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It is necessary for powerformers running in parallel to identify which

powerformer occurs at the stator single-line-to-ground (SLG) fault. Some

state-of-the-art fusion discriminations are used to identify stator SLG fault,

but these methods extract fault features artificially, and application conditions

are limited. Convolutional neural network (CNN) has shown superior automatic

feature extraction ability in various fields, but it cannot directly extract features

from one-dimensional time series vectors collected by powerformers.

Therefore, this article proposed a novel SLG fault protection scheme based

on the hub-and-spoke grid data converting algorithm (HSGC) and CNN. First,

Pearson product-moment correlation coefficients (PCCs) are used to calculate

the correlations of one-dimensional time series vectors, establish a

correspondence between them and the distance of two-dimensional grid

cells, and then convert one-dimensional time series vectors to two-

dimensional grid-structured data by HSGC. Second, the trained CNN

automatically extracts the features of two-dimensional grid-structured data.

Finally, the faulty powerformer can be identified based on the output of CNN.

The proposed protection scheme is verified through the simulation of ATP-

EMTP and Python. The results show that the scheme can accurately detect a

faulty Powerformer under different conditions where neutral point is high-

resistance or reactance grounding, even if fault resistance is 8,000Ω.

KEYWORDS

powerformer, single-phase-to-ground fault protection, HSGC, CNN, PCCs

OPEN ACCESS

EDITED BY

Lipeng Zhu,
Hunan University, China

REVIEWED BY

Linfeng Yang,
Guangxi University, China
Sumei Liu,
Beijing Forestry University, China

*CORRESPONDENCE

Yuanyuan Wang,
yuanyuan.wang.1980@ieee.org

SPECIALTY SECTION

This article was submitted to Smart
Grids,
a section of the journal
Frontiers in Energy Research

RECEIVED 20 July 2022
ACCEPTED 05 August 2022
PUBLISHED 06 September 2022

CITATION

Liu X, Wang Y, Luo X, Cao C, Li W,
Wang B, Wang J and Wang Y (2022),
Stator single-line-to-ground fault
protection for powerformers based on
HSGC and CNN.
Front. Energy Res. 10:998797.
doi: 10.3389/fenrg.2022.998797

COPYRIGHT

© 2022 Liu, Wang, Luo, Cao, Li, Wang,
Wang and Wang. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

Abbreviations: XLPE, cross-linked polyethylene; SLG, stator single-line-to-ground; CNN,
convolutional neural network; HSGC, hub-and-spoke grid data converting algorithm; PCC,
Pearson product-moment correlation coefficient.

Frontiers in Energy Research frontiersin.org01

TYPE Methods
PUBLISHED 06 September 2022
DOI 10.3389/fenrg.2022.998797

https://www.frontiersin.org/articles/10.3389/fenrg.2022.998797/full
https://www.frontiersin.org/articles/10.3389/fenrg.2022.998797/full
https://www.frontiersin.org/articles/10.3389/fenrg.2022.998797/full
https://www.frontiersin.org/articles/10.3389/fenrg.2022.998797/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fenrg.2022.998797&domain=pdf&date_stamp=2022-09-06
mailto:yuanyuan.wang.1980@ieee.org
https://doi.org/10.3389/fenrg.2022.998797
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#editorial-board
https://www.frontiersin.org/journals/energy-research#editorial-board
https://doi.org/10.3389/fenrg.2022.998797


1 Introduction

High-voltage equipment used in power generation is

continuously being developed in order to reduce production

costs, improve efficiency, and, more recently, minimize

environmental impact (Tzelepis et al., 2020; Zhou et al.,

2022). Over the past decades, a series of changes have taken

place in high-voltage apparatus. One of them is the powerformer

(Leijon, 1998), a new type of generator developed by ABB with a

stator winding made up of cross-linked polyethylene (XLPE)

cable (Shi et al., 2021). The cross section of the XLPE cable is a

circular winding, which can avoid uneven electric field

distribution along the conductor surface caused by the shape

of rectangular stator bars of the conventional generator (Wang

et al., 2020a), allowing the output voltage at the terminal of

powerformer to exceed about 30–35 kV and reach theoretical

levels of 400 kV. Thus, it can be directly connected to the power

transmission systems, which leads to lower power losses.

