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Participation of carbon capture power plants and demand response in power

system dispatch is an important mean to achieve the carbon-neutral goal. In

order to take into account uncertainty of wind power and low-carbon

economic operation of the distribution system, a two-stage robust optimal

dispatch model of the distribution system considering carbon capture and

demand response is proposed in this paper. In the day-ahead stage, the unit

commitment plan and the price demand response (PDR) schedule are

established. In the intra-day stage, the carbon related cost is included in the

optimization objective. The strategies for the generators and the incentive

demand response (IDR) are optimized under the worst-case output of wind

power based on the results of the day-ahead stage. Karush-Kuhn-Tucker (KKT)

conditions and the column-and-constraint generation (C&CG) algorithm are

used to solve the proposed two-stagemodel. A revised IEEE 33-bus distribution

system is used to verify the feasibility and effectiveness of the proposed model.
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Introduction

With the increasing shortage of traditional fossil energy, the energy crisis is a main

problem faced by countries all over theworld. On the one hand, the depletion of fossil energy is

inevitable with the continuous exploitation of human beings. On the other hand, the massive

use of traditional fossil energy is usually accompanied by greenhouse gas emissions, which

makes the global temperature rise. In order to solve the environmental problems, China has

clearly put forward the goals of “emission peak” in 2030 and “carbon neutrality” in 2060.

The emergence of the carbon capture and storage (CCS) technology provides a new

way to achieve the carbon-neutral goal. In carbon-constrained environment, Chen et al.

(2010) formulates the process of carbon capture and explores the interaction between

carbon capture system and power system. A unit commitment model based on the carbon

capture technology is proposed and performance indices affecting the scheduling are
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derived in (Reddy et al., 2017). Based on the major operating

characteristics of the carbon capture power plant, a profit

maximization model is proposed in (Chen et al., 2012) and a

comprehensive low-carbon power system dispatch model is

formulated in (Ji et al., 2013). In (Lou et al., 2015), a multi-

period spinning reserve optimizationmodel is proposed based on

the flexibility of the operation of the carbon capture power plant.

In order to cope with the uncertainty of wind power and load, a

multi-objective programming-based economic-emission

dispatch model with carbon capture power plants is proposed

in (Akbari-Dibavar et al., 2021). In (Li et al., 2015), a stochastic

dispatch model of power systems with carbon capture power

plants and a robust re-dispatch strategy are proposed to realize

the low-carbon operation requirement.

The introduction of the carbon trading mechanism combines

the economic benefits and environmental benefits of the power

system. It can guide the energy saving and emission reduction of

power plants through carbon trading price (Zhou et al., 2020). In

(Zhang N. et al., 2016), demand side resources and the carbon

trading mechanism are considered and their effect on generation

dispatch is analyzed. Wang Y. et al. (2020) proposes a two-stage

scheduling model considering the electricity and carbon markets,

which provides an important guidance for carbon trading

mechanism.

There are many schedulable resources in the distribution

network (Wang C. et al., 2020). Demand response is one of them,

which plays the role of peak shaving and valley filling. Xiao et al.

(2018) considers the uncertainty of the load side and the

generation side in the optimal operation of the integrated

energy system with distributed generation, demand response

and the energy storage system. According to response form,

demand response can be divided into price demand response

(PDR) and incentive demand response (IDR). PDR changes

users’ electricity consumption habits by setting electricity

prices. IDR encourage users to participate in power system

dispatch by means of economic compensation. The PDR is

uncertain due to the affection of operating scenarios and types

of customers (Liu and Tomsovic, 2015). A multi-stage robust

optimization of unit commitment with the uncertainty of PDR

and the wind power is developed in (Zhao et al., 2013). Similarly,

there is uncertainty in the IDR. In (Bai et al., 2016), an interval

optimal dispatch of gas-electricity integrated energy systems

considering IDR and wind power uncertainty is proposed and

the effect of IDR is investigated.

Due to the influence of the weather, environment and

other factors, there are many uncertainties in the power

system (Wang et al., 2022). Robust optimization is an

important method to deal with the uncertainty. It does not

depend on the probability distribution of uncertain

parameters, and can be applied to large-scale calculation.

