
A rapid warning method for
wildfire occurrences along the
transmission corridor driven by
power system monitoring data

Xiangxi Duan1,2,3, Qi Huang1,3*, Zhe Chen1,3, Jian Li1,3 and
Xibi Ren1,3

1University of Electronic Science and Technology of China, Chengdu, China, 2State Grid Sichuan
Electric Power Research Institute, Chengdu, China, 3Power system wide area measurement and
control of the Key Laboratory of Sichuan Province, Chengdu, China

This paper focuses on the problems of frequent wildfire occurrences along the

transmission corridor and the lack of accurate and timely monitoring means for

early warnings. Furthermore, this paper evaluates the rapid warning method for

wildfire occurrences along the transmission corridor driven by power system

monitoring data. First, we established the relationship between the historical

data of wildfires along the transmission corridor and the operating state

information of a power grid based on the Apriori association rule algorithm;

the characteristic signals of the transmission line when wildfires occur were

mined. Second, based on the characteristics of the time distribution of wildfire

occurrences along the transmission corridor, a nonlinear regression model was

created to further improve the prediction accuracy. Finally, by combining the

characteristic signals and time distribution characteristics, we developed an

early warning method. This method not only addresses the challenges faced by

meteorological satellite remote sensors caused by the weather, the long transit

time interval, and the high cost of adding sensors, but it also realizes the remote

and rapid early warning of wildfires along the transmission corridor. Finally, a

case study of practical data of a certain area in southwest China is used to verify

the proposedmethod. The results show the high accuracy and timeliness of the

proposed method.
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1 Introduction

Most renewable energy sources are concentrated in areas far from load centers and

transported over long distances by transmission lines. These renewable energy transmission

corridors are prone to wildfires. The safe and stable operation of those transmission lines is

related to power grid security and people’s livelihoods. However, as those transmission lines

often cross vegetation-rich areas, the transmission corridor is prone to outbreaks of wildfires

due to the combined effects of human activities and meteorological factors, which in turn
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threaten the safety of the power grid in the area and affect the

normal power supply (Lu et al., 2017; Liu et al., 2018). Under

wildfire conditions, the breakdown voltage of the transmission line

will be significantly reduced. This dielectric strength reduction of the

transmission line gap is the result of the combined action of the

flame temperature, electrons and ions, and solid particles (Wu et al.,

2011; Antonov, 2021). When the transmission line is grounded,

short-circuited, or disconnected, it may also induce wildfires. For

example, the direct cause of the March.30 forest fire in Liangshan,

Sichuan Province in China is that wires reserved for connecting

wires on both sides of the tower overlapped with the hoop of the

pole cross-arm support frame under the action of the specific wind

direction. This resulted in a permanent grounding discharge fault,

causing the aluminummetal of the wire body tomelt. The insulating

material caught fire and burned, resulting in a significant loss of life

and property (Accident investigation team, 2021). In another

example, the wildfires in California were mainly caused by the

failure of the power transmission equipment (Muhs et al., 2020).

The traditional transmission line wildfire warning mainly relies

on manual inspections, which require considerable manpower and

material resources. Currently, the research on early warnings for

transmission line wildfires mainly focuses on the installation of

smoke and fire detection devices at fixed locations, the installation of

video surveillance devices for transmission lines, meteorological

radar monitoring, and meteorological satellite remote sensing

image recognition. Based on polar-orbiting satellite and

geostationary satellite images, researchers (Liang et al., 2020)

improved the threshold conditions, and adaptive dynamic

threshold conditions were used for fire spot identification. In one

study (Liu et al., 2020), the authors proposed a transmission line

wildfire fault detection method based on millimeter-wave radar

technology that combined infrared multi-spectral technology with

millimeter-wave radar technology. In another study (Dian et al.,

2019), a cellular automata model based on the principle of disaster

geography was used to predict the spatiotemporal process of

wildfires, and the proposed line interruption model was used to

illustrate the mechanism of wildfire damage to transmission lines. A

spatiotemporal context algorithm based on Himawari-8

geostationary satellite data was proposed in the literature (Chen

et al., 2019). Other researchers (Muhs et al., 2021) proposed a

probabilistic statistics-based hot spot identification algorithm for

transmission lines. The automatic identification algorithm of

wildfires in transmission lines was studied based on the weather

radar echo database and the network monitoring of a new

generation weather radar (Shu et al., 2020). Melnikov et al.