The stator SLG fault is the most potential harm, and it is the

most frequent fault that generators will experience (Xue et al.,

2022; Huang and Jia, 2017). Especially for powerformers, because

of the XLPE cable with greater capacitance to ground, the fault

current is greater and the damage to the powerformer is greater

after the stator SLG fault occurs. Meanwhile, the stator SLG fault

is very likely to develop into a more severe inter-turn fault and

phase-to-phase fault, leading to the damage of stator core and

stator winding of powerformers and seriously affecting the safe

and stable operation of the power grid. To avoid such

consequences, reliable detection and isolation of stator SLG

fault have become essential for powerformers.

For a group of generators running in parallel, if an SLG fault

occurs on a generator, it is necessary to selectively detect the

faulty generator. Several selective protection methods for

detecting stator SLG fault of powerformers have been

proposed. Wang et al. (2013a) proposed using the direction

and the magnitude of leakage current as identification criteria

to detect the SLG fault and combining the fundamental

component and the third-harmonic component of leakage

current to realize 100% coverage of fault detection. However,

the protection criteria were analyzed separately, and the

reliability was low. To address this problem, some protection

methods based on fault feature fusion have been proposed in the

study by Wang et al. (2013b). Wang et al. (2013c) proposed a

stator SLG fault protection scheme based on a fuzzy clustering

algorithm and hierarchical clustering algorithm, which

synthesizes several fault features to calculate cluster centers

and then compares the distance between the detected pattern

and two cluster centers to identify the faulty powerformer. Also,

Fang et al. (2020) further proposed a stator SLG fault protection

scheme for powerformers based on multi-dimensional

information fusion. They used the discriminant analysis

method to synthesize four fault features and discriminated the

faulty powerformer by comparing the Manhattan distance

between fault features. Even though these methods extracted

fault features artificially, their application conditions were

limited.

CNN is a successful algorithm of deep learning that has been

widely used in multiple fields, especially in digital image

processing, face recognition, audio retrieval, and other fields

(Abdalla et al., 2019; Liu et al., 2019; Rajeev et al., 2019;

Klompenburg et al., 2020; Roneel et al., 2021). CNN solves

the dilemma that other algorithms need to artificially extract

features. Also, it finds the optimal weight parameters matrix by

error back propagation along with local connections and weight

sharing based on correlation between data (Zhang et al., 2019),

which can automatically extract abstract and valuable features

from the data to complete specific tasks (Hao et al., 2022; Huang

et al., 2021). Applying CNN to powerformer protection has the

potential to achieve good results.

Considering that “the simpler the information, the more

reliable the relay protection result”, the simplest case of the data

collected by powerformer’s protection method is a one-

dimensional time series vector, and there is a strong

correlation between the data. CNN can only process multi-

dimensional data (Liu et al., 2020) and cannot process one-

dimensional time series data collected by powerformer. In order

to accurately identify, which Powerformer has stator SLG fault in

parallel operation, and use CNNwith powerful automatic feature

extraction capability to process one-dimensional time series

vectors, this article proposes a data dimension transformation

method based on HSGC and then uses CNN to implement

powerformer stator SLG fault protection. Section 2 introduces

the main modules and the framework of the proposed protection

scheme. Section 3 explains the physical model of powerformer,

sample set acquisition, fundamental theories of HSGC, and the

protection principle. Section 4 shows the results of the ATP-

EMTP and Python simulation and compares between the

proposed protection scheme and other protection schemes.

2 General protection scheme

Basically, the protection scheme proposed in this article is

divided into the following three modules: the fault detector

module, the signal processor module, and the fault classifier

module. A general protection scheme is shown in Figure 1.

