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Load restoration coordinating transmission grid, distribution grid, and

microgrids is an effective measure that is taken into consideration while

improving the power system resilience in extreme weather conditions. An

online decision-making method is proposed to deal with the unexpected

nature of power supply issues regarding the re-energization of microgrids

and transmission grids. In this research work, an online multi-agent

interaction technique is used for coordinated load restoration. The main

algorithm comprises of two subsections, namely, a resilience index and a

multi-agent-based decision-making system which are used to administer

the coordination among the transmission grid, distribution grid, and

microgrids. A distributionally robust optimization model is used to evaluate

the power supply capability of microgrids on the basis of load restoration

parameters. Finally, a step-by-step decision-making method, based on a

deep Q-network, is proposed for distribution network reconfiguration

considering the uncertainty of power supply capabilities of transmission grid

andmicrogrids. Simulation results demonstrated that the proposedmethod can

perform the online decision-making of substation load restoration, which

significantly improves the load restoration efficiency.
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1 Introduction

Severe climatic hazards have been observed in the last few years, leading to frequent

outages and huge economic losses (Sun et al., 2019a; Perera et al., 2020; Sun and Liu,

2022). Extreme weather-induced power outages, in the United States of America, cause

economic losses of $18 billion to $33 billion per annum (Shield et al., 2021). Hence, the

construction of a resilient power grid to cope with extreme weather hazards has gained

substantial interest from both academia and the industry point of view. A resilient

power grid is capable of preventing and adapting to environmental changes,

withstanding perturbations, and quick recovery from outages (Bie et al., 2017).

OPEN ACCESS

EDITED BY

Bo Yang,
Kunming University of Science and
Technology, China

REVIEWED BY

Xiaoshun Zhang,
Northeastern University, China
Xiaohan Jiang,
Kunming University of Science and
Technology, China

*CORRESPONDENCE

Yutian Liu,
liuyt@sdu.edu.cn

SPECIALTY SECTION

This article was submitted to Smart
Grids,
a section of the journal
Frontiers in Energy Research

RECEIVED 13 July 2022
ACCEPTED 01 August 2022
PUBLISHED 15 September 2022

CITATION

Fan R, Sun R, Liu Y andHassan Ru (2022),
An online decision-making method
based on multi-agent interaction for
coordinated load restoration.
Front. Energy Res. 10:992966.
doi: 10.3389/fenrg.2022.992966

COPYRIGHT

© 2022 Fan, Sun, Liu and Hassan. This is
an open-access article distributed
under the terms of the Creative
Commons Attribution License (CC BY).
The use, distribution or reproduction in
other forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permittedwhich does
not comply with these terms.

Frontiers in Energy Research frontiersin.org01

TYPE Original Research
PUBLISHED 15 September 2022
DOI 10.3389/fenrg.2022.992966

https://www.frontiersin.org/articles/10.3389/fenrg.2022.992966/full
https://www.frontiersin.org/articles/10.3389/fenrg.2022.992966/full
https://www.frontiersin.org/articles/10.3389/fenrg.2022.992966/full
https://www.frontiersin.org/articles/10.3389/fenrg.2022.992966/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fenrg.2022.992966&domain=pdf&date_stamp=2022-09-15
mailto:liuyt@sdu.edu.cn
https://doi.org/10.3389/fenrg.2022.992966
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#editorial-board
https://www.frontiersin.org/journals/energy-research#editorial-board
https://doi.org/10.3389/fenrg.2022.992966


Rapid and effective load restoration plays a key role in resilience

enhancement (Wang and Gharavi, 2017). Microgrids have

gained rapid development in recent years because of their

flexibility to work in grid-connected and island modes

(Jithendranath and Das, 2021). Grid-connected microgrids

can be used as a resilient resource to restore critical loads on

utility feeders (Wang et al., 2016). Coordination in different

voltage level grids such as transmission grids and microgrids

can significantly improve the efficiency of load restoration,

especially in the case of insufficient power supply due to

component failure in the transmission grid (Che and

Shahidehpour, 2019; Shi et al., 2021). Therefore, it is of great

interest to study the coordinated load restoration of

transmission grids and microgrids for power system

resilience enhancement.

Load restoration schemes are applied on either

transmission or distribution grids considering security

constraints (Liu et al., 2016). Load restoration is usually

modeled as a combinational optimization problem, which

can be solved either by mathematical programming

(Gholami and Aminifar, 2017; Zhao et al., 2019) or

evolutionary computation (Sun et al., 2019b; Yang et al.,

2021). In order to improve the restoration efficiency, a

rolling optimization strategy is proposed for transmission

network recovery and load restoration with the help of a

wind-storage system (Sun et al., 2022a). Taking into account

different intervals of cold load pickup time, a single-time-

step load restoration model, based on bi-level optimization,

is proposed for the transmission grid (Sun et al., 2022b). For

load restoration in distribution grids, a mixed-integer,

second-order cone programming model is suggested

considering the network reconfiguration and gas-fired

distributed generations (Li et al., 2022). To deal with the

time-dependent cold load pickup effect, the information gap

decision theory has been used in the distribution grid load

optimization model (Song et al., 2021). The above mentioned

studies focus on the top–down approach for load restoration,

whereas the bottom–up method of microgrids is not

considered.

Improvement in the efficiency of load restoration under

extreme weather conditions considering microgrids has become

a research hot spot for resilience enhancement of power

systems. The literature review divides the research work into

two classes, namely, islanded microgrid formation and load

restoration supported by microgrids. Generally, the former

class splits an outage area into multiple islanded zones.