(Melnikov et al., 2008) used S-band dual-polarization radar to

analyze the radar polarization parameter characteristics of a

forest fire echo in Oklahoma, United States. In another work

(Beltramone et al., 2017), researchers used three risk factors of

transmission line historical faults, real-time monitoring data, and

meteorological forecast information, to develop an early warning

evaluation model for transmission line fire prevention based

on AHP.

Meteorological satellite remote sensing is the most widely

used wildfire monitoring technology, which has the advantages of

a wide monitoring range, short monitoring period, and high

spatial resolution. However, there are disadvantages, such as a

long time interval for satellite transit, blind spots in the scanning

coverage, and easy interference in image recognition. Fires

cannot be usually found at first, especially in the case of

wildfires caused by transmission line faults. Installation of

smoke and fire detection devices at fixed locations is costly,

FIGURE 1
Mechanism of generating alarm signals.
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andmaintenance costs are considerable. The use of weather radar

to detect wildfires is still in its infancy, and it is susceptible to

clutter interference, such as that from factories and wind power.

Currently, the power grid has a relatively complete information

monitoring system, and it is possible to carry out fire warning

and analysis based on the information of the power grid

monitoring system. In this paper, we propose a rapid early

warning method for wildfires along the transmission corridors

based on power grid monitoring information. Then the

mechanism’s relationship between wildfires along the

transmission corridors and warning signals is investigated.

The characteristic signals were mined using the Apriori

association rule algorithm based on historical event records

and related alarm signals of wildfires along the transmission

corridor. Early warnings based on characteristic signals are

susceptible to interference from similar warning signals caused

by other power grid equipment failures. To further improve early

warning accuracy, this paper analyzes the time distribution of

regional wildfires along the transmission corridor. A nonlinear

regression model of time distribution was established, and the

optimization of the probability early warning value was carried

out. Finally, by combining the characteristic signals and time

distribution nonlinear regression model, the early warning

method based on the characteristic signals and time

distribution nonlinear regression model was created, and the

remote and rapid early warning of wildfires along the

transmission corridor was realized. This work eliminate the

interference of meteorological conditions on meteorological

satellite remote sensing without additional installment of

sensors. It greatly contributes to manpower and financial

reduction. Meanwhile the safe and stable delivery of large-

scale renewable energy power is guaranteed.

In the first section of this paper, the mechanism’s relationship

between the transmission corridor fire and alarm signal is studied,

and the Apriori association rule algorithm is introduced. In the

second section, the nonlinear regression model of the time

distribution of the wildfire along the transmission corridor is

introduced to solve the problem of easy interference and low

accuracy of the warnings based on the characteristic signals alone.

In the third section, the probability warning value optimization of

the time distribution nonlinear regression model is introduced.

The early warning method based on the characteristic signal of

wildfires and the time distribution nonlinear regression model is

formed, and the remote and rapid early warning of wildfire is

realized. In the fourth section, the feasibility of the method is

verified by numerical examples. Based on the calculations for

Example 1, and using the Liangshan forest fire (30 March) as an

example, the high accuracy and timeliness are demonstrated by

comparing the satellite image recognitionmethodwith themethod

described in this paper without considering the temporal

distribution characteristics of mountain fires. In the fifth

section, we discuss our conclusions, summarize the advantages

of our method compared with the existing methods, and suggest

the applications of the method.

2 Mining characteristic signals of
wildfires along the transmission
corridor based on the apriori
association rule algorithm

2.1 Signal generation mechanism analysis

2.1.1 Power grid failure caused by wildfires
A wildfire is a kind of multiphase weak plasma containing

solid and liquid particles with different particle sizes at high

temperatures. When a wildfire spreads to the vicinity of the

transmission line, the insulation strength of the transmission line

FIGURE 2
The transmission lines were broken by a lightning strike. FIGURE 3

Substandard tying process.
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decreases, and it is easy to cause the trip of the line due to the

phase-to-phase fault and ground fault. The reasons for the

decline of transmission line insulation strength caused by

wildfire are as follows: 1) The high temperature of the flame

reduces the air density, which leads to the decrease of the

insulation level; 2) the electric field near the transmission line

is distorted by the charge in the flame; and 3) particle contact

leads to a discharge (Wu et al., 2011). Figure 1 shows the signal

generation mechanism of a transmission line failure caused by a

wildfire using the transmission lines of various voltage levels in

southwest China as an example.