2.1 Fault detector module

The zero-sequence voltage can be measured by the voltage

transformer connected to the terminal of Powerformer. The

effects of zero-sequence fundamental and third-harmonic

voltages are eliminated by setting the reliable pickup of the

overvoltage relay, which is the sum of zero-sequence

fundamental voltage and zero-sequence harmonic voltage
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(15% phase voltage). When the zero-sequence voltage is detected

to be greater than or equal to the pickup, the protection is

activated, and then the zero-sequence currents can be

measured by the current transformer connected to the

terminal of Powerformer; conversely, it returns.

2.2 Signal processor module

First, if the fault detector protection is activated, the one-

dimensional time series vectors, which consist of zero-sequence

currents, are input to the signal processor module. Second, one-

dimensional time series vectors are converted into two-

dimensional grid-structured data by HSGC. Concretely, in

order to reflect the correlation information of the one-

dimensional time series vectors, the correlation coefficient

matrixes of the one-dimensional time series vectors are

calculated using PCCs. According to the correlation coefficient

matrixes and the spatial neighborhood correlation of grid cells,

the one-dimensional time series vectors are converted into two-

dimensional grid-structured data. Finally, the two-dimensional

grid-structured data was used as input to the fault classifier

module.

2.3 Fault classifier module

In the fault classifier module, the historical zero-sequence

currents of each powerformer are collected under normal or fault

conditions when n powerformers are running in parallel. The

collected zero-sequence currents are divided into

n+1 classifications. The zero-sequence currents are classified

into one class when all powerformers are in a normal state,

and the zero-sequence currents are classified into class n when

the stator SLG fault occurs on the nth powerformer. After

converting these zero-sequence currents into two-dimensional

grid-structured data separately, they are fed into the CNN

classifier protection model to train it and optimize hyper-

parameters. After training, the CNN classifier protection

model can be used to identify the classification of two-

dimensional grid-structured data and then accurately identify

the faulty powerformer. If the stator SLG fault occurs on one of

the powerformers running in parallel, this module starts and

gives an alarm according to the output of the CNN classifier, so

that maintenance personnel can take actions to reduce the loss

caused by the fault. If the powerformers are all running normally,

the results can be recorded and used as a reference for subsequent

research.

FIGURE 1
General protection scheme.
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3 Protection principle

3.1 Powerformer equivalent model and
sample set acquisition

Establish an equivalent model for Powerformer. Since the

Powerformer winding uses graded insulation (there are no linear

relations between the ground capacitance of stator winding and

turns) (Lin et al., 2018), the Powerformer cannot simply apply

the equivalent model of conventional generators. When the

stator SLG fault occurs on the Powerformer, this article

equates the total ground capacitance Cg of one phase of the

stator winding into two parts: one portion αCg of the total ground

capacitance from the neutral point to the fault location of the

winding, while the rest (1-α)Cg of the total ground capacitance

from the fault location to the powerformer terminal winding

(Wang et al., 2020b; Tian et al., 2007). Then, the terminal voltage

and the established equivalent capacitance are used to calculate

the zero-sequence capacitance current when the powerformer is

at fault. The equivalent phase-to-ground capacitance of each

phase winding of the powerformer is shown in Figure 2.

After the stator SLG fault occurs on the Powerformer, the zero-

sequence current of powerformers operating in parallel is measured.

Also, the samples of zero-sequence currents measured from each

Powerformer compose a one-dimensional time series vector.

The original data matrix T consists of one-dimensional time

series vectors, which can be defined as follows:

T �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
t11 t12/t1n
t21 t22/t2n
..
. ..
. ..
. ..
.

tm1 tm2/tmn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (1)

where n represents the number of powerformers operating in

parallel, and m represents the number of zero-sequence current

samples from each powerformer. Define each row of the original

data matrix T as a one-dimensional vector Ti with n quantities.