These zones are based on the type, capacity, and location of

the local generators and the demand and location of the load in

the distribution grid. Each zone contains one or more

microgrids to sustain during extreme weather (Chen et al.,

2018; Sharma et al., 2018; Zhao et al., 2022). The latter takes

microgrids as power resources and utilizes the surplus power of

microgrids to restore adjacent critical load by operating

subsection switches (Gao et al., 2016; Xu et al., 2018; Poudel

and Dubey, 2019). The above mentioned research studies

mainly focus on load restoration of one feeder in a

substation, which does not dynamically coordinate power

supply in other feeders. Moreover, power supply from the

transmission grid is not considered, resulting in ineffective

restoration.

For the entire energization of microgrids and

transmission grid during load restoration, an online

decision-making method based on multi-agent interaction

is proposed. This method effectively coordinates among

transmission grid, distribution grid, and microgrids. First,

the resilience index and a multi-agent system-based

decision-making framework decompose the coordinated

load restoration task into several subsections. Second, the

power supply from microgrids is evaluated by a

distributionally robust optimization (DRO) model, and

the effect of uncertainty on power supply from the

transmission grid is analyzed. Finally, the deep Q-network

(DQN) algorithm determines the optimal control strategies

of distribution network reconfiguration for substation load

restoration considering the uncertainty of power supply

from microgrids and transmission grid.

The major contributions of this work are summarized as

follows:

(1) A multi-agent system-based restoration decision-

making framework is proposed to decompose load

restoration into several subsections considering the

complexity of load restoration with top–down and

bottom–up power supply. Based on the characteristics

of different subproblems, optimization-based and

learning-based methods are proposed and applied to

different agents.

(2) A Wasserstein metric-based distributionally robust

optimization model is developed to deal with the

uncertainty of photovoltaic (PV) generation and load in

microgrids. Compared with the method considering

microgrids to be conventional power sources, the

proposed method is more consistent with the actual

restoration situation.

(3) A reinforcement learning method, deep Q-network, is used

to solve the distribution network configuration problem

online. Compared with the commonly used optimization

method, the proposed method has obvious advantages in

computing efficiency.

The remainder of this research work is organized as follows.

The substation load restoration decision-making is introduced

in Section 2. The power supply capability evaluation of

microgrids and transmission grids is shown in Section 3.

The DQN-based online decision-making method of

distribution network reconfiguration is proposed in Section
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4. Case studies are analyzed in Section 5. The conclusions are

drawn in Section 6.

2 Substation load restoration
decision-making in extreme weather
conditions

A resilience index considering weighted load restoration

benefit is proposed with the objective to guide coordinated

substation load restoration of the transmission grid,

distribution grid, and microgrids after extreme weather. In

order to obtain full energization of microgrids and

transmission grids, a multi-agent, system-based decision-

making framework is established for coordinated substation

load restoration.

2.1 Resilience index for load restoration

To cope with the high-impact and low-probability

extreme weather hazards, a resilience power system with

the ability to prevent, resist, and quickly restore load is

established. Effective resilience evaluation is the basis of

power grid resilience enhancement. Several resilience

indexes have been proposed to guide resilience

enhancement of power girds before, during, and after

extreme weather events, including the cost of resilience

measure (Watson et al., 2014), component connectivity

based on the complex-system method (Chanda and

Srivastava 2016), time-to-restoration (Maliszewski and

Perrings, 2012) and rapidity of restoration (Reed et al.,

2009).

Time-to-restoration and rapidity of restoration are resilience

indexes in the restoration phase. However, because the load

needs to be restored and cut off repeatedly for substation load

restoration, it is difficult to evaluate the time-to-restoration and

rapidity of restoration. The resilience enhancement requires the

comprehensive consideration of emergency repair and the power

supply from microgrids and transmission grids. Due to

unavailability of components caused by extreme weather, the

substation is unable to obtain enough power supply from the

transmission grid for a while. By emergency repair, the damaged

components can be brought back to normal operation after a

relatively long period. During this period, power system

resilience can be enhanced by effectively using the various

resilient resources to support as much load as possible,

particularly the surplus power of microgrids.

By coordinating the power supply from microgrids and

transmission grid, the critical load in the substation can be

restored quickly. Because the load restoration benefit can

reflect the load pickup amount and speed, this research work

proposes a resilience index considering weighted load restoration

benefit, as follows.

Etotal �∑K
t�1
∑
i∈NM

μi,tωiPdi, (1)

where Etotal is the resilience index; K is the restoration horizon;

NM is the set of load nodes; μi,t is the load pickup state variable at

time t (μi,t = 1 denotes the load is picked up; μi,t = 0 denotes the

load is not picked up); ωi is the weight of load i; and Pdi is the

amount of load i.

2.2 Framework of multi-agent system-
based substation load restoration
decision-making

During extreme weather hazards, power system

components may be damaged, resulting in power outages.

Due to unavailability of damaged components, the

substation is unable to obtain enough power supply from the

transmission grid for a period of time. On the one hand,

microgrids can work in island mode and maintain stable

operation during the outage. The surplus power of

microgrids can provide a bottom–up power supply to restore

adjacent critical loads effectively. On the other hand, the

damaged components need to be recovered by emergency

repair. Cooperated with emergency repair, the transmission

grid can provide top–down power supply. Considering the

power supply from microgrids and transmission grid for the

current step, the distribution network can be reconfigured by

substation switch control strategies for substation load

restoration. By coordination of the transmission grid,

distribution grid, and microgrids, the substation load

restoration can be effectively developed to enhance power

system resilience. Hence, the substation load restoration

involves multiple-level power grids, each of which needs to

deal with different problems simultaneously. Considering the

relative independence of different levels of the power grid, the

traditional centralized control method is no longer applicable.