Therefore, it can be applied to a variety of optimization

scenarios, e.g., the identification of critical switches in

distribution systems, the planning and allocation of

microgrid defense resource and the location-allocation of

the distributed power flow controller (Lei et al., 2018; Lei

et al., 2019; Zhu et al., 2022). In (Xu et al., 2019), a cyber-

physical system robust routing model considering the

interdependent characteristics of cyber networks and

physical networks is proposed. Considering the uncertainty

of wind power, a robust optimal dispatch model of wind fire

energy storage system is established in (Chen et al., 2021),

which achieves the optimal robustness and economical

operation of the system. Yan et al. (2022) proposes a

robust scheduling methodology for the integrated electric

and gas systems with blending hydrogen and considers the

dynamics of natural gas pipeline. In (Zhang et al., 2018), a

two-stage robust optimization for the multi-microgrid is

constructed, which describes the discrete characteristics of

energy transaction combinations. The multi-microgrids are

connected with the smart distribution networks in (Liu et al.,

2018). A two-level interactive mechanism is proposed and a

two-stage robust model is established to handle the

uncertainty in the lower level. Based on the results of the

lower level, the operation cost of the distribution network is

minimized with the operational quality guaranteed in the

upper level. In (Wang et al., 2021), flexible loads are

connected to the active distribution networks through load

aggregators. Since the load aggregators and the active

distribution networks belong to two stakeholders, a robust

optimal dispatching model of active distribution networks and

an independent optimal scheduling model for load

aggregators are constructed. The analytical target cascading

method is implemented to solve the problem.

There have been lots of papers considering carbon trading

mechanism and carbon capture power plants. However, how to

coordinate them is still worth investigating. And the effect of the

wind power uncertainty on demand response is rarely

mentioned. Based on the background above, a two-stage

robust optimal dispatch model of the distribution system

considering carbon capture and demand response is proposed

to realize the optimal economic and environmental benefits.

C&CG algorithm is used to solve the problem by iteration.

Case studies investigate the effects of the robust level and

demand response on the optimization results. The influences

of different demand response form are distinguished. The

function of carbon trading mechanism and the interaction

between carbon trading mechanism and carbon capture power

plants are analyzed.

Mathematical model

Carbon capture power plant model

A thermal power plant can become a carbon capture power

plant after introducing the CCS technology.
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The carbon dioxide produced by the carbon capture power

plants can be expressed as:

Qccs(t) � μccsintPccs(t) (1)

Pccs, µccsint and Qccs are the active power output, carbon

emission intensity and actual carbon emissions of the carbon

capture power plant, respectively.

Carbon capture power plants can absorb part of carbon

dioxide produced by coal combustion through absorption

towers. Therefore, the carbon dioxide treated by the carbon

capture power plant should meet the following constraint:

0≤Qtre
ccs(t)≤Qccs(t) (2)

where Qtre
ccs is the amount of carbon dioxide treated by the carbon

capture power plant.

Because of the treatment of carbon dioxide, the operation

energy consumption caused by the carbon capture device can be

expressed as:

Pccs0(t) � γccsQ
tre
ccs(t) (3)

where γccs is the operation energy consumption caused by the

treatment of unit carbon dioxide; Pccs0 is the operation energy

consumption of the carbon capture device.

The operation energy consumption of the carbon capture

device should be limited in its operating region.

Pccs0
min(t)≤Pccs0(t)≤Pccs0

max(t) (4)

Pccs0
max and Pccs0

min are the upper and lower limits of

operation energy consumption of the carbon capture device.

Carbon capture power plants also cause some fixed energy

consumption which can be regarded as a constant. Therefore, the

net output of the carbon capture power plant can be calculated as:

Pccsnet(t) � Pccs(t) − Pccs0(t) − Pccsf ix (5)

where Pccsnet and Pccsfix are the net output and the fixed energy

consumption of the carbon capture power plant, respectively.

The carbon dioxide captured by the carbon capture device is

given by:

Qcap(t) � βccsQ
tre
ccs(t) (6)

where βccs is the carbon dioxide collection ratio usually taken 0.9;

Qcap is amount of carbon dioxide captured by the carbon capture

device.

Carbon trading mechanism model

Carbon trading mechanism takes carbon emission as a

commodity, which can control the total amount of carbon

emissions. The government allocates carbon credits to each

carbon emission source. If the actual carbon emissions exceed

the carbon credits, the excess amount should be purchased from

the carbon trading market. On the contrary, if the actual carbon

emissions are less, the remaining credits can be sold in the carbon

trading market.

This paper holds that the power purchase from the main

network comes from thermal power plants. So, there are three

kinds of carbon emission sources including carbon capture

power plants, thermal power plants and power purchase. It is

assumed that the carbon credits and the actual carbon emissions

are proportional to the active power outputs of the carbon

emission resources, which can be expressed as:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Equo(t) � Eccsquo(t) + Egenquo(t) + Ebuyquo(t)
Eccsquo(t) � ∑

i∈Ωccs

μi,ccsquoPi,ccs(t)
Egenquo(t) � ∑

i∈Ωgen

μi,genquoPi,gen(t)
Ebuyquo(t) � μbuyquoPbuy(t)

(7)

where Pi,ccs, Pi,gen and Pbuy are the active power of the carbon

capture power plants, thermal power plants and power purchase,

respectively; µi,ccsquo, µi,genquo and µi,buyquo are the unit carbon

emission quotas; Ωccs and Ωgen are the set of carbon capture

power plants and thermal power plants; Eccsquo, Egenquo and

Ebuyquo are the carbon credits of each carbon emission source;

Equo is the carbon credits of the distribution system.

