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Since deterministic prediction errors of wind power cannot be avoided,

probabilistic prediction can adequately describe the uncertainty of wind

power and, thus, provide further guidance to dispatching authorities for

decision making. Current probabilistic prediction methods for wind power

are still incomplete in mining its physical variation process. Therefore, this

study constructs a new framework for short-term wind power probabilistic

forecasting considering the spatio-temporal dependence of errors by mining

the spatio-temporal characteristics of historical wind power data and numerical

weather forecasts at numerical weather prediction (NWP). First, the

deterministic prediction results are obtained by an improved deep belief

network (DBN); then, a multi-location NWP is introduced to propose a

multi-level error scenario partitioning method considering the spatio-

temporal dependence property. Finally, a new error sample set is formed by

reconstructing the kernel density estimation method to adapt the model, and

the short-term wind power probability prediction at different confidence levels

is carried out. It is, thus, concluded that the effectiveness of the overall

framework under the probabilistic prediction considering spatio-temporal

dependence is verified in a wind farm in Jilin, China, and the prediction

accuracy is effectively and significantly improved compared with the same

confidence level, and the coverage of the evaluation index prediction interval is

improved by 1.23, 0.72, and 0.80%, and the average bandwidth of the prediction

interval is reduced by 2.14, 1.40, and 0.63%, which confirms the proposed

effectiveness and feasibility of the method.
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1 Introduction

Today’s global fossil energy sources are decreasing. The

development of new energy sources has become a necessary

initiative, and wind and solar energy play an irreplaceable role in

the green and sustainable development of new energy sources.

Traditional statistical methods for wind power prediction

generally consider the time series of historical statistical

information (Yang et al., 2019), NWP, and a combination of

the two prediction methods to achieve better prediction results;

deterministic prediction cannot accurately predict the wind

power in future time periods, which poses risks to the safe

and stable operation of the system. For estimating the

potential risk of wind power grid connection to the system,

probabilistic prediction overcomes the limitations of

deterministic prediction and can predict this impact in

advance. Probabilistic prediction can better fill the gap of

deterministic prediction in the uncertainty prediction error.

The short-term probabilistic prediction in this study focuses

on the cumulative distribution function or probability density

function of wind power for the next 24 h.

Wang et al. (2018) showed that improving the accuracy of

wind power forecasting can effectively reduce the impact of

power uncertainty. Most of the studies on uncertainty

prediction are holistic modeling and error analysis (Teng

et al., 2017) for analyzing the potential impact of wind power

uncertainty on system dispatch (Fan et al., 2018). In the work of

Yang et al. (2020b), a wind turbine power curve is proposed to

describe the conversion relationship between the output power

and the wind turbine speed; the power curve of the wind turbine

can be calculated to obtain the results of its power prediction.

Verma et al. (2018) proposed a wind power day-ahead scenario

generation method based on an improved Markov chain model,

but the wind power sequence has only low-order Markov

properties. In the work of Daisuke et al. (2020), an error

analysis method incorporating probabilistic and deterministic

prediction of wind power is proposed to analyze the prediction

error within each power interval using the estimation method of

prediction error distribution characteristics (Yang and Yang,

2016).

There is a spatial correlation and a temporal persistence in

wind power (Huang et al., 2022), and the prediction accuracy is

improved by considering the spatio-temporal dependence

property, as the dimensionality of the reference information is

enhanced. The work of Wang et al. (2016) fits the time-series

prediction error, but considering only the time-series will

produce the problem of overfitting due to the small sample

size. Xia et al. (2018) developed a spatial correlation model

for wind farms while considering the wake effect. Parametric

methods (Gaussian distribution, Cauchy distribution, and

Laplace distribution) and non-parametric methods (fuzzy

logistic regression, neural networks, and K-nearest neighbor

methods) are the main methods to achieve probabilistic

predictions (Yang et al., 2020b). Jeon and Taylor (2012)

proposed to fit the power prediction error using a non-

standard distribution after optimizing the parameters, which

provides a basis for the decision making of the operator; the

volatility of the wind power causes the prediction error to differ

from one of the distributions. Non-parametric fitting essentially

does not require the assumption of a priori models and is based

on the data structure to infer the regression curve of the

measured sample, such as the quantile regression method that

can more comprehensively describe the impact of distribution

characteristics among variables, while the phenomenon of

quantile crossover easily affects the prediction results; the

selection of kernel function to some extent affects the

performance of kernel density estimation (Sun et al., 2019),

and different bandwidth calculation methods are applicable to

different data. The results of wind power interval forecasting

often require effective evaluation of uncertainty and risk, which

requires the forecast interval to ensure the index requirements in

terms of clarity and reliability (Wang and Cheng, 2021).

