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Path planning for EVs based on
RA-RRT* model

Said Muhammad and Yimin Zhou*

Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen,
China

The optimal path planning for EVs (electric vehicles) has gained great attention

during the last decade due to the zero pollution emission characteristics

and limited power capacity of EV batteries. In this paper, an optimal route

search is proposed considering multiple charging stations in a dynamic urban

environment, while it is still applicable when the initial available amount of the

battery fails to cover a certain travel range. The TRDP (transit route design

problem) and TNDP (transit node design problem) are used to search for

the most feasible routes based on time and driving range via the improved

route-assisted rapid random tree (RA-RRT*) algorithm. Considering the status

of charge of an EV’s battery during optimal routes search, three states are

investigated between the destination and the aggregators: (1) bypassing the

aggregators, (2) stopping over a single aggregator, and (3) stopping over

multiple aggregators. During the states (2) and (3), it is required that the EVs

be charged at the charging stations obtained by the RA-RRT* algorithm while

approaching the destination. The proposed algorithm is tested on a random

dataset under certain conditions, that is, traffic flow with congestion and

assigned target locations from a givenmap data, with comparison experiments

for efficacy verification.

KEYWORDS

path planning, heuristic model, aggregators, electric vehicles, TRDP

1 Introduction

Electric vehicles (EVs) have paved the way for green and intelligent transportation
systems over the last few decades. EVs are gradually taking the place of fuel-powered
vehicles due to their minimum mileage cost and environment-friendly characteristics of
no carbon emissions.Themain obstacle to EV’s promotion is the limited battery capacity
through which EVs cannot cover long distances (Zhou et al., 2020).

In recent years, EV-related energy-harvesting schemes have received a lot of attention
to increase the driving range with smart route search algorithms. The related factors,
that is, battery capacity, charging duration, and charging station placement, should be
explicitly considered during the route planning of the EVs (El-Taweel and Farag, 2019).
A reinforcement learning (RL)model is developed for EV energymanagement by optimal
route planning (Zhang et al., 2020a), where the RL model is used to evaluate each route
and approximate the energy consumption. A transit route network-based path planning

Frontiers in Energy Research 01 frontiersin.org

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#editorial-board
https://doi.org/10.3389/fenrg.2022.996726
https://crossmark.crossref.org/dialog/?doi=10.3389/fenrg.2022.996726&domain=pdf&date_stamp=2021-10-15
https://doi.org/10.3389/fenrg.2022.996726
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fenrg.2022.996726/full
https://www.frontiersin.org/articles/10.3389/fenrg.2022.996726/full
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Muhammad and Zhou 10.3389/fenrg.2022.996726

model, TRDP (transit route design problem), has been
introduced to reduce the time consumption with the shortest
optimal route (Yang and Jiang, 2020).

To reduce the complexity of the TRDP model, an
optimization model, TNDP (transit node design problem),
has been developed considering time and the xy-dimension to
obtain the optimal path location (Sun et al., 2020). A significant
gap is discussed between the theory and practice of the TNDP
model by addressing multiple routes, nodes, and the selection of
the route and node (Durán-Micco and Vansteenwegen, 2021).
A multi-level network system based on different modes of
transportation, that is, subway, trolleybus, and common bus,
and the user constraints such as bus routes and city size has
been proposed to design the transit route network in urban areas
(Chavhan et al., 2021), which is applied to the Mandle dataset to
reduce the travel time cost. In a study by Hellsten et al. (2021), a
heuristic route network is discussed based on multi-commodity
network scenarios, that is, exponentially increasing route
formulation, polynomial-based path indices, and time indices.
An ant colony algorithm is introduced to further reduce
the complexities involved in the optimal route search task
(Ghaffari et al., 2022), while a genetic algorithm (GA) can also be
implied for the optimization of large-scale routes via the network
data obtained from multiple cities (Bourbonnais et al., 2021). In
(Miandoabchi et al., 2012), a synchronous city road network
with vehicle routes has been studied via a hybrid GA and clonal
selection scheme. A cloud-enabled real-time routing scheme for
MoD (mobility on demand) requiring on-route charging has
been developed, aiming to improve the comfort of EV users
(Ammous et al., 2018). The MoD suggests that with charging
delays, the total trip time for all clients will be increased in
comparison to the corresponding travel lengths.