Since the carbon capture power plants can absorb part of

carbon dioxide, the actual carbon emissions of the distribution

system should be reduced by the captured carbon dioxide, which

can be calculated as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Eint(t) � Eccsint(t) + Egenint(t) + Ebuyint(t) − Ecap(t)
Eccsint(t) � ∑

i∈Ωccs

Qi,ccs(t)
Egenint(t) � ∑

i∈Ωgen

μi,genintPi,gen(t)

Ecap(t) � ∑
i∈Ωccs

Qi,cap(t)
Ebuyint(t) � μbuyintPbuy(t)

(8)

where µi,genint and µbuyint are the carbon emission intensities of

thermal power plants and power purchase; Eccsint, Egenint and

Ebuyint are the actual carbon emissions of each carbon emission

source; Ecap and Eint are the total amount of the captured carbon

dioxide and the actual carbon emissions of the distribution

system.

The volume of carbon trading Ecar is given by:

Ecar(t) � Eint(t) − Equo(t) (10)

Demand response model

PDR model
For the PDR model, the elasticity matrix E is usually used to

express the influence of relative change in electricity prices on the

relative change in loads (Kirschen et al., 2000).
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Δq � E · Δp (14)
where Δq and Δp are the change rate matrix of the loads and

electricity prices. The exactly expressions of Δq, Δp and E are as

follows:

Δp � [ Δp(1)
p(1)

Δp(2)
p(2) . . . Δp(24)

p(24) ]
T

(11)

Δq � [ Δq(1)
q(1)

Δq(2)
q(2) . . . Δq(24)

q(24) ]
T

(12)

E �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
ε1,1 ε1,2 . . . ε1,24
ε2,1 ε2,2 . . . ε2,24
..
. ..

. ..
.

ε24,1 ε24,2 . . . ε24,24

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (13)

where Δp and p are the variation in electricity prices and the

reference value of the electricity prices; Δq and q are the response
power of the loads and the reference value of the loads; εii and εij
are the self-elasticity coefficient and the cross-elasticity

coefficient, respectively.

After the implementation of PDR, the loads are given by:

qPDR(t) � q0(t) + Δq(t) (14)
where q0 and qPDR is the initial loads and the loads after PDR.

The total loads before and after PDR should remain the same,

which can be expressed as:

∑T
t�1
qPDR(t) � ∑T

t�1
q0(t) (15)

Considering the interests of users, the change of electricity

prices and loads should be within the limits.

0≤Δp(t)≤Δp max (16)
−Δq max ≤Δq(t)≤Δq max (17)

Δpmax and Δqmax are the maximum variation of electricity

prices and loads, respectively.

IDR model
The loads participating in IDR can be divided into shiftable

loads and interruptible loads (Zhang X. et al., 2016). The

constraints of the response power of the two kinds of loads

Eqs 18, 19 are considered. In the whole dispatching period, the

response power of interruptible loads cannot be larger than the

maximum shedding power Eq. 20 and the total amount of the

shiftable loads should remain unchanged Eq. 21.

0≤PIDR,inte(t)≤ αintePload(t) (18)
−αshifPload(t)≤PIDR,shif(t)≤ αshifPload(t) (19)

0≤∑T
t�1
PIDR,inte(t)≤PIDR,inte

max (20)

∑T
t�1
PIDR,shif(t) � 0 (25)

PIDR, inte and PIDR, shif are the response power of the

interruptible loads and shiftable loads, respectively. αinte and

αshif are the maximum interruptible load ratio and shiftable load

ratio. Pload is the total loads. PIDR,inte
max is the maximum

shedding power in the whole dispatching period.

In order to avoid the fluctuation of the electricity prices in a

short time, the PDR schedule is implemented in the day-ahead

stage, and the obtained electricity prices are maintained in the

intra-day stage. And the IDR schedule is implemented in the

intra-day stage. Therefore, PDR and IDR can schedule loads on

different time scales and increase the economy and flexibility of

the power system operation.

Two-stage robust optimal dispatch
model

With the increase of wind farms accessing the distribution

system, it is difficult to obtain the probability distribution of the

outputs of each wind farm. And using the probability distribution

to represent the uncertainty of wind power will increase the

amount of calculation greatly. Robust optimization model is a

better choice. The two-stage robust optimization model can

reduce some conservatism. The dispatching plan of the power

plants and the demand response strategy can be made at two time

scales, which gives physical meaning to the two-stage model. So,

in this section, a day-ahead and intra-day two-stage robust

optimal dispatch model of the distribution system considering

carbon capture and demand response is established. The

objective function and constraints are introduced as follows.