The multi-agent system based on flexible interaction is one of

the effective methods to solve this problem.

For coordination of the transmission grid, distribution

grid, and microgrids, a framework of multi-agent system-

based substation load restoration decision-making is

established, as shown in Figure 1. The multi-agent system

can provide an effective distributed autonomous control

framework and mechanism. Each agent in the system not

only deals with problems independently but also cooperates

with other agents. According to the different external

environments, the multi-agent system can adjust its own

status and results at the output. It can adapt to various

system structures. In addition, a multi-agent system
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actively achieves the main objective through information

exchange and coordination, which improves system

performance.

Regarding the different voltage level power grids, the

proposed framework of multi-agent system-based substation

load restoration decision-making comprises of three types of

agents: transmission grid agent, distribution grid agent, and

microgrid agent.

(1) Microgrid agent. The microgrid agent can generally

collect the microgrid data, including PV generation

forecast, load demand forecast, energy storage, and

gas turbine status data. Based on the data, it can

efficiently match the supply of resources and demand

of load and evaluate the power supply capability for

current and future steps. It can maintain its stable

operation during the outage. For resilience index

improvement, it needs to provide a power supply for

critical load pickup while maintaining its stable

operation.

(2) Transmission grid agent. The transmission grid agent can

collect the transmission grid status and emergency repair

data. Based on the data, it evaluates the power supply

capability for current and future steps. For resilience

index improvement, it needs to provide power supply to

the substation and meet the constraints of the

transmission grid.

(3) Distribution grid agent. The distribution grid agent can

collect the distribution grid status and power supply

evaluated data. Based on the data, it can determine the

network reconfiguration strategies for substation load

restoration in the current step. For resilience index

improvement, it needs to make an optimal decision online

considering the power supply capability of microgrids and

transmission grid in the current step.

The interaction process among agents for substation load

restoration in one step is shown in Figure 2. The process is

described as follows: 1) agents collect the corresponding

power grid status data in the current step. 2) Microgrid

agent and transmission grid agent evaluate the power

supply capability based on the data obtained. 3) Microgrid

agent and transmission grid agent send power supply

capability data to the distribution grid agent. 4)

Distribution grid agent makes network configuration

decisions based on the data obtained. 5) Distribution grid

agent sends the required power supply amount to the

transmission grid agent and microgrid agent. 6) Microgrid

agent and transmission grid agent provide the corresponding

power supply for the substation load restoration.

FIGURE 1
Framework of multi-agent system-based substation load restoration decision-making.

Frontiers in Energy Research frontiersin.org04

Fan et al. 10.3389/fenrg.2022.992966

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.992966


In order to achieve substation load restoration, two main

techniques are considered, namely, power supply capability

evaluation of microgrids and transmission grid and

distribution network reconfiguration online decision-making.

These techniques are further explained in the following sections.

3 Power supply capability evaluation
of microgrids and transmission grid

The substation load restoration decision-making includes the

power supply capability evaluation of microgrids and transmission

grids. A DRO model is established to evaluate the power supply

capability of microgrids (PSCMs), which is deployed in the

microgrid agent. The uncertain power supply from the

transmission grid influenced by emergency repair is analyzed.

3.1 Evaluation of power supply capability
of microgrids

3.1.1 Wasserstein metric-based ambiguity set
Microgrids are susceptible to uncertain factors, which further

influence substation load restoration. The uncertainty factors

include PV generation and load remand. An efficient method is

needed to deal with the uncertainty on both sides of the generation

and load. In this research work, the DRO method is used, which

can establish an ambiguity set containing all possible probability

distributions based on historical data for fast restoration. The

decision is made under the worst probability distribution

condition of the ambiguity set, which solves the problem that it

is difficult to accurately obtain the probability distribution. The

Wasserstein metric is applied to construct an ambiguity set, which

avoids the uncertainty in the process of statistical inference and

further reduces the conservatism (Zhu et al., 2019).

Based on a set of samples [a1, a2, ···, aN], the empirical

distribution D2 of PV and load forecast error is established as

the estimation of the true distribution D1. Then, an ambiguity set

containing the true distribution D1 is constructed according to the

empirical distribution D2. D2 converges to D1 as N → ∞, i.e., the

“distance” between D2 and D1 becomes smaller when more data

are available. Wasserstein metric is a measure of the “distance”

between two probability distributions, defined as follows:

W(D2,D1) � inf
Π
{∫ d(ξ2, ξ1)∣∣∣Π(dξ2, dξ1)}, (2)

where W (·) is the Wasserstein metric; ξ2 is the random variable

subject to empirical distribution; D2; ξ1 is the random variable

subject to real distribution D1; Π(·) is the joint distribution of D1

and D2; d (ξ2, ξ1) = ||ξ2-ξ1||; ||·|| can be any norm, and 1-norm is

used in this research work for its superior numerical tractability

in DRO (Duan et al., 2018).

According to (Zhu et al., 2019), the ambiguity set A is defined

as follows:

A � {D1 ∈ R(Ξ)|W(D2,D1)< ε(N)}, (3)

where A is an ambiguity set of the underlying true distribution;

R(Ξ) is the set of all probability distributions subject to

supporting space Ξ; and A is a Wasserstein ball of radius ε

(N) centered at the empirical distribution D2.