Compared with the wind power point forecasting method, the

implementation method of the interval forecasting method is

more complicated, and the evaluation of the pros and cons of the

interval is more difficult. The interval prediction model needs to

ensure that the interval coverage index is at a certain level while

making the interval width index smaller (Liu et al., 2022), and the

model needs to have the ability to balance the two indicators, so

as to show good comprehensive ability in the prediction

performance.

Aiming at the abovementioned problems, this study proposes

a general framework for probabilistic forecasting that considers

the spatio-temporal dependence characteristics and is more

suitable for modeling. First, the error characteristics of wind

power forecasting are analyzed, and a sample separation method

that considers both the time series and space is proposed. Second,

the random forest (RF) weighted extraction feature of multi-

location NWP is used as the input feature in space, and the power

values of several dimensions after the correlation test are

introduced as the input feature in the time series, taking into

account the multiple spatio-temporal scales of wind speed error.

Then, based on the particle swarm optimization–deep belief

network (PSO–DBN) deterministic prediction model, a joint

probability density distribution function of wind speed–wind

power prediction error is established; then, kernel density

estimation is used. Finally, the overall probability prediction

framework proposed in this study is verified by the measured

data of a wind farm in Jilin, China. Themain contributions of this

study include the following: 1) The spatio-temporal model takes

into account various meteorological factors of the wind power

cluster and extracts its features on the same time plane, which not

only retains the spatiality of the data but also ensures its time-

series characteristics. 2) Combining both the multi-location

NWP features and the error has a greater predictive

advantage than the single case of only considering the error.
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3) At the same time, the joint probability density modeling of

wind speed and prediction error can effectively reflect the spatio-

temporal dependence existing in the wind farm.

2 Wind power prediction error
characteristics

2.1 Multi-spatio-temporal distribution
characteristics of errors

The typical characteristics of deterministic prediction errors

are time-dependent characteristics and spatially independent

characteristics, which require the construction of probability

density functions on the subset of samples obtained after

sample separation of the errors. The samples are extracted

according to the time continuity, mainly considering the time-

dependent characteristics. While the opposite is true when

considering the spatial dependence, the spatial distribution

characteristics are needed to extract the samples. The change

process of historical data affects the non-smoothness of wind

power, which is mainly expressed as the variability of wind power

short-term prediction error distribution in different sample

subsets.

Most traditional methods for probabilistic wind power

prediction consider the accuracy of the prediction model as

the main influencing factor of the prediction error

distribution without considering that the prediction error

is also affected by the time-series and meteorological factors.

In this study, we obtain the joint probability density

distribution model of different wind speed–wind power

prediction errors, which can describe the differences in the

distribution of various types of wind speed–wind power

prediction errors and improve the prediction performance

of the model according to the characteristics of the temporal

distribution of probabilistic prediction errors. One of the

joint probability distributions is shown in Figure 1. It can

be seen that there are significant differences in the

distribution of prediction power errors corresponding to

different NWP wind speeds.

2.2 An error scenario partitioning method
considering temporal and spatial
dependencies

Coalescing and splitting as the two main ways of hierarchical

clustering are not good or bad in nature, but it is necessary to

choose the required method based on the data characteristics

when analyzing the actual problem. Since hierarchical clustering

can obtain a complete and multi-level clustering tree, this study

mainly uses this coalescent clustering method for sample

clustering. The order of input samples has little effect on

hierarchical clustering, and the clustering results are more

accurate, especially for samples with a small amount of data.