Objective function

According to the different time scales, the two-stage robust

optimal dispatch model divides the decision-making process into

two stages which are called the day-ahead stage and the intra-day

stage. The cost includes the start up and shut down cost of power

plants in the day-ahead stage. And the operation cost of power

plants, the carbon trading cost, the cost of storage and

transportation of carbon dioxide and the IDR scheduling cost

are included in the intra-day stage. To sum up, the objective

function is as follows:

min
x

⎧⎨⎩∑T
t�1
[Cup(t) + Cof f(t)] +max

w∈W
min

y
∑T
t�1
[Crun(t) + Cex(t)

+ Ccar(t) + CIDR(t)]
⎫⎬⎭

(22)
where Cup and Coff are the start up and shut down cost of power

plants; Crun, Cex, Ccar and CIDR are the operation cost of power

plants, the power purchase cost, the carbon related cost and the
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IDR scheduling cost, respectively; x and y represents decision

variable vector of the day-ahead stage and the intra-day stage; w

represents the uncertain variables referring to the output of wind

power and W is the uncertainty set of the wind power.

Objective in the day-ahead stage
The start up and shut down cost of power plants should meet

the following constraints.

Cup(t)≥ ∑
i∈Ω

ρi,up[ui(t) − ui(t − 1)] , Cup(t)≥ 0 (22)

Cof f(t)≥ ∑
i∈Ω

ρi,of f[ui(t) − ui(t − 1)] , Cof f(t)≥ 0 (23)

u is a binary variable and 0 is taken when the power plant is

closed, while 1 means the power plant is started. ρup and ρoff are

the single start up and shut down cost of power plants.Ω is the set

of power plants including thermal power plants and carbon

capture power plants.

In the day-ahead stage, the unit commitment plan and

electricity prices for the next day are optimized. The decision

variables involve the start up and shut down status of power

plants, the variation in electricity prices and the response power

of the loads after PDR, which can be expressed as follows:

x � [u,Δp,Δq] (24)

Objective in the intra-day stage
The cost in the intra-day stage can be calculated as Eqs 26–35.

Crun(t) � Cccs(t) + Cgen(t) (26)
Cccs(t) � ∑

i∈Ωccs

{[aiPi,ccsnet(t)2 + biPi,ccsnet(t) + ci] + ρccs[Pi,ccs0(t)

+ Pi,ccsf ix(t)]}
(27)

Cgen(t) � ∑
i∈Ωgen

[aiPi,gen(t)2 + biPi,gen(t) + ci] (28)

Cex(t) � ρexPbuy(t) (29)
Ccar(t) � Ccarex(t) + Ccarsto(t) (30)

Ccarex(t) � ρcarEcar(t) (31)
Ccarsto(t) � ρstoEcap(t) (32)

CIDR(t) � CIDR,inte(t) + CIDR,shif(t) (33)
CIDR,inte(t) � ρintePIDR,inte(t) (34)
CIDR,shif(t) � ρshif

∣∣∣∣PIDR,shif(t)
∣∣∣∣ (35)

Cccs and Cgen are the operation cost of carbon capture power

plants and thermal power plants, respectively. ρccs is the unit

operation cost of the carbon capture devices. a, b and c are the

fuel consumption coefficient of power plants. ρex is the unit

power purchase price. Ccarex and Ccarsto are the carbon trading

cost and the cost of storage and transportation of carbon dioxide.

ρcar and ρsto are the carbon trading price and the cost of storing

and transporting unit carbon dioxide. CIDR, inte and CIDR, shif are

the scheduling cost of the interruptible loads and the shiftable

loads. ρinte and ρshif are the unit scheduling cost of the

interruptible loads and the shiftable loads.

In the intra-day stage, the outputs of all power plants and

IDR schedule are optimized under the worst-case output of wind

power based on the results of the day-ahead stage. The decision

variables and the uncertain variables in the intra-day stage are

given by:

y � [Pccs, Pgen, Qccs, Qgen, Pbranch, Qbranch, V, Pbuy , Q
tre
ccs, PIDR,inte, PIDR,shif ]

(36)
w � [Pwind] (37)

where Qccs and Qgen are the reactive power of carbon capture

power plants and thermal power plants; Pbranch and Qbranch are

FIGURE 1
The revised IEEE-33 bus distribution system.
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the active power and the reactive power flowing on each line; V is

the voltage amplitude of buses; Pwind is the output of the wind

power.