A significant amount of research has been carried out to
improve the efficacy of the route search algorithms by using the
traffic information from ITS (intelligent transportation systems)
in terms of minimal distance and travel time cost (Tisa, 2022).
The navigation systems of EVs can be updated with new
technologies when the charging infrastructure is considered
during route planning (Morlock et al., 2019).

An optimal route selection for EVs toward charging
stations considering the traffic congestion is obtained by using
Yen’s algorithm with the information of transportation and
distribution systems (Zhang et al., 2019). The A* algorithm is
used to obtain the K-short path in order to get the K-
shortest-path-joint-routing-scheduling (KSP-JRS), which can
minimize the power consumption by shortest route selection
while increasing the revenue via the discharge battery to
the grid (Liu et al., 2020). A polynomial-time variant-based
algorithm has been derived to obtain the optimal path between
two target locations (Baum et al., 2020). In order to plan a
simultaneous search for both velocity and path while avoiding
obstacles, the A* algorithm has been implemented in multiple

dimensions, including position, velocity, and heading angle
(Morsali et al., 2020). A modified and efficient random with star
tree network (RRT*)model for online informative path planning
(Schmid et al., 2020) has been developed to use the single search
tree expansion with a continuous pattern to obtain a refined
path. In a study by Qi et al. (2020), a multi-objective dynamic
rapidly exploring random tree (MOD-RRT*) algorithm has been
developed that can navigate the path in an unknown dynamic
environment to choose an optimal node while considering the
length and smoothness of the path over a short period of time.
By merging the urban electrified transportation network with
the power grid, an intelligent path planning method has been
developed for each EV to participate in the traffic network.
It can ensure the timeliness of path planning by updating
the connection weights in real-time while using the Floyd
algorithm to search for the shortest path in a directed weight
graph (Zhou et al., 2022). An optimal route can be achieved
for public buses via the Greedy and Dijkstra algorithms by
labeling the available passenger pick-up and drop-off station data
with unique identities (Wei et al., 2020). To achieve an optimal
and free route, an extended framework of the RRT has been
introduced by utilizing the way-points of a straight line while
producing a collision-free path (Hu et al., 2020). Considering the
EVs’ charging demand and distribution network penetration,
a spatial and temporal distribution prediction model has been
developed with reliability assessment (Zhang et al., 2020b).

Although rapid RRT* can be used to overcome the time
and space complexity of the RRT, the RRT* is not capable of
achieving optimality in a finite amount of time. Thus, an RA-
RRT* (route-assisted rapid random tree) model is proposed in
the paper to obtain theminimized power consumption inEVs via
the shortest path toward the destination, where the initial route
is obtained by the RRT* algorithm as the estimation to configure
the exploration. To achieve the optimal route in a short time,
the RA-RRT* can achieve fast convergence blue by sampling.The
main contributions of the paper are summarized as follows:

• A new cost function is defined in TRDP, considering both
the time and EV optimal demand of the route search with a
given route set. The cost function is written as a linearized
mathematical modeling scheme in order to calculate the
optimal route calculationwithminimized time and distance.
• An RA-RRT* algorithm is proposed to generate a route
set based on the demand instructions in response to the
departure and destination.
• The obtained model is deployed in an undirected
environment and compared with the A* and Dijkstra
algorithms to verify the efficiency of fast target location
detection in a wide domain area.

The remainder of the paper is organized as follows: Section 2
describes the system model and problem formulation. The
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RA-RRT* algorithm design and implementation in a dynamic
environment are discussed in Section 3. Experiments and results
are analyzed in Section 4. The conclusion is provided in
Section 5.

2 Problem formulation

Here, multiple routes can be selected for large-scale vehicles
with different types of aggregators and battery replacement
centers, as depicted in Figure 1. The aggregators are divided into
two categories: fast charging (FC) and slow charging (SC). The
route is namedEVassist route (EV-AR),which allows the users to
charge or replace the battery before reaching the low limit SOCmin
(minimum state of charge) so as to complete the current travel
demand.