Figure 2 shows the specific process of the hierarchical clustering

method for clustering the sample data.

Step 1: the information of multi-location NWP is processed

by RF-weighted feature extraction to assign weights, and the

power values of autocorrelation and bias correlation tests are

FIGURE 1
Joint probability distribution of prediction error.
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used as inputs to construct the sample feature matrix and assign

weighted clustering indicator weights according to the clustering

results when clustering individual indicators for hierarchical

clustering of combined weights.

Step 2: for input samples X and Y, the conventional Euclidean

distance lacks the description of the dynamic change

characteristics of the time-series curve (Yang et al., 2022).

Therefore, this study chooses the weighted distance between

samples to be obtained by the following weighted clustering

index calculation formula DE(X,Y), which results in the

distance matrix D whose weighted distance index is shown as

follows:

DE(X,Y) � ��������������������������������
ApF(X,Y) + BpG(X,Y) + CpH(X,Y)√

. (1)

In Eq. 1, A, B, C are the weight of a single indicator,

respectively, F(X,Y), G(X,Y), H(X,Y) are the clustering

distance formula of a single indicator, respectively, and X �
[x1, x2,/, xn]T and Y � [y1, y2,/, yn]T correspond to two

different samples.

Step 3: we compare the magnitudes of the weighted distance

metrics and coalesce the two types of samples with the highest

similarity as a new set by the obtained DE optimal value.

Step 4: we repeat steps 2 and 3, and the clustering stops when

the final number of categories is 1.

3 Prediction framework

3.1 Deterministic forecasting of wind
power

3.1.1 Restricted Boltzmann machines network
A back propagation (BP) layer is added and

superimposed on a model based on multiple restricted

Boltzmann machines (RBM) to form a DBN, which is a

combination of a neural network and a probability statistic

(Hinton et al., 2006). The RBM consists of a visual layer and

an implicit layer, as shown in Figure 3, where the visual layer

x � {x1, x2,/, xm} and the output layer y � {y1, y2,/, yn}, for
a given state (x, y), and the energy function is defined as

follows:

E(x, y,w, a, b) � −∑m
i�1
aixi −∑n

j�1
bjyj −∑m

i�1
∑n
j�1
wijxiyj. (2)

FIGURE 2
Flow chart of hierarchical clustering method.
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In Eq. 2, w is the weight between the layers and a, b is the bias

vector of the nodes in the visible and implicit layers.

3.1.2 Deep belief network
The DBN is shown in Figure 4, and the training process is to

train each layer of the restricted Boltzmannmachine in turn from

the bottom up. By continuously extracting the relevant features of

the previous hidden layer, the final layer can obtain the final data

features. Kennedy and Eberhart jointly proposed the particle

swarm optimization algorithm (PSO) (Hu et al., 2021). This

algorithm is currently applied to the problem of combinatorial

optimization (Coelho and Sierakowski, 2008), which has the

advantage of strong generality and simple implementation.

DBNs can cause the training process to fall into local optimal

solutions if the initial weights are not chosen properly.

3.1.3 Particle swarm optimization–deep belief
network

In this study, we chose the PSO algorithm to optimize the

neurons and initial weights of each input layer so that the

model can map the original information to different feature

spaces with the most appropriate number of implied nodes

while minimizing the loss of feature information. The

construction process of the PSO–DBN network is shown in

Figure 5. Let the implicit layer x � {x1, x2,/xm} be the

m-dimensional training sample, h1 � {h11, h12,/h1p} and h2 �
{h21, h22,/h2q} be the neuron nodes of the implicit layer, and

the network output y � {y1, y2,/yl}. The flow of the

PSO–DBN network is shown in Figure 6.

FIGURE 3
RBM structure.

FIGURE 4
DBN structure. FIGURE 5

PSO–DBN network structure.
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3.2 Short-term wind power probability
prediction considering the spatial and
temporal dependence of prediction errors

The traditional quantile regression method based on the

continuous distribution function is not used in this study

given that the probability density function obtained from the

fit is non-continuous. As for the uniform distribution of the

cumulative function on (0,1), the introduction of kernel density

estimation can be considered as obtained by integrating a

window centered on each sample point, and the selection of

the kernel density function and bandwidth determines its

performance. If the bandwidth is too small, the whole

estimation, especially the tails, appears to be more disturbed

and, thus, has a tendency to increase the variance; if the

bandwidth chosen is too large, some features will be masked.