Based on theWassersteinmetric, the ambiguity set is constructed,

including the true distribution of PV and load prediction error. The

ambiguity set contains all possible probability distributions at a given

confidence level β. The radius of the Wasserstein ball is related to the

given sample numberN and confidence level β. The confidence level β

can be changed by adjusting the radius.

FIGURE 2
Interaction process among agents for substation load restoration in one step.

Frontiers in Energy Research frontiersin.org05

Fan et al. 10.3389/fenrg.2022.992966

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.992966


Given a confidence level of the ambiguity set as β, it can be

calculated as follows (Duan et al., 2018):

ε(N) � S

�����������
1
N
ln( 1

1 − β
)√
, (4)

where N is the sample number and S is a constant, which can be

acquired by solving the optimization Eq. 5.

min
ρ>0

2

�����������������������
1
2ρ
⎡⎢⎢⎣1 + ln⎛⎝ 1

N
∑N
j�1
eρ||ξj−μ||2⎞⎠⎤⎥⎥⎦√√

, (5)

where ρ is the auxiliary variable and μ is the sample mean.

3.1.2 Evaluation model for power supply
capability of microgrids

Considering the uncertainties of generation and load, the

objective function of the evaluationmodel for PSCM is to provide

the power supply as much as possible. Meanwhile, in order to

reduce the load switching number, the power supply needs to be

stabilized during the load restoration process. The objective

function is shown as follows:

min f M �∑K
t�1
( − PM,t + ψ

∣∣∣∣PM,t+1 − PM,t

∣∣∣∣), (6)

where PM,t is the power supply of the microgrid at step t and ψ is

the penalty term coefficient. The absolute value of the penalty

term represents the power supply deviation between adjacent

steps. By introducing auxiliary variables PM1,t, PM2,t and adding

the corresponding constraints Eqs 8,9, the objective function Eq.

6 can be transformed into the linear form Eq. 7.

minfM �∑K
t�1
[ − PM,t + ψ(PM1,t + PM2,t)]. (7)

PM,t+1 − PM,t + PM1,t − PM2,t � 0. (8)
PM1,t ≥ 0,PM2,t ≥ 0. (9)

The constraints of the evaluation model for PSCM are

presented as follows:

(1) Controllable distributed generator constraint.

PG,min ≤PG,t ≤PG,max , (10)

where PG,t is the active power of the controllable distributed

generator at step t and PG,max and PG,min are the maximum and

minimum values of the active power of the controllable

distributed generator, respectively.

(2) Energy storage operation constraint.

0≤Pdis,t ≤US,tPS,max. (11)
0≤Pch,t ≤ [1 − US,t]PS,max , (12)

ES,min ≤ES,0 + η∑t
t′
[Pch,t′Δt] − 1

η
[Pdis,t′Δt]≤ ES,max, (13)

where Pdis,t and Pch,t are the charging and discharging power of

energy storage at step t, respectively; US,t is the charging/

discharging state of energy storage (1 indicates the charging

state and 0 indicates the discharging state); PS,max is the

maximum charging/discharging power of energy storage,

which is limited by grid-connected inverter capacity; ES,min

and ES,max are the minimum and maximum energy storage

capacity, respectively; η is charging/discharging efficiency of

energy storage; ES,0 is the energy storage capacity at initial

restoration step; and Δt is the length of step.

(3) Power balance constraint.

PM,t � PG,t + Pch,t − Pdis,t + PPV ,t − PL,t , (14)
where PPV,t is the PV generation power of the microgrid at step t

and PL,t is the load amount of the microgrid at step t.

(4) Interactive power constraints between the microgrid and the

substation.

0≤PM,t ≤PM,max , (15)

where PM,max is the maximum power exchange at the point of

common coupling, which is determined by the transformer

capacity and specific policies.

3.1.3 Distributionally robust chance-constrained
power supply capability of microgrids

For ease of exposition, the above mentioned PSCM problem

under uncertain PV generation and load demand can be

expressed as a compact representation.⎧⎪⎪⎨⎪⎪⎩ min
x

CTx

s.t.Ax ≤ b
Ex + Fζ ≤ g

, (16)

where A, E, and F are constant-coefficient matrixes of

constraints; C is the coefficient column vector corresponding

to the objective function Eq. 7; b and g are constant column

vectors; x and ζ are the decision variable and random variable,

respectively, and the specific expression is shown as follows:

{ x � [PG,t ,Pch,t ,Pdis,t ,Us,t]
ζ � [PPV ,t,PL,t] . (17)

The uncertain constraint of the optimization problemEq. 16 can

be modeled as the chance-constrained form, shown as follows:

D{Ex + Fζ ≥ g}≥ 1 − ϕ ϕ ∈ (0, 1), (18)

where D is the distribution of the random variable ζ and φ is the

desired risk tolerance parameter. The chance-constrained Eq. 18
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requires that all probability distributions in the ambiguity set

hold simultaneously at least with confidence level 1-φ.

The highly nonconvex distributionally robust chance-

constrained is the nonlinear constraint, which needs to be

reconstructed into a linear constraint for the convenience of

the solution.

At first, the ambiguity set is standardized according to Eq. 19

ϑj � Σ−1
2(ξj − μ), j � 1, 2, · · ·,N , (19)

where ∑ is the sample covariance and μ is the sample mean.

Assuming V is the uncertain set of random variables ϑ, it can be

expressed as follows:

V � {ϑ ∈ RNw
∣∣∣∣ − l ≤ ϑi ≤ l}, (20)

where Nw is the number of uncertainty sources in the ambiguity

set; ϑi is the ith elements of ϑ; and l is the boundary of ϑ.

