relationship between

cell health characteristics and SOH using the XGBoost

algorithm, and constructs an XGBoost algorithm-based

SOH estimation model for a certain type of lithium-ion

cell by fitting the training data. Then, by introducing the

FIGURE 6
XGB-AKF model to estimate SOH framework for Li-ion cells.

Frontiers in Energy Research frontiersin.org07

Xu et al. 10.3389/fenrg.2022.999676

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.999676


AKF algorithm and establishing the state equation based on

the time series degradation trend to correct the XGBoost

model estimation results, the joint optimal estimation of

SOH based on the XGB-AKF model is finally realized. In this

paper, cell aging characteristics swere studied, and

experimental data of the SOH-cycle count of the cell were

obtained by using a high-performance cell testing system, as

shown in Figure 2. The test cells were lithium iron phosphate

square aluminum-case cells, with a nominal capacity of

206 Ah.

3.1 Construction of the XGB-AKF kalman
filter

The Kalman filter algorithm mainly combines

observations with prior state estimates to make optimal

estimates of the system state through time updates and

observation updates (Guo et al., 2019). The temporal

update refers to Eq. 16–17, which substitute the optimal

estimate of the system state at moment k-1, x+
k−1 into the

state equation to derive the a priori estimate x−
k at moment k.

The observation update is accomplished by Eq. 19–20,

combining the current observation (zk) and the a priori

state estimate (x−
k ) to correct the system state (x+

k ).
To establish the Kalman filter equation for the XGB-KF

model, the initial value of the system state is preferred to

determine the initial value of the cell SOH as the state

variable (x+
0 ).The initial SOH+

0 is about 100% and the initial

error covariance (P+
0 ) is about 0 because the selected cell is brand

new. The estimation accuracy of the joint estimation model

mainly depends on the XGBoost model, and the Kalman filter

FIGURE 7
XGB-KF model to estimate SOH results for Li-ion cells.

FIGURE 8
XGB-AKF model to estimate SOH results for Li-ion cells.

FIGURE 9
Comparison of the relative errors of XGB and XGB-KF model
test sets.

TABLE 1 Evaluation indicators based on jointmodel estimation results.

Estimation model RMSE (%) MAE (%) R2

XGBoost + PCA 1.80 1.40 0.95

XGBoost + PCA + KF 1.63 1.25 0.95

XGBoost + PCA + AKF 1.45 1.16 0.96
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mainly plays the role of correction filtering. Therefore, the

measurement noise variance (R) should be set smaller than

the system state noise variance (Q). To verify the effectiveness

of the algorithm, several experiments were conducted, in which

the typical data are as follows.

As shown in Figure 3, the current SOHs of the cell and the

cycle times were closely related. Therefore, this paper uses the

linear equation fitted with the average decreasing trend of SOH

for cell1, cell 2, and cell 3 as the state equation; Ak = 1, and the

slope of the straight line is Kavg.

Due to the phenomenon that reactants may dissipate after

standing for a period of time, the cell may exhibit capacity

rebound, which has been found to be closely related to the

rest time (Tang et al., 2014; Qin et al., 2017). In this paper, to

improve the model prediction accuracy, the capacity rebound

amount is added to the equation of state Uk, when the cell’s rest

time is greater than the threshold. According to the relationship

between the rest times and SOHs of cells 1, 2, and 3, there was a

significant capacity rebound phenomenon at a rest time

threshold of about 1 h, with an average rest capacity rebound

(Crest) of 2%, as shown in Figures 4 and 5. Then the a priori state

estimation equation is as follows:

SOH−
k � SOH+

k−1 +Kavg + UkCrest (29)

The SOH estimation output from the XGBoost online

estimation model based on the kth cycle of the cell extracted

features (fk) is used as the observation (zk); then, Ck = 1, and its

system state update equation is as follows:

SOH+
k � SOH−

k + Kk(XGB(fk) − SOH−
k) (30)

We determine the initial value of the system and update

the equations back into the Kalman filter algorithm. When

completing each charge/discharge cycle, the joint optimal

estimation is achieved by the Kalman filter algorithm by

weighing the estimated results of the observation equation

XGBoost and the a priori estimation based on the time series.