Therefore, the selection of bandwidth is an important parameter

to control the estimation accuracy. Because kernel density

estimation is a non-parametric estimation method, it can also

directly calculate the probability density of the predicted value of

wind power without making distribution assumptions. The

choice of the kernel function has a great influence on the

kernel density estimation. The form of the kernel function is

mainly determined by the bandwidth d and the kernel function

K. The calculation formula for the kernel density estimation is as

follows:

f̂d(x) � 1
nd

∑n
i�1
K(Ti − x

d
). (3)

In Eq. 3 d is a smoothing parameter called the bandwidth (d >
0), n is the total number of quantiles, T is the dataset consisting of

conditional quantiles, and K is the kernel function (where, K≥ 0,

FIGURE 6
Flow chart of PSO–DBN network algorithm.
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the integral is unity and satisfies the characteristics of probability

density, the average value of K is 0), mainly including cosine

kernel, exponential kernel, and uniform kernel.

In this study, the kernel density estimation is used to sample

the fluctuation interval for obtaining the power uncertainty, which

is solved by a given confidence level. The prediction flow using

kernel density estimation is shown in Figure 7. First, wind farm

data are pre-processed, and deterministic prediction errors are

performed based on the PSO–DBNmodel of historical time period

data, considering time dependence and spatial independence, as

well as multiple locations of historical time period after processing

by RF weighting NWP features, and the classification of prediction

errors by hierarchical clustering of several dimensional power

values after correlation test of the corresponding moment.

Then, for the probability density distribution under different

wind resource types, the cumulative probability density

distribution of errors under different wind resources is matched

by providing multiple locations of the moment to be predicted by

RF-weighted processing NWP features and several dimensional

power values after the correlation test of the corresponding

moment, and using the statistics of the probability density

distribution of the historical moment. The magnitude of the

cumulative probability density is estimated by kernel density.

Finally, according to the corresponding confidence interval

provided, such as 85%, the probability and prediction results

for that moment can be obtained based on the resulting error

series distribution.

3.3 Evaluation indicators

3.3.1 Evaluation indicators for deterministic
prediction

In this study, the accuracy and the mean absolute error are

selected to evaluate the prediction results for the short-term wind

power deterministic prediction results.

FIGURE 7
Flow chart of short-term prediction of wind power based on kernel density estimation.

Frontiers in Energy Research frontiersin.org07

Sun et al. 10.3389/fenrg.2022.990989

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.990989


The accuracy rate (AR) is used as a basis for assessing the variability

of the prediction model results from the true values, and a value closer

to 1 indicates that the classification results are more accurate.

AR � 1 −

�����������
1
N ∑N

i�1
(p − p̂)2√
PCAP

. (4)

The mean absolute error (MAE) is a good reflection of the

difference between the predicted and actual values, and thus can

accurately reflect the mean value of the point prediction error

over the prediction interval.

MAE � 1
N

∑N
i�1

∣∣∣∣p − p̂
∣∣∣∣. (5)

In Eqs. 4, 5, N denotes the total number of samples in the test

set; p denotes the actual value of wind power; p̂ denotes the

predicted value of wind power, and PCAP denotes the total

installed capacity of the wind power plant.

3.3.2 Evaluation index of interval prediction
For the results of short-term wind power interval prediction,

two indicators, interval coverage, and interval average

bandwidth, are selected for evaluation.

The prediction interval coverage probability (PICP), as a

basis for assessing the reliability of the prediction model, mainly

reflects the probability that the actual power falls within the

predicted fluctuation interval.

PICP � 1
N

∑Nt

i�1
k(a)i . (6)

In Eq. 6,N is the number of prediction points in the prediction

interval; α is the given confidence level; k is the Boolean quantity,

when k � 1 it indicates that the actual power falls within the

prediction interval, and when k � 0 it indicates that the actual

power falls outside the prediction interval.