3.2 Hub-and-spoke grid data converting
algorithm

In order to take advantage of CNN, it is necessary to convert

one-dimensional time series vectors into two-dimensional grid-

structured data that can be directly processed by CNN. This

section introduces the HSGC proposed in this article, which can

increase the dimensionality of one-dimensional time series

vectors.

The relative positions and distances between two-

dimensional grid cells can be used to describe the spatial

neighborhood relations between grid cells, that is, the

correlation between two-dimensional grid cells. The

correlation is strongest for neighborhood grid cells and

weakest for grid cells at diagonal vertices. Correspondingly,

one-dimensional time series vectors also have strong

correlations. Therefore, the correlation between two-

dimensional grid cells can be used to reflect the correlation

between one-dimensional vectors.

Based on the above mentioned correlation, in order to

increase the dimension of one-dimensional time series vectors,

this article first determines a one-dimensional vector to fill the

center cell of the two-dimensional grid and then radially fills the

remaining one-dimensional vectors into the unfilled two-

dimensional grid cells one by one. Specifically, in order to fill

the one-dimensional vector with the strongest correlation into

the geometrical center cell of the two-dimensional grid, the two-

dimensional grid should be a square with b×b cells (b is odd, b >
1, and b×b = m) because the square has one and only one center

grid cell, which meets the requirements of this article. The

number of zero-sequence current samples should be

consistent with the number of cells of the two-dimensional

grid so that each one-dimensional vector Ti can be mapped to

the cell of the two-dimensional grid one by one, and the spatial

FIGURE 2
Equivalent phase-to-ground capacitance of each phase
winding of powerformer.

FIGURE 3
Schematic diagram of data dimension conversion algorithm.
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neighborhood relations of the grid cells can well reflect the

implicit correlation information of the one-dimensional vectors.

3.2.1 Center grid cell selection strategy
The grid cell at the geometrical center of the square two-

dimensional grid has the strongest overall correlation. Since the

one-dimensional vector Ti is mapped to the grid cell one by one,

the one-dimensional vector with the strongest overall correlation

is selected and then filled into the center grid cell. The PCCs of

the one-dimensional vectors are applied to describe the

correlation between them. The equation is as follows:

Corr(Ti, Tj) � Cov(Ti, Tj)
σ iσj

, (2)

where Corr (Ti,Tj) represents the variances of the one-

dimensional vectors Ti and Tj, σi and σj represent the

standard deviation of the one-dimensional vectors Ti and Tj,

respectively. The PCCs between m one-dimensional vectors are

calculated by (2) to build an m×m correlation coefficient matrix.

The sum of each row of the matrix is defined to represent the

overall correlation of the corresponding one-dimensional vector.

The greater the sum of PCCs of a one-dimensional vector, the

stronger its overall correlation.

3.2.2 Rest cells’ selection strategy
The rest of the grid cells are filled radially outward from the

center grid cell. The filling order is based on the correlation of

one-dimensional data, that is, the spatial neighborhood relation

of the two-dimensional grid. Based on the relative distance

between the unfilled grid cell and all filled grid cells, we select

the one-dimensional vector with the largest score and fill it into

the corresponding grid cell each time. The specific score rule is

shown in Eq. 3.

3.2.3 Score rule
When filling the one-dimensional vectors into the rest of the

grid cells, the average of the PCCs weighted by the relative

distance is defined as the score rule for the rest cells’ selection

strategy.

The set of one-dimensional vectors filled into the grid is Q,
the set of the rest of one-dimensional vectors unfilled into the

grid is P, and the unfilled grid cell is defined as A; let Ae be the

grid cell filled with the one-dimensional vector Te. For any one-

dimensional vectors T ∈ P, |Q| � n, the scoring equation is as

follows:

score(T) � 1
n
∑n
e�1

Corr(T, Te)
Dist(A,Ae), (3)

where Dist (A,Ae) is the length of the connection of the

geometrical center between grid cells A and Ae (the relative

linear distance between them).