Constraints

Constraints for the day-ahead stage
The constraints of active power and reactive power outputs

Eqs 38, 39, ramp rates Eqs 40, 41, and running time Eqs 42, 43 are

considered:

u(t)Pgen
min ≤Pgen(t)≤ u(t)Pgen

max (38)
u(t)Qgen

min ≤Qgen(t)≤ u(t)Qgen
max (39)

Pgen(t) − Pgen(t − 1)≤ u(t − 1)(Rup − Sup) + Sup (40)
Pgen(t − 1) − Pgen(t)≤ u(t)(Rdown − Sdown) + Sdown (41)

∑t+Toff−1

k�t
[1 − u(k)]≥Tof f[u(t − 1) − u(t)] (42)

∑t+Ton−1

k�t
u(k)≥Ton[u(t) − u(t − 1)] (43)

where Pgen
max and Pgen

min are the maximum and minimum

active power outputs of the power plants; Qgen
max and Qgen

min

are the maximum and minimum reactive power outputs of the

power plants; Rup and Rdown are the up ramp rate and down ramp

rate; Sup and Sdown are the up ramp rate and down ramp rate

when the power plants start and close; Ton and Toff are the

minimum on and off time of the power plants.

The distribution system is usually a radial network. The

linearized DistFlow Eqs 44–49 are adopted here (Wang et al., 2019).

Pinj
i (t) +∑

j< i
Pji(t) � Pd

i (t) + ∑
k> i

Pik(t) (44)

Qinj
i (t) +∑

j< i
Qji(t) � Qd

i (t) + ∑
k> i

Qik(t) (45)

Vj(t) � Vi(t) − [rijPij(t) + xijQij(t)]/Vr (46)
−Pij

max ≤Pij(t)≤Pij
max (47)

−Qij
max ≤Qij(t)≤Qij

max (48)
Vi

min ≤Vi(t)≤Vi
max (49)

Pinj
i andQinj

i are the injection active power and reactive power of

the node i.Pd
i andQ

d
i are the active load and reactive load of the node

i. ∑
j< i

Pji and ∑
j< i

Qji represent the sum of active power and reactive

power flows injected into the node i from other nodes. ∑
k> i

Pik and∑
k> i

Qik represent the sum of active power and reactive power flows

TABLE 1 The operation parameters of power plants.

Bus Pmax

(MW)
Pmin

(MW)
Qmax

(MVar)
Qmin

(MVar)
Rup

(MW/
h)

Rdown

(MW/
h)

Sup
(MW/
h)

Sdown
(MW/
h)

Ton

(h)
Toff

(h)

18 1 0.3 0.8 −0.1 0.7 0.7 0.3 0.3 4 4

22 0.8 0.2 0.7 −0.1 0.6 0.6 0.2 0.2 3 3

25 0.6 0.2 0.5 −0.1 0.3 0.3 0.2 0.2 3 3

33 0.3 0.1 0.4 −0.1 0.2 0.2 0.1 0.1 2 2

TABLE 2 The cost parameters of power plants.

Bus Startup cost
(¥)

Shutdown cost
(¥)

a (¥/MW2) b (¥/MW) c (¥)

18 6,000 3,000 0.03 100 500

22 5,000 3,000 0.02 80 600

25 4,000 2000 0.015 70 700

33 3,000 2000 0.01 60 800

TABLE 3 The carbon emission factors of carbon emission sources.

Bus Carbon
emission quota (t/MW)

Carbon emission intensity
(t/MW)

1 0.8 1

18 0.75 0.95

22 0.7 0.8

25 0.65 0.75

33 0.8 1
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from the node i to other nodes. Pij andQij represent the active power

and reactive power flowing through the line between the node i and

the node j. Pij
max and Qij

max represent the maximum active power

and reactive power transmission capacity. Vi
max and Vi

min are

maximum and minimum voltage of the node i. rij and xij are the

resistance and reactance of the line. Vr is the referenced voltage.

As mentioned above, the power purchase comes from the

thermal power plants. Therefore, the upper and lower bound

constraints and the ramp constraints should be meet as follows:

0≤Pbuy(t)≤Pbuy
max (50)

Pbuy(t) − Pbuy(t − 1)≤Rup (51)
Pbuy(t − 1) − Pbuy(t)≤Rdown (52)

where Pbuy
max is the maximum purchasing power.

The carbon dioxide emissions in the whole dispatching

period are limited, which can be expressed as:

∑T
t�1
Eint(t)≤Ecar

max (53)

where Ecar
max is the maximum carbon dioxide emissions in the

dispatching period.

Constraints for the intra-day stage
The constraints in the intra-day stage are basically the same

as those in the day-ahead stage. After the optimization in the

day-ahead stage, the decision variables in the day-ahead stage

are known in the intra-day stage. Therefore, the constraints of

running time Eqs 42, 43 are not considered in the intra-day

stage.

The uncertainty of wind power is described as follows:

W �

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Pwind(t) � ~Pwind(t) + B+
wind(t)ΔPwind

max(t) − B−
wind(t)ΔPwind

max(t)
B+
wind(t), B−

wind(t) ∈ {0, 1}
B+
wind(t) + B−

wind(t)≤ 1

∑T
t�1
[B+

wind(t) + B−
wind(t)]≤ Γwind

(54)

where ~Pwind is the forecast value of the wind power; ΔPwind
max is

the maximum prediction errors of the wind power; B+
wind and

B−
wind are matrixes of binary variables; Γwind is the budget

controlling the maximum number of the wind power

deviating from their forecast values. The robustness and

economy of the optimization results can be balanced by

adjusting Γwind.