After normalization, the uncertainty set should satisfy the

probability distribution containing the prediction error at a

certain confidence level for practical application. Also, the

boundary needs to be minimized in order to reduce

conservatism (Zhu et al., 2019). Therefore, the model can be

expressed as minimizing the boundary l with a probability

constraint under the worst-case distribution, shown as follows:⎧⎪⎪⎨⎪⎪⎩ min
0≤l≤lmax

l

s.t. sup
Ms∈Mstd

Ms(ϑ ∉ V)≤φ , (21)

where lmax is the maximum value of boundary l; M s is the

probability distribution of the uncertain variable ϑ; andMstd is the

ambiguity set. The constraint of the problem Eq. 20 is a function

variable optimization problem that is difficult to solve. According

to duality theory, the following formulation can be obtained

(Poola et al., 2021).

sup
Ms∈Mstd

Ms(ϑ ∉ V) � inf
κ≥0

κ · ε + 1
N
∑N
j�1
(1 − κ(l − ∣∣∣∣∣∣∣∣ϑj∣∣∣∣|∞)+)+⎫⎬⎭⎧⎨⎩

(22)
where (·)+ = max (·, 0); κ is dual variable.

Thus, Eq. 21 can be transformed into Eq. 23 which is easy to

be solved.

min
0≤l≤lmax

l

s.t. κ · ε + 1
N
∑N
j�1
(1 − κ(l − ∣∣∣∣∣∣∣∣ϑj∣∣∣∣|∞)+)+ ≤ ϕ

κ≥ 0

.

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩ (23)

Equation (23) can be solved by the nested bisection search

method (Zhu et al., 2019).

After determining the boundary l, the boundary value of each

random variable is determined. For a 1-dimensional random

variable, the boundary vectors are v(1) = {l,l} and v(2) = {-l,-l}.

Hence, according to u(i) = Σ1/2v(i)+μ, the chance constraints Eq. 18

can be safely approximated by the linear constraints Eq. 24.

h(x, u(i))≤ 0, ∀i ∈ {1, 2, · · ·, 2Nw }. (24)

To sum up, by replacing the chance constraints Eq. 18 with

their corresponding deterministic constraint Eq. 24, the

distributionally robust chance-constrained PSCM problem is

transformed into a mixed-integer linear programming

problem. This problem can be solved by a mature interior

point method (CPLEX) solver.

3.2 Uncertain power supply capability
from the transmission grid

After extremeweather hazards, the transmission grid components

may be damaged. The transmission grid agent can collect real-time

transmission grid status data from the energy management system.

The damaged component data can be obtained from relays and fault

indicators and the reports from the on-site repair crews (Chen et al.,

2018). The transmission grid agent can also obtain distribution grid

data such as load demand and restoration progress of the distribution

grid and send the data such as power supply capability by interacting

with the distribution grid agent. For load restoration efficiency

improvement, the emergency repair should cooperate with the

transmission grid dispatching to schedule the repair sequence of

damaged components. Then, the available repair resources and

crews are arranged according to the repair sequence. The repair

time and the traveling time can be estimated by emergency repair

(Zhang et al., 2020). Based on the data obtained, the transmission grid

agent can evaluate the power supply capability.

In the practical load restoration process, uncertainty of actual

repair and traveling time leads to uncertainty of the power supply

capability of the transmission grid. In (Li et al., 2021), a decision

support framework for adaptive restoration control of

transmission systems is proposed, which can be used to allocate

the restoration power to different substations based on real-time

restoration dispatching and emergency repair information. The

uncertainty of power supply capability from the transmission grid

is not discussed in detail. It is assumed that the transmission grid

agent can evaluate power supply capability in real-time.

4 Deep Q-network-based online
decision-making of distribution
network configuration for load
restoration

Considering the uncertainty of the power supply capability of

microgrids and transmission grid, a step-by-step decision-

making method based on deep reinforcement learning is
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proposed and deployed in the distribution grid agent. A

reinforcement learning model of distribution network

configuration is established as the basis of reinforcement

learning. The DQN algorithm is applied to obtain a policy

network used online to search subsection switch control

strategies.

4.1 Reinforcement learning model of
distribution network configuration

Based on the power supply capability of microgrids and

transmission grid and operation condition of feeders, the

distribution grid agent should determine the on–off state of

subsection switches at the feeders to restore load. Due to the

randomness and intermittency of distributed renewable energy

in microgrids, its power supply capability is uncertain during

load restoration. Influenced by the uncertainty of repair and

traveling time, the power supply capability of the transmission

grid is also uncertain. However, the source of uncertain power

supply capability of the transmission grid is complex, which is

hard to be expressed by an accurate mathematical model. Online

decision-making is more practical than the optimization method

for restoration in uncertain problems (Sun et al., 2019b; Sun et al.,

2022b), which can modify subsection switch control strategies

based on real-time data to decrease the influence of uncertainty.

The learning-based method can make decisions within several

seconds to guarantee the online implementation of distribution

network configuration within one dispatch step. The forecast

error of renewable energy decreases as the time scale decreases.

Usually, the forecast information of renewable energy generation

is accurate within one dispatch step. Hence, the online decision-

making method is used to handle uncertainty.

The state of the distribution network in the next step is only

influenced by the current state, but not related to the past states.

Hence, the distribution network configuration decision-making

can be described as a Markov decision process, which can be

handled by the reinforcement learning method. The

reinforcement learning method can obtain knowledge by

interacting with the environment, which does not need a large

number of training samples for knowledge gain. The outages are

infrequent in practical operation, leading to fewer historical data

as training samples. Hence, the reinforcement learning method is

suitable for distribution network configuration problems.