The score(T) of the rest of the one-dimensional vectors is

calculated by Eq. 3, and the one-dimensional vector with the

largest score(T) is selected to fill the grid cell A.

Figure 3 shows the schematic diagram of the HSGC, in which

the depth of the grid cell filling color represents the priority of the

filling order. The darker color of the grid cell is filled first.

3.3 Powerformer protection principle

The basic idea of identifying faulty Powerformer with the

help of CNN is to perform hierarchical processing on image data,

which is two-dimensional grid-structured data in this article, to

extract features autonomously, to fuse features at the high level of

the network, and to complete the classification task of stator SLG

fault in Powerformer. Specifically, in order to identify the faulty

Powerformer, the two-dimensional data converted from one-

dimensional vectors are used as the input of CNN, and then the

FIGURE 4
CNN classifier flow chart.

FIGURE 5
Simulation model of a parallel system with three
powerformers.
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CNN autonomously extracts key information and features from

it through multiple convolutions and pooling operations (Ren

et al., 2020). These key information and features are fed into a

fully connected layer. Also, the overall information can be

obtained after fusing key information and features at the fully

connected layer. The output layer outputs the classification labels

of powerformers based on the overall information. Finally, the

faulty powerformer is determined corresponding to the

classification label, and the classification task of CNN is

completed.

Define Y ∈ R(b×b×n) and Y0 ∈ Y , Y1 ∈ Y , . . . . . . ,Yn ∈ Y ,
where Y is the sample set of two-dimensional grid-structured

FIGURE 6
Zero-sequence voltage and zero-sequence current of powerformers when the SLG fault occurs at 0.055 s.

TABLE 1 Zero-sequence currents of powerformer 1 under different fault conditions.

Neutral grounding
method

Rg α Zero-sequence current samples
of powerformer 1

High-resistance grounding 5 0% [ -0.60788917; 0.30851999; -0.27880605; 0.10633977; -0.12194124; 0.02240053; -0.04838275; -0.00232426;
-0.01602729]

100 25% [ 55.93843142; 35.60664558; 23.96540705; 18.69411469; 13.92200724; 11.99219259; 8.835983276; 7.47810173;
4.878698071]

500 50% [ 27.02622859; 25.18531545; 22.91681035; 21.36199188; 19.14410273; 17.6465613; 15.43405787; 13.83491516;
11.644967]

. . .. . . . . .. . . . . .. . .

7,750 75% [ 2.749214808; 2.802613576; 2.765174866; 2.755957286; 2.648429235; 2.581607183; 2.420020103; 2.295909882;
2.094366391]

8,000 100% [ 3.552270253; 3.621972402; 3.574234009; 3.562864939; 3.424406687; 3.338462194; 3.130012194; 2.969912052;
2.709702412]

Reactance grounding 5 0% [ -0.59140396; 0.33029556; -0.27327219; 0.10557429; -0.13298098; 0.00188382; -0.07752037; -0.04104487;
-0.06283362]

100 25% [55.63127136; 34.33812141; 21.76983643; 16.41232427; 12.39474996; 11.85453606; 10.50195313; 11.17452272;
10.70542415]

500 50% [ 27.03229459; 25.12030411; 22.68122482; 20.95497386; 18.6288414; 17.1318175; 15.05434736; 13.73387051;
11.96792761]

. . .. . . . . .. . . . . .. . .

7,750 75% [ 3.16090711; 3.228677114; 3.187924703; 3.17470932; 3.043077469; 2.952977498; 2.749420484; 2.584888776;
2.328799963]

8,000 100% [ 3.559144338; 3.639770508; 3.597915649; 3.586538951; 3.44129626; 3.342091242; 3.114433606; 2.929886659;
2.641470591]
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data, Y0 is the sample set when all powerformers are in a normal

situation, Y1 is the sample set when powerformer 1 occurs at the

stator SLG fault, and Yn is the sample set when Powerformer n

occurs at the stator SLG fault. The key information and features

of the sample y are extracted by convolution operation of

convolution kernel k and sample y. The convolution operation

equation is as follows:

Cov(x, k) � ∑p
t�1
x(t)k(t), (4)

where x is the receptive field of sample y (Zhang et al., 2022), and

the size of both the convolution kernel k and the receptive field

x is p.