FIGURE 2
Outputs of power plants: (A) Γwind = 0 (B) Γwind = 8.
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Solution methodology based on the
C&CG algorithm

Linearization of nonlinear terms

There are quadratic terms in the operation cost of power

plants. The piecewise linearization method is used to eliminate

the quadratic terms and improve the computational efficiency. In

Eq. 35, the absolute value is used to represent the shift power of

the shiftable loads. By introducing the auxiliary variables

PIDR1,shif, PIDR2,shif and constraints Eqs 56, 57, the scheduling

cost of the shiftable loads can be converted to the linear form,

which can be expressed as follows:

CIDR,shif(t) � ρshif[PIDR1,shif(t) + PIDR2,shif(t)] (55)
PIDR,shif(t) + PIDR1,shif(t) − PIDR2,shif(t) � 0 (56)

PIDR1,shif(t)≥ 0, PIDR2,shif(t)≥ 0 (57)

C&CG algorithm

The robust optimal model can be written in the following

compact matrix form:

min
x

(AxT +max
w∈W

min
y

ByT)
s.t.CxT ≤ c
DxT � d
EyT ≤ e
FyT � f
HxT + KyT ≤ h
MxT + NyT � m
GxT +QyT + RwT � q

(58)

The C&CG algorithm is introduced to solve the two-stage

robust optimal dispatch model (Zeng and Zhao, 2013). This

model is transformed into a master problem (MP) and a

subproblem (SP) by C&CG algorithm. They are defined as:

FIGURE 3
Load curves: (A) Γwind = 0 (B) Γwind = 8.
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MP: min
x,y

AxT + α

s.t.α≥ByT

CxT ≤ c
DxT � d
EyT ≤ e
FyT � f
HxT + KyT ≤ h
MxT +NyT � m
GxT + QyT + RwT � q

(59)

SP: max
w∈W

min
y

ByT

s.t. EyT ≤ e
FyT � f
HxT + KyT ≤ h
MxT +NyT � m
GxT + QyT + RwT � q

(60)

Using the above method, theMP is linearized to a mixed integer

linear programming. Using KKT conditions, the max-min form in

the SP is turned into the max form. The SP can also be

converted into a mixed integer linear programming with the big-

M method. Therefore, the MP and SP are easy to solve by existing

solvers. The SP aims to find the worst-case output of wind power

with the given day-ahead stage decision variables and provide an

upper bound (UB). Then, the new variables and constraints are

added to the MP to obtain a lower bound (LB). The MP and SP are

solved iteratively and the process stops until the gap between the

upper and lower bounds is smaller than a pre-set convergence

tolerance εCCG.

The specific steps of the C&CG solution process are as

follows:

Step 1.Define the forecast values of the wind power as the initial

worst scenario and set LB = -∞, UB = +∞, εCCG = 0.001 and the

iterations counter k = 0.

Step 2. Solve the MP in Eq. 59 based on the worst-case output of

the wind power to obtain the decision variables x and update

the LB.

Step 3. Solve the SP in Eq. 60 with the given decision variables x

to obtain the decision variables y and the uncertain variables w.

Update the UB.

Step 4. If UB-LB≤εCCG, return the optimal solutions and

stop. Otherwise, generate new variables and add

corresponding new constraints to the MP. Update k =

k+1 and go to Step 2.

Case study

Case description

A revised IEEE 33-bus system is used to verify the feasibility

and effectiveness of the robust dispatch model proposed in this

FIGURE 4
Electricity prices: (A) Γwind = 0 (B) Γwind = 8.
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paper (Dolatabadi et al., 2021). The topology of the test system is

shown in Figure 1. Carbon capture power plants are connected to

the buses 18 and 22. Thermal power plants are connected to the

buses 25 and 33. Wind power plants are connected to the buses

19, 23 and 30. Electric power can be purchased from the main

network at bus 1. We assume that the loads of all nodes

participate in the PDR and the loads at buses 8 and

14 participate in the IDR. For the convenience of comparison

and more obvious simulation results, we set αinte and αshif to 0.4.

The base voltage of the distribution system is 12.66 kV. The

maximum and minimum values of bus voltage are 1.05 pu and

0.95 pu. The active power and reactive power transmission

capacity of the line is 2 MW and 1 MVar. The operation

parameters and cost parameters of power plants are illustrated

in Table 1 and Table 2. The carbon emission quotas and carbon

emission intensities of carbon emission sources are shown in

Table 3. The maximum purchasing power is 1 MW. The power

purchase price is 1,500 ¥/MW. The up ramp rate and down ramp

rate of purchasing power are 0.7 MW/h. The energy

consumption of carbon capture device for capturing unit

carbon dioxide is 0.6 MW. The maximum operating energy

consumption of carbon capture devices is 0.5 and 0.3 MW,

FIGURE 5
Wind power curves: (A) Γwind = 0 (B) Γwind = 2 (C) Γwind = 4 (D) Γwind = 8.