In Figure 1, the road network is directed by graph point
(destination) 𝔾 = (ℂ𝕊i,ℝ), and ℂ𝕊i = {1,2,….n} represents the
charging stations and ℝ represents the set of routes. A route R
is defined as a path of EVs to 𝔾 and ℂ𝕊i. The involved variables
are listed inTable 1.The charging stations, departure points, and
destination points are used to formulate the optimal route for
path planning. Hence, the demand matrix can be extracted from
the given set of the charging stations MD = {dij | (i, j) ∈ ℂ𝕊i}
and the travel time cost matrix is formulated through route
search T = {tij| (i, j) ∈ RN}. TRDP requires searching the paths
through the objective function of route RN over graph G.
Selection ofD is dependent on several factors, that is, availability
of the regulators and specific charging hours.

The real-time data are collected from the Shenzhen
Transportation Bureau. The TRDP model indicates its
applicability for EV-AR with discrete and non-linear
characteristics. The TNDP (Transit Node Design Problem) is
further considered for the optimal selection of the aggregators
(Weng et al., 2020) (Nikolić and Teodorović, 2014). In order to

FIGURE 1
The framework of the EV assist route for multi-vehicles with
various aggregators.

TABLE 1 The involved parameters in the path planning.

Notation Unit Definition

R 1, 2, 3, … Set of the EV routes
Ei i = 1, 2, 3, … Departure point
T ms Time slot
SOCRA kWh Battery level after arrival at the target location
CSi i = 1, 2, 3, … Charging stations
SOCR kWh Remaining battery level at the charging station
EM km/kmh EVs mileage
SOCmax kWh Fully charged battery
D km Distance
CT s Time cost (second)
EVT h EVs’ total traveling time
CEi kW Charging efficiency
EVR km EV route
CSh h EV charging time in hours at charging station i
δCSi i = 1, 2, 3, … Stop over charging station
Si i = 1, 2, 3, … Shared edges of the route R
G Target location (destination)

obtain an efficient assistant route networkmodel from the TRDP
and TNDP models, the following assumptions are made:

1) The EVs’ road network is considered to be indirectly
connected;

2) The distance between the charging stations is within the range
of EVs’ battery limit;

3) The aggregators are enough on the EVs’ route to fulfill the EVs’
charging demand;

4) When the EV user needs to travel long distances, a battery
exchange scheme could be introduced to avoid more charging
time;

5) The power supply from the G2A (Grid to Aggregator) can
provide enough power to the EV users.

The efficiency of the EV-AR design has to be evaluated, and
certain assumptions are made to evaluate the solution of TRDP.
In order to minimize the travel distance cost, the aggregators are
placed at the maximum traffic flow positions. The availability of
more electric piles is considered at each charging station to avoid
congestion at one charging station.

3 The RA-RRT* model for path
planning

In this paper, an optimal path is designed where the EVs can
easily reach the charging station, battery replacement center, and
destination withminimal route selection andmaximummileage.

Let a space X be configured, where the traffic congestion is
defined as Xobs, the free region is Xfree = X/Xobs and the goal
G is the destination. A feasible route x(t)ϵXfree can be found
via the RRT* in the T interval, starting from r [0,T]ϵR, which
begins from X (0) = Estart to X(T) = EEnd, consistent with the
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given constraints of the system. During the search for the feasible
routes, RRT* conserves a tree network τ = (Ei,G) of the vertices
(starting points) Ei from the space Xfree, while G represents
the destination. The RRT* algorithm can be performed as
follows:

3.1 Sampling

It is a random process where a route rrand = Xfree is taken
from the traffic congestion-free space.

3.2 Distance

It provides the route cost between target pointswithout traffic
congestion. The cost can be calculated in the form of Euclidean
distance.

3.3 Nearest neighbor

Function Nearest (τ, rrand) is used to obtain the maximum
nearby nodes between τ = (Ei,G) to rrand with respect to the
distance cost.

3.4 Collision check

The collision check is obtained by Obstaclefree(X) while
examining the route x [0,T] if it is lies in range of the free space
Xfree during the [0, T] interval.

3.5 Nearby vertices

Function Near(τ, rrand,n) provides the adjacent nodes in the
space α(logn/n) around rrand where α is a constant dependent on
the route plan, while n is the iteration number.

3.6 ExtractNode

In order to obtain a new node, the state function
ExtractNode (rinitial, rnew,τ) adds a route rnew to the tree
τ = (Ei,G) and connects it to the previously existing node
rinitial.

3.7 Reroute

The state function Reroute (Rnear , rmin, rnew) examines the
routes to check whether the rnew is less than the older route cost.