Environment, state, action, and reward are themain elements

of reinforcement learning. Considering the characteristics of

distribution network configuration, the elements are defined

as follows to establish a reinforcement learning model of

distribution network configuration.

(1) Environment. The environment can respond to the

subsection switch control strategies of the distribution

grid agent. By restoration control, the topology and

operation conditions of the substation and its feeders are

changed. Hence, the environment is constructed by the

topology of feeders, the power supply capability

evaluation model of the microgrids and transmission grid,

and the operation condition calculation model.

(2) State. State is a kind of understanding and coding of the

environment by the distribution grid agent. The state

information that influences restoration decision-making

includes power supply capability, on–off states of

subsection switches, and state switch numbers of

substation switches. The power supply capability

influences load pickup amount. The on–off states of

subsection switches influence the safe operation of feeders.

Hence, the state of the distribution network configuration is

expressed as follows:

st � {Pdown,t ,Pdown,t+1, · · ·,Pdown,t+K ,Pup,t ,Pup,t+1, ·
· ·,Pup,t+K ,B1,t , B2,t , · · ·,BNW ,t}, (25)

where st is the state at step t; Pdown,t and Pup,t are the power supply

capabilities of the transmission grid and microgrids at step t,

respectively; Bi,t is the on–off state of the ith switches at step t; and

NW is the number of substation switches.

(3) Action. Action refers to the means by which the distribution

grid agent influences the environment. In a network

configuration problem, the action can be described as the

state of subsection switches in the next step, expressed as

follows:

at � {B1,t+1, B2,t+1, · · ·,BNW ,t+1}, (26)

where at is the action at step t.

(4) Reward. The reward directly influences the policy established

by offline learning, which further determines the online

decision-making of the distribution grid agent. Hence, it

is necessary to design a reasonable reward function

considering the objective and constraints of network

configuration. The objective of distribution network

configuration is consistent with the proposed resilience

index. The constraints of distribution network

configuration include safe operation, power supply of

microgrids, power supply of the transmission grid, and

switch number of subsection switches.

If the safe operation constraint and power supply constraint

of microgrids and transmission grid are not satisfied, the

substation may face the risk of second power failure. If the

switch number constraints of subsection switches are not

satisfied, customer satisfaction is influenced. Hence, the first

three kinds of constraints must be satisfied, while the

subsequent constraints can be varied to some extent. The

reward function is described as follows.
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rt � − I0,t + (1 − I0,t)(Etotal − coao,t), (27)

ao,t � ∑NW

w�1
∑K
t�1

∣∣∣∣Bw,t+1 − Bw,t

∣∣∣∣, (28)

where rt is the reward of at step t and I0,t is a state variable that

represents whether the action violates constraint at step t. If

I0,t = 1, the safe operation constraint and power supply

constraint of microgrids and transmission grid are not

satisfied, and if I0,t = 0, the safe operation constraint and

power supply constraint of microgrids and transmission grid

are not satisfied; αo,t is the limit of switch number; co is the

punish coefficient.

4.2 Deep Q-network algorithm for
distribution network configuration

The aim of reinforcement learning is to establish a model to

select the control strategies for the distribution grid agent, which

is called policy function π(s, a). The policy function can obtain

the probability of action, a, in a certain state, s. Q-learning is a

commonly used reinforcement learning to establish a discrete

array as a policy function. However, because there are a large

number of states in the distribution network configuration

problem, it is difficult to establish a discrete array to store the

function. In addition, Monte Carlo Tree Search (MCTS) is also a

FIGURE 3
Flowchart of DQN training for distribution network configuration.
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kind of reinforcement learning method, which can establish a

tree as a policy function. However, MCTS makes decisions based

on a set of simulation results, which needs more computation

time to perform simulation. For the substation load restoration

problem, the decision needs to be made momentarily. TheMCTS

algorithm cannot meet the requirements. Hence, the DQN

algorithm is selected to establish a policy function, which

combines Q-learning with deep learning to obtain a

Q-network by offline training.

Deep Q-network is a deep neural network with parameter θ,

used to fit policy function, which can be expressed as Q (s, a,

θ)≈π(s, a). The input of the deep Q-network is the load

restoration state, whose output is the Q-value of every action.

By offline learning, the Q-network can be used online to evaluate

the Q-value of every load restoration strategy as the basis of

decision-making.

The experience replay method, target network, and ε-greedy

strategy are used in DQN training (Lin, 1992; Watkins and

Dayan, 1992; Mnih et al., 2013), which are not presented in

detail. In the training process of DQN, the decreasing gradient

algorithm is used to update the Q-network based on the loss

function shown as follows:

L(s, a, θ) � (rs,a + γmaxa′Q(s′, a′, θ′) − Q(s, a, θ))2, (29)

where γ is a discount factor for target Q; s’ is the state in the next

step; a’ is all possible actions in state s’; θ is the parameter of the

Q-network; and θ′ is the parameter of the target network, which

will be updated to θ after several iterations.

The flowchart of DQN training for distribution network

configuration is shown in Figure 3. It is noticed that the

scenarios of power supply capability are generated before the

execution of DQN considering all possible operation states,

which is important to guarantee a high generalization of DQN

for distribution network configuration. Based on the scenarios,

the environment of distribution network configuration is

generated randomly during DQN training.

In the flowchart,Neps is the episode limitation and η is the size

of the minibatch. The Adam algorithm is selected as the

decreasing gradient algorithm for Q-network training

(Kingma, 2015). ε in the ε-greedy strategy is updated based

on the following equation.