3.2 Implementation of the joint XGB-AKF
estimation method

After setting the initial values of the system state, they are

substituted into the Kalman filter iteration formula to realize the

real-time correction of the XGBoost estimation results. The

Kalman filter algorithm substitutes the last cycle estimate

(SOH+
k−1) into Eq. 29 to derive the current cycle’s a priori

estimated SOH−
k . The state correction processcalculates the

Kalman gain, substitutes the observed value into the state

update Equation 30, weighs the observed value and the a

priori estimate, corrects the current cycle cell health state

(SOH+
k ), and updates the noise variance and error covariance

to prepare for the next iteration.

The AKF corrects the error fluctuations of the XGBoost

estimation results according to its state equations based on

the determined initial state and the degradation trend of the

rest time with cycle number. The adaptive noise algorithm is

added to enhance the random noise adaptation and filter the

disturbing noise in the data to make the final estimation results

smoother andmore accurate. The overall structural framework of

the joint XGB-AKF estimation model is shown in Figure 6.

3.3 Results validation and analysis

Cell four is used as a test battery to verify the accuracy of the

model, and cells 1, 2, and three are used to complete the training

of the XGBoost model. The characteristic data of the test cell after

each cycle are extracted as the input of the XGBoost model. The

preliminary SOH estimation results are then fed into the joint

estimation model Kalman filter for correction filtering, and the

final SOH joint estimation value of all cycles of cell4 is obtained.

The estimation results based on the joint XGB-AKF estimation

model, the XGBoost model, and the XGB-KF model without the

adaptive filtering process are shown in Figures 7–9, respectively,

and summarized in Table 1.

TABLE 2 Evaluation indicators based on joint model estimation results.

Methods Advantages Disadvantages Accuracy Stability Practicality

Capacity measurement methods · Easy experiment
· Accurate results

· Time consuming
· Damage battery life

High High High

Internal resistance measurement
methods

· Method maturity
· Simple and practical

· High non-linearity
· Large measurement error

Poor General General

Equivalent circuit models · Good real-time
· Adapt to complex working
conditions

· Introduction of SOC error
· Model-dependent accuracy

General High High

Electrochemical modelling methods · Explanatory strength
· High model accuracy

· Model complexity
· Poor scalability
· Parameters difficult to measure

High High High

Data-driven methods · Avoidance mechanism model
· Suitable for non-linear systems

· Forecast results are too dependent on
historical data

High General High
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According to the evaluation metrics of different models in

Table 2, the joint mean errors of the XGB-KF and XGB-AKF

estimation models are found to be 10.7% and 17.1% lower than the

XGBoost results, and the root-mean-square errors are reduced by

9.4% and 19.4%, respectively. TheR2 is above 0.95, indicating that all

three algorithms fit well. Thus, the average error and root-mean-

square error of the joint estimation model with the Kalman filter

algorithm are reduced, and the average error between the estimated

results and the true values is about 1.2%. The prediction curve is

smoother and more accurate when the Kalman filter is introduced,

which suppresses the error fluctuations caused by the XGBoost data-

driven model influenced by historical data. The root mean square

error and mean error of XGB-AKF (with the introduction of

adaptive filtering) were reduced by 11.0% and 7.2% compared to

XGB-KF, respectively. The larger decrease in the root mean square

error indicates that the adaptive filtering mainly enhances the

estimation adaptability and robustness of the joint estimationmodel.

4 Conclusion

In this paper, the XGBoost data-driven model and the Kalman

filter algorithm are combined to correct the fluctuation error of

XGBoost by Kalman filtering the state equation based on the

degradation trend of the time series. The joint XGB-AKF-based

SOH estimation method for lithium-ion cells firstly constructs an

online estimation model based on data-driven XGBoost. Then, the

system is enhanced by introducing an adaptive Karman filtering

algorithmwith noise reduction filtering capability, and the XGBoost

estimation results are corrected according to the time-domain

equation of state. The results show that the method compensates

for the shortcomings of the XGBoost data-driven algorithm—which

is affected by the uncertainty of historical data and the Kalman

filtering—and improves the accuracy and robustness of the

estimation model to achieve a high-precision joint estimation of

SOH for Li-ion cells.
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