The pooling layer applies subsampling to extract key

information and features and ensure the invariance of them

(Chang and Shen, 2021). After multiple convolutions and

pooling operations, the key information and features are used

as input to the fully connected layer to obtain overall

information, which is used to obtain the probability

distribution [ g0, g1,. . .. . ., gn-1, gn] that the sample belongs

to each class (g0 is the probability of all powerformers being in a

normal state, and gn is the probability of nth powerformer being

in a fault state). The protection criterion is as follows:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

g0 � max {g0, g1, ......, gn}, y ∈ Y 0

g1 � max {g0, g1, ......, gn}, y ∈ Y 1

..

...
.

gn � max {g0, g1, ......, gn}, y ∈ Yn,

. (5)

If g0 = max{g0, g1,. . .. . ., gn}, all powerformers are in normal

situation, and the output label is 0; if g1 = max{g0, g1,. . .. . ., gn},

it means the stator SLG fault occurs on the Powerformer 1, and

the output label is 1; . . .. . .; if gn =max{g0, g1,. . .. . ., gn}, it means

the stator SLG fault occurs on the Powerformer n, and the

output label is n. The CNN classifier flow chart is shown in

Figure 4.

4 Simulation verification and analysis

4.1 Simulation model

To test the reliability of the powerformer protection

method, a simulation model of the stator SLG fault of

powerformer was established by ATP-EMTP. A parallel

system with three powerformers is taken as an example

(fault started at 0.055 s). The model is shown in Figure 5.

Specifically, the related parameters of the model are as follows:

FIGURE 7
Variation of zero-sequence currents with time under different fault conditions.

TABLE 2 Correlation coefficient matrix of samples.

T1 T2 T3 T8 T9

T1 1 0.99999 0.99999 . . .. . . 0.99995 0.99992

T2 0.99999 1 0.99999 . . . 0.99996 0.99993

T3 0.99999 0.99999 1 . . . 0.99997 0.99994

T4 0.99999 0.99999 0.99999 . . . 0.99997 0.99995

T5 0.99999 0.99999 0.99999 . . . 0.99998 0.99996

T6 0.99998 0.99998 0.99999 . . . 0.99999 0.99998

T7 0.99997 0.9997 0.99999 . . . 0.99998 0.99998

T8 0.99995 0.99996 0.99997 . . . 1 0.99999

T9 0.99992 0.99993 0.99994 . . . 0.99999 1
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the rated voltage UN of powerformers 1–3 is 150 kV; the rated

frequency fN is 50Hz; the winding ground capacitances Cg1, Cg2,

and Cg3 per phase is 0.555, 0.5574, and 0.555 μF, respectively;

the ground capacitance Ct per phase of the external system is

0.15 μF; the inception angle is 0o; the inductance Ln is

1,838 mH, the equivalent resistance Rn is 57 Ω; the neutral

grounding resistance Rl is 1,900 Ω; the set of fault resistance Rg

is 5, 100, 500, 750, 1,000 Ω, . . .. . ., 7,500, 7750, 8,000 Ω; the

stator SLG fault occurs when 0, 25, 50, 75, and 100% (α) of the

stator winding are grounded.

Figure 6 shows the zero-sequence voltage and zero-sequence

current of powerformers when the SLG fault occurs at 0.055 s.

When the Powerformer operating in parallel occurs at a stator

SLG fault, zero-sequence voltage and zero-sequence current

components will be measured by the fault detector module. If

U0 ≥ 0.15UN, the protection is activated.