TABLE 4 Robust optimization results under different budget Γwind.

Γwind Crun (¥) Cex (¥) Ccarex (¥) Ccarsto (¥) CIDR (¥) Total cost (¥) Carbon emissions (t)

0 57830.7 331.14 −1971 844.71 862.48 62898 34.2704

2 57874.7 447.34 −1958 844.71 905.85 63115 34.8133

4 57930.7 560.70 −1956 847.86 904.17 63288 35.3465

8 58037.1 674.39 −1941 851.19 979.76 63602 36.4426
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respectively. The unit operation cost of the carbon capture

devices is 100 ¥/MW. The cost of storing and transporting

unit carbon dioxide is 30 ¥/t. The carbon trading price is

120 ¥/t. The maximum carbon dioxide emissions is 50t. The

reference value of the electricity prices is 500 ¥/MW·h. The
maximum variation of electricity prices is 500 ¥/MW·h.
Therefore, the electricity prices are between 500 ¥/MW·h and

1,000 ¥/MW·h. The unit scheduling cost of the interruptible loads
and the shiftable loads are 500 ¥/MW and 320 ¥/MW,

respectively. The maximum prediction errors of the wind

power is 0.1 MW. This model is solved by a commercial

software CPLEX 12.7.1 in MATLAB 2015b.

Result analysis

Robustness and economy analysis
Due to the low probability of the extreme wind power output,

the robustness and economy of the model can be balanced by

adjusting the budget Γwind to avoid the too conservative

optimization results. In this case, the budgets Γwind are set to

0, 2, 4 and 8, respectively. The results of outputs of power plants

are shown in Figure 2. The outputs of power plants are indicated

by the height of the colored bar. The initial load curve, the load

curve after PDR and the load curve after PDR and IDR are

presented by different curves in Figure 3. The hourly electricity

prices are represented by stems in Figure 4. Figure 5 shows the

sum of the forecast value, the output range and the actual output

of all wind power. Table 4 shows various costs and the carbon

emissions of the distribution system.

In Figure 2, it can be seen the outputs of power plants

increase due to the uncertainty of the wind power. Especially,

when all power plants reach their maximum power, the

purchasing power increases significantly. At this time, power

plants have no additional regulation capacity to cope with the

uncertainty of the wind power. Therefore, the power balance can

only be achieved by purchasing power from the main network. It

can be found from Figure 3 that the peak-valley difference of the

load curves decreases after the implementation of PDR and IDR.

The interruptible loads are interrupted at the peak and the

shiftable loads are transferred from the peak to the valley of

the loads. The electricity prices are higher at the peak of the loads

and lower at the valley of the loads in Figure 4. Because a

smoother load curve can avoid the frequent startup and

shutdown of the power plants, which can reduce the total

cost. In Figure 4B, the electricity prices fluctuate between 10:

00 and 13:00 instead of monotone increasing in Figure 4A. And

FIGURE 6
Relation curve between operation cost, power purchase cost
and carbon trading price.

FIGURE 7
Relation curve between total cost, carbon trading cost and
carbon trading price.

FIGURE 8
Relation curve between carbon emissions, carbon capture
and carbon trading price.
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the variations of electricity prices from 15:00 to 18:00 are larger. It

is reasonable because the uncertainty of the wind power leads to

the changes of power plants outputs. In order to minimize the

total cost while meeting the load demand, the electricity prices

will also change more. Therefore, fluctuating wind power output

will lead to significant changes in electricity prices.

According to the uncertainty set, the forecast value of wind

power is in the middle of the upper bound and lower bound.

When the budget Γwind is set to 0, this model is transformed into a

deterministic optimization. The actual output of wind power is

consistent with the forecast value. When the budgets Γwind are set
to 2, 4 and 8, the actual output of wind power tends to locate at

the lower bound and reaches the lower bound at some time in

Figure 5, which is regarded as the worst-case output of wind

power. In Table 4, the various costs have increased with the

increase of budget Γwind. Because the output of wind power is

decreased. In order to meet the load demand, all costs are

increased. Although the amount of carbon dioxide captured

by carbon capture power plants increases, the carbon

emissions of the distribution system increase from 34.2704 t

to 36.4426 t.

Effect of carbon trading price
The carbon trading mechanism not only imposes economic

punishment on high carbon emission power plants, but also

rewards energy-saving and environmentally friendly power

plants, which makes carbon emissions of great economic

value. The change of carbon trading price affects various

costs. The relation with the operation cost and power

purchase cost is shown in Figure 6. Figure 7 shows the

relation with the total cost and the carbon trading cost. When

the carbon trading cost is positive, it means the profit generated

by the power plants selling carbon emission quotas. When the

carbon trading cost is negative, it means the cost generated by the

power plant purchasing additional carbon emission quotas. The

change of carbon trading price also affects the carbon emissions

and the amount of captured carbon dioxide, as shown in Figure 8.