The prediction interval normalized average width (PINAW)

reflects the mean value of the width between the upper and lower

limits of the prediction and serves as the primary basis for

assessing the clarity of the prediction model.

PINAW � 1
NtR

∑Nt

i�1
[Ut(xi) − Lt(xi)]. (7)

In Eq. 7,N is the variation interval of the predicted power;

if the predicted results have the same value of PICP, when the

value of PINAW is smaller, the prediction is better and vice

versa.

The average coverage error (ACE) is the difference

between PICP and the confidence level α.ACE and PINAW

together form an evaluation system. When the ACE is same,

the smaller the PINAW, the better the clarity of the prediction

results.

ACE � (PICP − α) × 100%. (8)

FIGURE 8
Comparison of forecast effects in four seasons.
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4 Case analysis

In this study, the measured data of a wind farm with a total

installed capacity of 400.5 MW in Jilin, China, are used for

arithmetic analysis, and the measured data and NWP data

with a temporal resolution of 15 min are selected. Among

them, the data of the wind farm for the first 2 months of each

season in 2 years were selected as the training set, and the

prediction errors of the last month of each season in the

previous year were used as the deterministic prediction

statistics. The short-term wind power interval prediction uses

data from the last month of each season in the latter year.

The accuracy of deterministic prediction is not only related to

the network model but also deeply influenced by the network

input. The NWP information is diverse, containing wind speed,

wind direction, pressure, and temperature at each different

height, etc. In this study, the RF-weighted extracted features

of multi-position NWP are used as the input features spatially,

and the power values of several dimensions after the correlation

test are introduced as the meteorological input of the PSO–DBN

model. The correlation power values of several dimensions after

the correlation test are used as the power inputs to the PSO–DBN

model and the correlation power values of several dimensions

after the correlation test as the power inputs to the PSO-DBN

model.

4.1 Deterministic prediction results

Figure 8 shows the comparison of the deterministic

prediction effect of a day in four seasons. As shown in

Figure 8, the power prediction value curve of this paper's

method matches the actual power curve better, and the

PSO–DBN model can effectively capture some ranges of

upward and downward trends to achieve global tracking,

while the other two models cannot sense it and can only

complete the range over by smoothing. In the interval of

small power changes, the PSO–DBN model can still achieve

the best fit between the prediction curve and the actual value,

while the other two models are mostly higher or lower than the

TABLE 1 Comparison of prediction results in four seasons.

Season Model AR (%) MAE (%)

Spring ELM 85.13 16.59

DBN 84.25 17.16

PSO–DBN 86.47 14.25

Summer ELM 86.58 14.36

DBN 85.11 15.65

PSO–DBN 86.89 14.27

Autumn ELM 83.12 15.32

DBN 83.86 15.93

PSO–DBN 85.67 14.54

Winter ELM 82.68 17.23

DBN 83.24 18.11

PSO–DBN 83.91 16.94

FIGURE 9
Prediction effect chart of 3 days in four seasons.
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actual value curve, which can achieve a close fit with the change

trend but cannot achieve a numerical approximation. In the case

of high overall wind farm output levels in autumn, models such

as ELM produce large fluctuating errors of dramatic nature,

which is highly detrimental to subsequent probabilistic

forecasting and affects the forecasting effect. Accurate

deterministic forecasting provides a good basis for improving

the effectiveness of interval forecasting.

The specific indexes of each model are shown in Table 1. The

prediction effect of ELM and DBNmodels is unstable in different

seasons. In summer, the accuracy of ELM is higher than that of

DBN, which is 1.47% higher than that of the previous year; in

autumn, the accuracy of DBN is higher than that of ELM, which

is 0.74% higher than that of the previous year. The deterministic

forecasting errors of the PSO–DBN model in different seasons

are lower than those of the two comparison models, and

compared with ELM and DBN models, the short-term average

absolute errors were 2.34% and 2.91% lower in spring; and 0.29%

and 1.17% lower in winter, respectively. In summary, the

PSO–DBN model used in this study effectively avoids the

influence of seasonal factors and wind farm output level on

the deterministic prediction, making the prediction more

accurate and stable.