4.2 Simulation analysis

This section presents the experimental results which are

performed on the parallel system with three powerformers. To

increase the diversity of samples and to evaluate the efficiency of

fault detection, the fault conditions, including the transition

resistance, fault location, and neutral grounding method of

the powerformers, were tested. The obtained data are then fed

into a Python code which executes the protection scheme

proposed by this article according to the block diagram in

Figure 1.

Table 1 shows the one-dimensional time series vectors under

different fault conditions (only partial data of Powerformer 1 is

listed). In this simulation, a two-dimensional grid has nine cells

(b = 3 and m = b×b = 9). So, the one-dimensional time series

vectors are composed of the first nine current sampling samples

after the stator SLG fault occurs. A total of 3,813 one-dimensional

time series vectors, which are the zero-sequence current samples,

are obtained as the sample set. Specifically, 960 one-dimensional

time series vectors are obtained from cases where all

powerformers are in a normal situation, and 2,853 one-

dimensional time series vectors are obtained from cases where

a stator SLG fault occurs on one of the powerformers running in

parallel under different fault conditions.

Figure 7 shows the variation of zero-sequence currents with

time under different fault conditions. It has been found from the

figure that the amplitude of zero-sequence currents of the

powerformer changes smoothly under most fault conditions,

while it changes drastically only in few cases. Also, the zero-

sequence currents of faulty and non-faulty powerformers have

similar trends over time in most cases. CNN is used to avoid the

dilemma of artificial feature extraction and automatically extract

features from zero-sequence currents.

Table 2 shows some data from the correlation coefficient

matrix of one sample. Since the zero-sequence currents of the

parallel system with three powerformers are sampled nine times

at equal time intervals, nine one-dimensional vectors with three

components (each representing a powerformer) can be obtained.

The PCCs between each of the nine one-dimensional vectors are

calculated to obtain 1,271 correlation coefficient matrixes of the

sample set. According to the correlation coefficient matrixes of

the sample set and the selection strategy of HSGC, the one-

dimensional vectors of the sample set are converted to obtain

1,271 × 3 × 3 two-dimensional grids. Each cell in the two-

dimensional grid is mapped to the one-dimensional vector one to

one, and the spatial adjacent relationship between the grid cells

can reflect the correlation information between the one-

dimensional vectors well. At the same time, two-dimensional

grid-structured data can be used as input to the CNN classifier

protection model.

Figure 8 shows the validation accuracy and cost of the CNN

model; 90% of the two-dimensional grid-structured data is used

as the training set, and the remaining 10% is used as the test set.

FIGURE 8
Validation accuracy and cost of the CNN classifier protection
model.
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By inputting the training set into the CNN classifier protection

model, it can be found that the model has high validation

accuracy, low cost, and stable results.

Table 3 shows the results of feeding the test set into the

trained CNN classifier protection model (due to the one-hot

algorithm, the probability is only zero and one). Label

0 represents all powerformers that are in a normal situation;

Label 1 represents the 1st Powerformer that occurs at the stator

SLG fault; Label 2 represents the 2nd Powerformer that occurs at

the stator SLG fault; Label 3 represents the 3rd Powerformer that

occurs at the stator SLG fault. The simulation results show that

the faulty powerformer can be accurately identified by the

protection scheme based on the HSGC and CNN proposed in

this article.

4.3 Comparative analysis of algorithms

A comparison between the proposed protection scheme and

the other existing protection schemes of multi-dimensional

fusion (Fang et al., 2020) and a protection scheme based on a

fuzzy clustering algorithm (Wang et al., 2016) is conducted. The

comparison results are shown in Table 4. The protection scheme

of multi-dimensional fusion is not applicable when the neutral

point is grounded by an arc suppression coil due to the

compensation effect of the arc suppression coil on capacitance

current; the fuzzy clustering algorithm experiences

misclassification under the fault condition of powerformer 1

(5–50%) due to the influence of the initial clustering center

selection caused by artificial feature extraction.

In contrast, the protection proposed in this article converts

the one-dimensional time series vectors into two-dimensional

grid-structured data, which can be processed directly by CNN.

The protection scheme avoids the artificial selection of features.