1: τ ← SetTree();

2: τ ← ExtractNode (Φ, rinit, τ);

3: for i=0 to i=N do

4: if i=n+A, n+2A, n+3A.....then

5: rrand ← Sample (i, rCSi);

6: else

7: rrand ← Sample(i);

8: rnearest ← Nearest(τ, rrand)

9: if Obstaclefree (xnew) then

10: Rnear ← Near (τ, rnew, |E| );

11: rmin ← SelectParent (Rnear,rnearest,rnew,xnew);

12: τ ← ExtractNode (rmin, rnew,τ);

13: τ ← Reroute (τ , Rnear, rmin, rnew);

14: if InitialRouteFound then

15: n ← i;

16: (τ, routecost) ← RouteOptimization(τ,

rinit, rgoal);

17: if (routecostnew ≤ routecostold)

18: rCSi ← RouteOptimization(τ, rinit, rgoal);

19: return τ

Algorithm 1. τ = (Ei, G)←RA-RRT* Algorithm.

If the state rnew > rpreviouse, the new route is replaced by the old
one due to the minimum distance cost.

The steps involved in the RA-RRT* are defined in
Algorithm 1. Steps 1 to 4 and 7 to 13 are the same as those
in RRT* algorithm, while the RA-RRT* algorithm is modified by
the incursion of Steps 5 to 6 and 14 to 19. In the proposed RA-
RRT* algorithm, the initial found route (e.g., in Step 14) returns
the iteration number nwhich is further used for biased sampling
so as to insert the time interval b (Step 4), to repeat the tree search
growth during that period. The optimized route is obtained via
the function (τ, routecost) ← RouteOptimization (τ, rinit , rgoal)
by connecting the feasible nodes from the initial route rinit to
the destination rgoal and returns the cost in Step 16. A connected
topology network is depicted in Figure 2 with random route
costs among different nodes. The route topology network
in Figure 2A describes the distance in km between different
charging stations, while the possible routes are extracted in
Figure 2B. In Step 18, rCSi is the optimized routes’ selection
to the charging stations obtained from the function rCSi ←
RouteOptimization(τ, rinit, rgoal), where a new route rCSnew can
be chosen over an old route rCSold with the cost condition as
rCSnew < rCSold .

As shown in Figure 1, multiple routes toward G are taken,
named EV-AR. The assist routes point the EVs toward G and
different charging stations (CSi), which play a vital role in EV
energy management. While approaching G, the first task is to
select the potential CSi with the help of EV-AR along with
optimal route selection.
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FIGURE 2
A TRDP-based diagram with solution and proposed encoding approach.

In order to obtain the EV-AR, it is required to search
for the most cost-effective routes in terms of less power
consumption, less distance, and maximum mileage considering
traffic congestion and road infrastructure. The range RA of the
EVs can be calculated using the current battery level (SOCR) and
EVs’ mileage (EM) as follows,

RA = SOCR ×EM. (1)

The full range RFC can be obtained with the fully charged
battery level SOCmax and EM ,

RFC = SOCmax ×EM. (2)

As described earlier, the selection of the charging stations
for EVs is based on their locations and types of charging. With
FC aggregator, the charging time duration is only 30 min to
be fully charged (Duan et al., 2020), but it requires an isolated
infrastructure of power supply, which is not economically
feasible.

In the proposed scheme, the charging aggregator selection
is defined as the charging efficiency CEi, which is equal to the
output of the electric power.The selection of the route in terms of
a charging aggregator can be defined in the following scenarios:

1. Bypassing the aggregators;
2. Stopping over single aggregator;
3. Stopping over multiple aggregators

3.7.1 Bypassing the aggregators
If the EVs have enough power to reach the destination, the

conventional route calculation, that is, Dijkstra (Algorithm 2),
is considered to be efficient. Hence, the EVs’ remaining battery
level at the arrival point (SOCRA) is obtained with the SOCR at
departure Ei, route distance D (Start,End), and EM ,

SOCRA = SOCR −D (Start,End)/EM. (3)

During the bypassing, the status SOCRA > 0 is always
satisfied.

3.7.2 Stopping over single aggregator
When the EVs cannot reach their destinations with the

SOCR, the users have to charge the battery on their routes. In
Figure 1, the EVs’ RA level is denoted by the two small circles
with two departure points E1 and E2, while theRFC is represented
by a large circle with the center of the destination G.