ε � εini − (εini − εf in)/Neps, (30)

where εini and εfin are the initial and final values of ε, respectively.

FIGURE 4
Modified test system.

FIGURE 5
Evaluation results of the PSCM.

TABLE 1 PSCM with different risk tolerance parameters.

Risk tolerance parameter PSCM (kW)

0.05 925.97

0.10 926.25

0.20 938.93

TABLE 2 Computation performance of different methods.

PSCM (kW) Computing time (s)

Proposed method 925.97 1.16

Robust optimization method 905.31 1.08
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5 Case study

A test system is constructed to demonstrate the effectiveness

of the proposed method. Two modified IEEE 13-bus systems

(Yang et al., 2021) are attached to a single low-voltage bus in the

station. The location of microgrids and subsection switches is

shown in Figure 4. It is assumed that an extremely hot weather

condition caused damage to the transmission grid, resulting in

outages. Microgrids consist of controllable gas turbine, PV, load,

and energy storage. Microgrid parameters, PV generation, and

load demand data are referred to in the study by Zeng et al.,

(2019). The voltage limit is set to 0.9 to 1.1 p. u. The effectiveness

of the DRO-based PSCM evaluation and DQN-based

distribution network configuration decision-making is shown

as follows.

5.1 Effectiveness of distributionally robust
optimization-based power supply
capability of microgrids evaluation

5.1.1 Power supply capability of microgrids
evaluation results

Microgrid M2 of node 9 in Figure 4 is taken as an example

to illustrate. Wasserstein’s ball confidence level is set to 0.95.

The risk tolerance parameter φ is set to 0.05. The penalty

function coefficient ψ is set to 10. For simulation purposes, the

step length is set to 15 min, and the future 6 h are considered to

evaluate the PSCM. In the practical load restoration process,

the step length is dynamic. The proposed DRO-based PSCM

evaluation model is adopted to obtain the results, as shown in

Figure 5. PV generation shows a trend of gradually increasing

initially and then decreasing. The energy storage charges at the

step when the PV generation is high and discharges at the step

when it decreases so as to ensure that the PSCM can remain

stable.

5.1.2 Influence of risk tolerance parameters
The risk tolerance parameter φ represents the risk

acceptance level of decision makers. In order to compare

the influence of the risk acceptance level, different φ values

are set to evaluate the PSCM, as shown in Table 1. A high-risk

tolerance parameter indicates that decision-makers have a

high-risk acceptance level. As a result, the PSCM is relatively

higher, which leads to a high load restoration efficiency but a

decrease in security. With the decrease in risk tolerance, the

PSCM decreases, leading to reduced load restoration

efficiency. In the practical load restoration process,

reasonable risk tolerance parameters can be determined

according to the risk preference.

5.1.3 Comparison with robust optimization
To further illustrate the performance of the Wasserstein

distance-based DRO method, comparison results with the

robust optimization method (Zeng et al., 2019) are shown

in Table 2. The table shows that the method in this research

work can obtain a higher PSCM. Compared to robust

optimization, the DRO-based method can reduce the

conservativeness of the calculation result using a similar

calculation time. The conservatism of the calculation

result is related to the confidence level and the sample

size because the radius of the Wasserstein ball determines

the range of possible probability distributions included in

the ambiguity set. The robust optimization method is

equivalent to the Wasserstein ball with a confidence level

of 1, which contains all possible probability distributions.

Some extreme distributions with a low probability of

TABLE 3 Values of hyperparameters.

Hyperparameter Value Hyperparameter Value

Γ 0.9 Neps 20,000

εini 0.9 Learning rate of the Adam algorithm 0.0001

εfin 0.3 Experience replay buffer size 1,000

FIGURE 6
Training process of DQN.
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occurrence can be excluded from the Wasserstein ball to

obtain a Wasserstein ball with a smaller radius. Compared

with the robust optimization method, the proposed method

can consider the distribution probability, and it has the

ability to adjust the robustness flexibly to balance the

safety and risk of load restoration under an uncertain

environment.

5.2 Effectiveness of deep Q-network-
based distribution network configuration
decision-making

5.2.1 Training process of deep Q-network
The structures of the Q-network and target network are

set to [144,100, 70, 40, and 36]. The values of

hyperparameters of DQN training are shown in Table 3,

which are set by comparing the training results of several

sets of parameters. The environment of the distribution

network configuration reinforcement learning model is

determined by the power supply capability scenarios of

microgrids and transmission grids. Based on the historical

data of PV and load, the DRO-based method is adopted to

calculate the power supply capability of microgrids in

different scenarios. Based on the capacity of the

substation, the power supply capability of the transmission

grid is generated randomly. In every iteration, the power

supply capability scenarios are obtained randomly as the

environment of distribution network configuration

simulation to generate the training data of the Q-network.

The average reward of distribution network configuration

by Q-network in 30 test scenarios is calculated per

100 episodes to show the training process of DQN, which

is defined as the average rewards per episode (ARPE). The

training process of DQN is shown in Figure 6. It is noticed that

DQN training with 20,000 episodes takes about 20 h. It can be

seen that the ARPE increases rapidly in the first

2,000 episodes, and the curve is flat along with training.

After 12,000 episodes, the curve is roughly stable along

with training. The Q-network after 20,000 episodes is used

online for distribution network configuration.