In Figure 6, the operation cost increase at the beginning and

then remain stable. When the carbon trading price is 100 ¥/t, the

profit generated by carbon capture are low. Therefore, the carbon

capture devices operate at a very low power and generate little

cost. When the carbon trading price is 120 ¥/t or more, the profit

can reduce the total cost greatly. So, carbon capture devices

operate at a high power leading to the increase of operation cost.

And the operation cost keeps stable when the carbon capture

devices operate at the maximum power. The power purchasing

cost shows a decreased trend. It is reasonable because the high

carbon trading prices encourage the low-carbon power plants.

The power purchase from the main network can be regarded as a

high pollution thermal power plant. And the purchasing power

decreases with the increase of carbon trading price.

It can be observed that the profit generated by the carbon

trading increases and the total cost decreases with the increase of

the carbon trading price in Figure 7. The carbon capture power

plants sell carbon emission quotas to gain profit. The higher

carbon trading price, the more profit. And the total cost

become less.

It can be found in Figure 8 that the carbon emissions decrease

at first and keep stable later. The amount of carbon dioxide

captured shows a similar trend with the operation cost when the

carbon trading price increase. Because the operation of carbon

capture devices is the main factor that affects the operation cost.

When the carbon capture devices operate at maximum power,

the carbon emissions remain unchanged basically. But the basic

carbon emissions are inevitable to meet the load demand.

Therefore, the carbon trading mechanism can promote

energy conservation and emission reduction of power plants.

Combining the carbon trading mechanism and the CCS

technology will release their carbon emission reduction

potential and decrease the carbon emissions of the

distribution system.

Comparison of demand response
PDR and IDR dispatch loads in different ways. PDR enable

user to spontaneously change their consumption habits by

setting electricity prices, so the scheduling cost is 0 ¥.

And IDR dispatches loads by economic compensation. In

order to compare the effects of PDR and IDR, four cases are

designed.

Case 1: Demand response doesn’t participate in distribution

system dispatch.

Case 2: PDR participates in distribution system dispatch.

TABLE 5 Robust optimization results under different cases.

Case Crun (¥) Cex (¥) Ccarex (¥) Ccarsto (¥) CIDR (¥) Total cost (¥) Carbon emissions (t)

1 57965.2 2,804.8 −1919 849.86 0 64703 37.1080

2 57922.7 2,853.6 −1922 847.86 0 64701 36.7963

3 57931 1,530.2 −1936 846.62 761.86 64133 36.0406

4 58037.1 674.4 −1941 851.19 979.76 63602 36.4426
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Case 3: IDR participates in distribution system dispatch.

Case 4: Both PDR and IDR participate in distribution system

dispatch.

Optimization results of various costs and carbon emissions

are shown in Table 5. The total costs of case 1 and case 2 are

basically the same, but the carbon emissions are reduced. It can

be seen that PDR can decrease the carbon emissions of

distribution system but has little impact on the total cost.

Compared case 1 with case 3, the total cost and carbon

emissions are reduced significantly. Although there is IDR

scheduling cost, IDR has a significant effect on reducing total

cost and carbon emissions compared with PDR.When both PDR

and IDR participate in distribution system dispatch at the

same time, the power purchase cost is reduced greatly so that

the total cost are decreased to the minimum in case 4. Because

of the participation of demand response, the loads are more

easily met by the power plants of the distribution network

with no need to purchase power from the main network. And

the carbon emissions are the lowest among four cases.

Therefore, the participation of PDR and IDR in

distribution system can realize the optimization of

economic and environmental benefits.

Conclusion

In this paper, a two-stage robust optimal dispatch model of

the distribution system considering carbon capture and demand

response is proposed. This model takes the uncertainty of wind

power into account and realize the low-carbon economic

operation of the distribution system. From the results of case

studies, the following conclusions can be drawn: 1) With the

increasing uncertainty of the wind power, all costs and carbon

emissions of the distribution system increase. The robustness and

economy of the model can be balanced by adjusting the budget

Γwind to avoid the too conservative optimization results. 2) PDR

and IDR can reduce the peak-valley difference of the load curves

to realize the optimization of economic and environmental

benefits. And the uncertainty of wind power can lead to the

fluctuation of electricity prices. 3) The carbon trading

mechanism can promote energy conservation and emission

reduction of power plants. Carbon capture devices can

capture carbon dioxide more by setting carbon trading price

reasonably. However, the actual operation process of the carbon

capture power plant is complex. Further work will consider a

more detailed model of the carbon capture power plant. And a

more accurate representation of wind power uncertainty is

worthy of study.
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