The overlapped areas show that the EVs have to be recharged
if RFC > RA. Therefore, it is necessary to search for the optimal
route toward the CSi while covering the distance D to G.
The overlapped area around the EVs is distributed irregularly;
hence, Euclidean distance is used to calculate D to the nearest
aggregator.

The charging time cost CT from the initial point to the target
while reaching a single aggregator can be calculated as,

CT (Ei, G) =
(SOCmax − SOCR +D(

Ei, CS1
EM
))

CEi
. (4)

By setting E1 as the charging point CSh(1,2,3,… ), Eq. 4 can
be rewritten as,

CT (CSh, CS1) =
(D
(CSh, CS1)

EM
)

CEi
. (5)

where h is the charging time. Similarly, the total travel time cost
from the starting point to the endpoint while stopping by a single
aggregator can be obtained as,

EVT (Ei, G) = T(Ei,CS1) +CT (Ei, CS1)

+T (CS1, G) .
(6)

EVT (Ei,G) and EVs battery SOCRA are used as the EV-AR,
and then the EVs’ total routes EVR can be calculated as follows,

EVR (Ei, G) = R(Ei,δCS1) +R (δCS1,G) . (7)

where δSC1 is the charging station, while R is the route between
two adjacent nodes presented in Figure 2A. Similarly, EVs’ total
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FIGURE 3
The illustration of the RA-RRT*-based route planning framework.

travel distance EVD is calculated as,

EVD (Ei, G) = D(Ei,δCS1) +D (δCS1,G) . (8)

It can further be modified with N number of search targets,

EVD (Ei, G) =
N

∑
i=1

D(Ei + δCS1 +G) . (9)

and SOCRA of EVs at the destination is calculated as,

SOCRA (Ei,G) = SOCmax −D(
δCS1, G

EM
). (10)

3.7.3 Stopping over multiple aggregators
The EVs have to be charged at more than one aggregator

when traveling a long distance. The charging time cost with
multiple aggregators is calculated as,

C(Ei,G) = CT (Ei, CSi) +T(δCSj,CSi) +…

+T(CSi,G) .
(11)

Then, the route can be obtained as,

EVR (Ei,G) = R(Ei,δCSi) +R(δCSi,δCS2)

+……R(δCSj,G) .
(12)

whereas the optimal route equation can be modified as the
successive product of routes set from the departure point to the
destination,

EVR (Ei, G) =
N

∑
i=1

N

∑
j=1

R(Ei + δCSj +G) . (13)

and the overall distance from the starting point to the destination
is calculated as,

EVD (Ei,G) = D(Ei,δCSi) +D(δCSi,δCS2)

+⋯⋯D(δCSj,G) .
(14)

To sum up, the total time taken by the EVs from the starting
point to the destination is expressed as,

EVT (Ei,G) = T(Ei, δCSi) +CT (Ei, δCS1)

+T (δCS1,δCS2) +CT (δSC1,δCS2)

+……………+T(δCSj−1, δCSj)

+CT (δCSj−1, δCSj)

+T(δCSj, G) .

(15)

Similarly, the remaining battery level at the destination can
be obtained from the statistics of SOCmax and overall covered
distance,

SOCRA (Ei,G) = SOCmax −
N

∑
j=1

D(
δCSj, G
EM
). (16)

3.7.4 Assistive route analysis
The developed RA-RRT* model is implied on a given set of

data collected from the Public Transport Bureau of Shenzhen,
Guandong Province, China, including the longitudinal angles,
latitudinal angles, and the public transport terminal locations.
The retrieved routes by RA-RRT* can be reduced in length with
the dynamic constraints on its trajectory. The entire framework
is depicted in Figure 3, which is implemented as follows:

A suitable aggregator is selected considering the route
and battery status details, that is, RA,RFC. In order to obtain
the smooth route, an efficient route formulation strategy is
jointly used with the obtained route details (Eqs 1-16). The
routes are plotted based on the provided details of the route
transfer mechanism among different traffic terminals using
python gmplot function. Furthermore, the latitudinal and
longitudinal angular data are converted into distance by using
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1: Function Dijkstra {Ei,G}

2: Nodes initialization

3: Data (Distance between Nodes) initialization

4: for each node Ei in G

5: distance[V] ← infinite

6: previous[V] ← NULL

7: If Ei != G, add Ei to the priority

route of the map

8: distance[G] ← 0

9: while route R is undirected

10: Ei← extract minimum from the route

11: for each unvisited neighbor from V of

Ei

12: tempDistance ← distance[Ei]

13: +

edge-weight(Ei, V)

14: if tempDistance < distance[V]

15: distance[V] ← tempDistance

16: previouse[V] ←G

17: return distance[], previous[]

Algorithm 2. Shortest path search via Dijkstra algorithm.