4 2 Interval prediction results

Figure 9 shows the effect of interval prediction for a 3-day

period in all seasons. As shown in Figure 9, the proposed model

can accurately track the wind power variation trend at a given

confidence level. In the same confidence interval, the PICP of the

proposed method increases and the PINAW decreases to achieve

the improvement of both indexes and provide more accurate

prediction information for the reliable operation of the system.

Whether the wind speed changes smoothly or steeply, the

prediction interval width performs well, and it has a relatively

good prediction width range in the entire test data set, indicating

that it has good interval width adaptability.

In order to more obviously reflect the superior performance

of the model in this study, the widely used quantile regression

method, Gaussian distribution, and Bootstrap sampling were

selected as the comparison models, and the interval prediction

assessment indexes of eachmodel were calculated, and the results

are shown in Table 2.

As can be seen from Table 2, compared with other models,

the short-term interval forecasting method proposed in this

study has the best results, with PICP greater than the other

three comparison models at all confidence levels and PINAW

less than the other three comparison models. On the premise

of ensuring a good forecasting effect, the system reliability is

improved and the proposed model has a certain stability; for

example, the PICP of the Gaussian distribution increases by

0.86% and PINAW decreases by 0.63% at 85% confidence level

compared with the bootstrap resampling method; but at 95%

confidence level, the PICP decreases by 0.62% and PINAW

increases by 0.71% compared with the Bootstrap resampling

method. The ACE indicators of Gaussian distribution,

quantile regression, and bootstrap sampling are all less

than 0, indicating that the PICP indicator is less than the

corresponding confidence level. Compared with the other

three methods, the kernel density estimation method has a

lower ACE indicator and higher reliability. Compared with

TABLE 2 Comparison of prediction evaluation indicator of each model.

Model Confidence level (%) PICP(%) PINAW(%) ACE (%)

Gaussian distribution 85 84.07 30.76 −0.93

90 89.20 33.51 −0.80

95 93.95 35.48 −1.05

Quantile regression 85 83.31 31.26 −1.69

90 87.24 33.57 −2.76

95 94.31 35.38 −0.69

Bootstrap sampling 85 83.21 31.39 −1.79

90 89.30 32.58 −0.70

95 94.57 34.77 −0.73

Kernel density estimation (enter a single-position NWP) 85 83.62 29.66 −1.38

90 89.55 31.08 −0.45

95 94.36 33.89 −0.64

Kernel density estimation (the method of this study) 85 84.85 27.52 −0.15

90 90.27 29.68 0.27

95 95.16 33.26 0.16
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the probabilistic prediction method without considering

spatio-temporal dependence, the method in this study

increased PICP by 1.23%, 0.72%, and 0.80% and reduced

PINAW by 2.14%, 1.40%, and 0.63% at each confidence

level, respectively.

5 Conclusion

In this study, a short-term wind power probability prediction

method considering the spatial and temporal dependence of

prediction errors is developed and concluded as follows:

1) To be able to better reflect the adaptability of the model under

different wind resources, the error is statistically analyzed by

considering the spatio-temporal dependence, and the

proposed model effectively improves the prediction

accuracy of probabilistic forecasting

2) Compared with Gaussian distribution, the quantile regression

method, and the bootstrap resampling method, the method in

this study has higher reliability at different confidence levels,

and the average PICP is improved by 1.02%, 1.80%, and

1.06%, and PINAW is reduced by 3.10%, 3.25%, and 2.76%

3) Compared with the probabilistic prediction methods that do

not consider spatio-temporal dependence, the method in this

study enables the short-term probabilistic prediction of wind

farms to be improved

Predicting wind power is of great value to power systems, and

its accuracy directly affects the system dispatch and reliable

operation of the grid. In order to improve the prediction

accuracy, the error is classified by using a hierarchical

clustering method based on the consideration of spatial and

temporal dependence. The errors of wind power time-series and

meteorological factors are fully considered in this study when

constructing the prediction model, but the accuracy of the power

characteristic curve also affects the accuracy of power prediction,

and this part will be further studied in the subsequent work.
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