Meanwhile, since local connectivity and weight sharing of CNN

are based on the correlation between input data, the protection

scheme uses the spatial adjacent correlation between two-

dimensional grid cells to retain the correlation information

between one-dimensional vectors. CNN is used to

automatically extract the features of one-dimensional time

TABLE 3 Simulation results under different fault conditions.

Sample number Probability distribution Label Result of classification

13 [ 1, 0, 0, 0] 0 True

72 [ 0, 1, 0, 0] 1 True

117 [ 0, 0, 0, 1] 3 True

183 [ 1, 0, 0, 0] 0 True

277 [ 0, 0, 1, 0] 2 True

324 [ 0, 0, 0, 1] 3 True

372 [ 0, 0, 1, 0] 2 True

429 [ 0, 1, 0, 0] 1 True

TABLE 4 Comparison results between the proposed schemes.

Fault condition Protection
scheme

Measurement data Result

Reactance grounding powerformer 2
(50%–10%)

Fuzzy clustering
algorithm

Distance from fault cluster left d1g =
2.576

Distance from non-fault cluster
left d2g � 2.9471

d1g <d2g (true)

Multi-dimensional
fusion

None Unable to
identify

Scheme of this article Probability distribution [ 0, 0, 1, 0] Label = 2 (true)

High-resistance grounding powerformer
1 (5–50%)

Fuzzy clustering
algorithm

Distance from fault cluster left d1g =
4.0314

Distance from non-fault cluster
left d2g � 3.8326

d1g >d2g (fault)

Multi-dimensional
fusion

Faulty Manhattan distance D1f =
0.442

Sound Manhattan distance D1s � 4.624 D1f <D1s (true)

Scheme of this article Probability distribution [ 0, 1, 0, 0] Label = 1 (true)
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series vectors to discriminate whether the powerformer occurs at

the stator SLG fault.

The simulation results show that the protection scheme

proposed in this article is not affected by the system operation

mode, and it can accurately identify the faulty Powerformer

when the abovementioned two comparison methods cannot

correctly identify the fault. The protection scheme based on

HSGC and CNN can better realize the protection of parallel

operation of powerformers with high accuracy, low cost, and

stable results.

5 Conclusion

Some state-of-the-art fusion discriminations are used to

identify which powerformer occurs at a stator SLG fault when

they are operating in parallel, but these methods extract fault

features artificially, and the application conditions are limited. A

novel protection scheme based on HSGC and CNN has been

developed in order to overcome these problems. Its specific

advantages are as follows:

1) The protection model has superior automatic feature

extraction capability and takes correlation information

between one-dimensional data into account. The

protection scheme has high validation accuracy, low cost,

and stable results, which improves the reliability of stator SLG

fault protection for powerformer.

2) Using the deep learning capabilities, strong generalization

ability, and robustness of CNN, abstract and valuable features

are automatically extracted from the zero-sequence current

data to accurately identify which powerformer occurs at the

stator SLG fault.

3) The protection model has a strong adaptive ability.

There is no need to set the threshold, which can realize

protection without a threshold. Also, the scheme is not

easily affected by fault resistance, fault location, and

neutral grounding mode. The protection scheme can be

used to identify the faulty powerformer under different fault

conditions.
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Nomenclature

Variables Cg total ground capacitance of one phase of the stator

winding

α location of the stator winding grounded

Ti ith one-dimensional vectors of the original data matrix T

n number of powerformers operating in parallel

m number of zero-sequence current samples

σi standard deviation of the one-dimensional vector Ti

Ae grid cell filled in the one-dimensional vector Te

p size of the convolution kernel and receptive field

g0 probability of all powerformers being in a normal state

gn probability of nth powerformer being in a fault state

u result of the output of CNN

Rg ground fault resistance.

Sets

Q set of one-dimensional vectors filled into the grid

P set of one-dimensional vectors unfilled into the grid

Y set of the two-dimensional grid-structured data samples.
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