1: MAP = (Ei, CSi)

2: np ← import numpy

3: lati← import latitudinal angular data

4: loni← import longitudinal angular data

5: Function distance{latang index, lonang index

}

6: #From angular data to radian conversion

7: latrad ← np.deg2rad(latang)

8: lonrad ← np.deg2rad(lonang)

9: #by using the Haversine formula

10: distance ← difference of the

latrad and lonrad

11:

12: Display distance in Km

Algorithm 3. Distancemapping among different charging stations CSi.

the Haversine Formula in Algorithm 3 as follows,

a = np.sin(
dlat
2
)
2
+ np.cos(ℓi−1) × np.cos(ℓi)

× np.sin(
dlon
2
)
2

c = 2× np.arcsin (np.sqrt (a))

d = c× r

where dlat is the error between the two consecutive latitudinal
angles lati, while dlon is the error between the two consecutive
longitudinal angles loni andnp is the pythonnumpy librarywhich

1: Import the gmap from the plotting

2: Initialize the list of latitude and

longitude

3: #Google Map location selection

4: gmap3 = gmplot.GoogleMapPlotter(initial,

final, size)

5: #Scatter point creation

6: gmap3.scatter(latitude_ list, longitude_

list, `#FF000',

7: size = , marker = )

8: Draw line b/w the given co-ordinates

9: #Plotting the lines between charging stations

10: gmap3.plot(latitude_list, longitude_list,

`color',

11: edge_width = 3.0)

12: #Insert the gmap apikey

13: gmap.apikey = `________'

14: #Creating .html file

15: gmap3.draw(`` File location to create

.html file ")

Algorithm 4. Target areamapping.

is a source for multiple functions, that is, N-dimensional array. c
and d are constant variables, while r is the radius of the Earth,
equal to 6,371 km.

4 Experiment and result analysis

In this section, experiments are performed to verify the
efficacy of the proposed RA-RRT* model for EV optimal
path planning. The experiments are conducted on a Windows
operating system with an Intel Core i7 with a RAM of 16 GHz
and 8 GHz processor. Simulation experiments are carried out by
using the software tool Python (Jupyter notebook and PyCharm
environment). GMPLOT, a Google map plot function built into
the Python library, is used to obtain the locations on themapwith
latitudinal and longitudinal angles retrieved from different target
locations. In Figure 4A, the target locations are identified using a
heat map function, while the routes between the target locations
are plotted in Figure 4B. The route distances between different
public transport terminals can be calculated via the heuristic
(Dijkstra) algorithm.

Two scenarios have been considered to validate the RA-RRT*
model. During the 1st scenario, the RA-RRT* model is used for
the optimal route selection between the target locations, that
is, start point, endpoint, and charging station CSi, while the
algorithm is implemented for traffic congestion avoidance in the
2nd scenario.
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FIGURE 4
A route network among different charging stations in Shenzhen (2021).

FIGURE 5
Optimal path achievement with the nearest charging stations with RRT* and RA-RRT* algorithms.

4.1 Optimal route selection

The developed RA-RRT* algorithm is used on the
target locations obtained by the Haversine formula
(Mahariba et al., 2022) in Figure 4, from a given set of data.
The average mileage per kilowatt-hour (kWh) is taken as 6 km,
while the full battery capacity is taken as 24 kWh.

The known initial SoCini of the EV is used to calculate RA
and RFC. The target locations are presented with the start points
(highlighted in Figure 5) and final point in an undirected and

non-convex environment in Figure 5. Based on the given target
locations, the distance, point of aggregators, and route search
time are calculated and listed in Table 2.