5.2.2 Substation load restoration process
Considering the power supply capability from microgrids

and transmission grid, the subsection switch control strategies

are determined by the DQN-based distribution network

configuration decision-making method. The restoration

duration is 6 h, and PV is in the enrichment period. The

step length is set to 15 min. Figure 7 shows the operation

process of substation load restoration from step 6 to step 7. In

every step, the PSCMs of M1, M2, and M3 are evaluated by the

proposed DRO-based method at first. Then, the subsection

switch control strategies are determined by the proposed

DQN-based method based on the PSCM information

received from the transmission grid and microgrid agents.

In step 6, the PSCMs of M1, M2, and M3 are 569, 1475, and

1053kW, respectively. The power supply capability of the

transmission grid is 7274 kW; S2, S3, S4, S5, and S6 are

closed; and S1 is open. In step 7, the PSCMs of M1, M2,

and M3 are 869, 827, and 1427kW, respectively. The power

FIGURE 7
Operation process of substation load restoration. (A) The step 6 of substation load restoration process. (B) The step 7 of substation load
restoration process.
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TABLE 4 Differences between different load restoration methods.

Method Model Characteristics

Proposed method Markov decision process Uncertain microgrids

Method 1 (Li et al., 2021) Mixed-integer linear programming Without microgrids

Method 2 (Ding et al., 2017) Enumeration Controllable microgrids

FIGURE 8
Load restoration results in different scenarios. (A) Load restoration benefit with three methods in scenario 1. (B) Load restoration benefit with
three methods in scenario 2. (C) Load restoration benefit with three methods in scenario 3. (D) Load restoration benefit with three methods in
scenario 4.
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supply capability of the transmission grid is 8515 kW. Due to

the larger power supply capability from transmission grids

and microgrids, all subsection switches are closed.

5.2.3 Comparison results in different restoration
scenarios

The proposed method is compared with the two methods

to show its effectiveness. The main differences between

different methods are shown in Table 4. The method

proposed by Li et al. (2021) is referred to as Method 1,

which does not consider the power supply of microgrids.

The method proposed by Ding et al. (2017) is referred to

as Method 2, which considers the microgrids as the

controllable power supply. Four restoration scenarios are

set to obtain restoration results with different methods. In

scenario 1, restoration duration is 3 h and PV is in the

enrichment period; In scenario 2, restoration duration is

6 h and PV is in the enrichment period; In scenario 3,

restoration duration is 6 h and PV is in the barren period;

and in scenario 4, restoration duration is 9 h and PV is in the

barren period.

The load restoration results represented by load

restoration benefits in different scenarios are shown in

Figure 8. In all scenarios, the proposed method can obtain

better restoration results than the other methods. It can be

seen that the gaps between the lines of the proposed method

and Method 1 widen as restoration duration increases, which

proves the importance of a bottom–up power supply. The load

restoration process is delayed by Method 2 due to restoration

failure at some steps, especially when PV is in the barren

period. Microgrids are regarded as the controllable power

supply with a certain ramp rate, which is not consistent with

the actual restoration situation. Restoration failure occurs in

case of large fluctuations in power supply of microgrids,

resulting in obstruction of the restoration process by

Method 2. Especially during a barren period, the

fluctuation in the PV output is intense, which leads to

frequent restoration failure and makes load restoration

benefit with Method 2 even lower than that of Method 1.

Hence, the proposed method can gain better results in

different scenarios by considering the uncertainty of

renewable energy.

5.2.4 Comparison with the optimization-based
method

The proposed DQN-based method for distribution

network configuration is compared with the commonly

used optimization-based method (Wang et al., 2016; Arif

and Wang, 2017; Chen et al., 2018) under 100 scenarios to

illustrate its performance further. Due to the characteristics of

the algorithm, the computation time of the learning-based

method must be shorter than that of the optimization-based

method. Hence, the key to comparison is to compare the

efficiency of restoration results. The PSO algorithm is adopted

to represent the optimization-based method for comparison,

which is executed several times in different scenarios to obtain

the optimal results. For the PSO algorithm, the number of

populations and iterations is set to 30 and 20, respectively. The

computation time of PSO is about 13756s, while DQN takes

0.05s. The comparison results are shown in Table 5. Although

the average load restoration benefit of the DQNmethod in this

work is lesser, the computation time is much shorter than that

of the PSO algorithm. The DQN method can be applied to

online load restoration decision-making under an uncertain

environment.

6 Conclusion

The aim of this investigation is to improve load restoration

through effective coordination between the transmission grid,

distribution grid, and microgrids, with the help of a multi-

agent system-based online decision-making method. The

work focuses on improving the substation load restoration

efficiency through step-by-step control strategies. DRO and

deep reinforcement learning are deployed in different types of

agents to improve the efficiency of decision-making. The

conclusions drawn are as follows. 1) The multi-agent

system-based online decision-making framework

decomposes the substation load restoration task into

several subsections and allocates them to different agents,

which are consistent with the practical transmission grid,

distribution grid, and microgrids. This approach online

provides the control strategies to improve the load

restoration efficiency with top–down and bottom–up

methods. 2) The DRO-based method can evaluate the

power supply capability from microgrids as the basis for

decision-making, by considering the uncertainty of PV

generation and load demand, to guarantee reliable

TABLE 5 Comparison with the optimization-based method.

Average objective
function
value

Application
mode

Proposed DQN-based
method

9.86 Online decision-
making

Optimization-based
method

9.97 Offline scheme
establishing
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restoration. 3) The DQN-based distribution network

configuration decision-making method generates a policy

network by offline learning to make subsection switch

control strategies for online substation load restoration,

which can maintain rapid computation speed by scarifying

some degree of optimality.
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