In Figure 5A, the starting point and the end point are taken
at axis (10,10) and (90,90), respectively. The charging stations
are denoted as circles in the free search area. Figure 5B shows
the results of the optimal routes between two points via the
proposed RA-RRT* algorithm. While approaching the target
location with the shortest route, it has considered passing across
the route if it has enough aggregators. The obtained route
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FIGURE 6
RA-RRT and RA-RRT* implementation in a 2D traffic congestion environment prototype.

FIGURE 7
Optimal route attenuation via RA-RRT*, A*, Dijkstra and PPO algorithms.
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TABLE 3 The performance comparison of the three algorithms.

No. Search No. of Time cost Distance
Algorithms Iterations (s) (km)

1 RA-RRT* 16 4.82 50
2 A* 55 7 56
3 Dijkstra 67 5 58
4 PPO 70 9 59

is highlighted with a yellow color, which is smooth between
the start point, charging station allocation, and destination.
In order to avoid the charging shortage, an early warning
model about insufficient battery levels can be developed by
using the appropriate energy consumption factor (Wang et al., 
2021).

4.2 Bypassing the traffic congestion

The proposed RA-RRT* algorithm is further elucidated in a
2D environment considering the traffic congestion to be formed
as blocks Xobs with the indirect connection between the starting
point and the destination, shown in Figure 6A.

In Figure 6A, the departure point is taken at (10,10) with
map location at north-south, while the destination point is taken
at (90,90), the east-west positions, respectively. It is a non-smooth
path search in the free space Xfree = X/Xobs; hence, the RA-
RRT* model is further compared with the RRT* by increasing
the number of search samplings in the free space to find an
initial route immediately. The RA-RRT*-based graph is achieved
in Figure 6B, illustrating the improved results in terms of route
smoothness and length.

4.3 The comparison among path
planning algorithms

The performance of the proposed RA-RRT* is compared
with both A* and Dijkstra algorithm in Figure 7. The obtained
results in Table 3 can demonstrate that the RA-RRT* is faster
compared to both A* and Dijkstra algorithms in the search for
the target location. In order to retrieve the optimal route toward
the target location, RA-RRT* compiled 16 iterations, while A*
and Dijkstra took 55 and 67 compilation iterations, respectively.
The algorithms are evaluated in Table 3 based on their iteration
time costs. During charging station searching and following the
optimal path towards the destination, the wide-spreading search
property of the RA-RRT* algorithm makes it more suitable for
multiple targets searching simultaneously.

Furthermore, a deep reinforcement learning algorithm, the
Proximal Policy Optimization algorithm (PPO), is used for path

TABLE 4 RA-RRT* comparison with different route search
algorithms.

Model Speed Time

RA-RRT* Fastest 4.82
A* Fast 7
Dijkstra Fast 5
PPO Fast 8

planning comparison with the RA-RRT* model in an obstacle
environment.ThePPO algorithm (Sadhukhan andRastko, 2022)
performs on an iteration basis to search for the target location
with more time consumption for the target location, while
RA-RRT* can explore in all directions due to its tree search
property with less time consumption. The PPO algorithm is
carried out in a Jupyter notebook on a Windows operating
system with an Intel Core i7 with a RAM of 16 GHz and 8 GHz
processor.

In Table 4, a metric evaluation of the RA-RRT* algorithm
with the A*, RRT*, and Dijkstra algorithms regarding speed
and accuracy is shown. It is found that the A* algorithm
is more efficient in a directional and known environment,
whereas the Dijkstra and RRT* algorithms are more feasible
in an undirected environment (Erokhin et al., 2018). Based on
the experimental results, the proposed RA-RRT* is proven to
be more efficient due to the requirement to simultaneously
search for the charging stations and the minimum optimal
path in an undirected environment because of the tree
structure.

5 Conclusion

In this paper, a route search-based problem has been carried
out with the proposed RA-RRT* algorithm via an assistive
route heuristic model, achieving fast route search capability
for multiple targets in a wide range area. Different scenarios
are considered with stops at a single aggregator, multiple
aggregators, or for battery replacement. A comparative analysis
of the proposed model is taken with the A*, Dijkstra, and
PPO algorithms, where the proposed RA-RRT* model is more
feasible for multi-target fast route search results in an undirected
environment. Further research will apply the proposed RA-RRT*
algorithm for real-time path planning in autonomous urban
driving scenarios.
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