Most transmission lines of 35 kV and below are non-effective

grounded systems. When a single-phase grounding fault occurs,

the transmission lines will not trip directly and can still run for

approximately 2 h. If a grounding fault occurs on transmission

lines of 35 kV and below, alarms related to grounding will be

triggered. When the ground fault and phase-to-phase fault occur

on transmission lines of 110 kV and above, the relay protection

machine action will be triggered and a trip will be caused.

2.1.2 Wildfires caused by transmission line faults
In the actual operation of transmission lines, faults such as

grounding, short circuits, and transmission line disconnections

may occur due to aging, substandard processes, wind action,

lightning strikes, and other factors. As shown in Figures 2, 3, the

transmission lines were broken by a lightning strike, and the

installation process was not up to standard: these occurrences

may both cause a wildfire.

When a wildfire is caused by a transmission line fault, the

triggering mechanism of the alarm signals occurs as shown in

Figure 4.

As shown in Figure 4, when the above factors cause a ground

fault of the transmission line, the relevant alarm signals will be

triggered. Similar to the alarm signals of a power grid failure caused

by wildfire, alarms related to grounding and relay protection will be

triggered. These alarm signals are sent to the power grid dispatch

center or centralized control station through the remote devices in

the substation. Therefore, it is possible to use the alarm signal of the

control center for the rapid warning for wildfires.

2.2 Characteristic signal mining

The analysis of the signal triggering mechanism and the

characteristics of the power grid equipment in southwest China

revealed the related alarms that may be triggered. These are listed

in Table 1. To further mine the data for the characteristic signals

of wildfires in the transmission corridor during the actual

operation of the power grid, it is necessary to match the

recorded data of wildfires in the transmission corridor with

the substation or power plant on both sides of the line, and

associate the alarm data from 5 h before the start of wildfire to the

end of wildfire in the transmission corridor.

FIGURE 4
Mechanism of generating alarm signals.

TABLE 1 Related alarm signals.

No. Alarm signal

1 Grounding alarm

2 The circuit breaker switch is misaligned

3 Protection trigger of relay protection device

4 Out-of-limit voltage

5 Action of harmonic elimination device

6 Action of traveling wave distance measurement

7 Alarm of excessive zero sequence current
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The Apriori association rule algorithm is used to mine

characteristic signals of transmission lines with different

voltage levels, and the characteristic signals are mined from a

large number of historical alarm data related to wildfire

occurrence along the transmission line. The Apriori

association rule algorithm is an iterative method of the layer-

by-layer search. Its core idea is to generate candidate items and

their support through connection and then generate frequent

itemsets through pruning. The algorithm flow is shown in

Figure 5.

The Apriori association rule algorithm is used to mine

characteristic signals of transmission lines with different

voltage levels. This is mined from a large number of historical

alarm data related to wildfire occurrence along the transmission

corridor. The Apriori association rule algorithm is a layer-by-

layer iterative search method that generates candidate items and

their support by concatenation and then generates frequent

itemsets by pruning (Tian et al., 2020).

The alarm signal is expressed as follows:

Zi(1≤ i≤ 7, i ∈ N) (1)

where i is the serial number of a characteristic signal.

Support = P(Z1 Z2) is the probability of event Z1 and event

Z2 happening at the same time.

Confidence = P(Z2|Z1) � P(Z1 Z2)/P(Z1) is the probability
of event Z2 occurring based on event Z1.

Itemset k: If an event contains k elements, the event is called

itemset k.

FIGURE 5
The computational process of the Apriori association rule
algorithm.

FIGURE 6
The calculation process of the order determination of fitting
curve function.
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Frequent itemset k: The event met the minimum support

threshold.

Strong association rules: The k-dimensional data itemset is a

necessary condition for a frequent itemset, which is the set of all

its k − 1 dimensional subitems, and is also a frequent itemset.

These are rules that meet both minimum support thresholds and

minimum confidence thresholds.

The computational process of the Apriori association rule

algorithm is shown in Figure 5.

As shown in Figure 5, the one-dimensional itemset is scanned,

and the one-dimensional frequent itemset is generated if the

minimum support is satisfied. The one-dimensional itemset

that satisfies the minimum support continues the minimum

support calculation for the two-dimensional itemset until the k

itemsets do not satisfy the minimum support. In the frequent

itemset k − 1, the itemsets that do not meet the minimum support

have been eliminated. If the remaining itemset meets the

minimum confidence requirement through the confidence

calculation, then the strong association rule in the itemset is

obtained, and the itemset that meets the strong association rule

is the characteristic signal.

3 Time distribution of regional
wildfires along the transmission
corridor

The analysis of the signal generation mechanism of a

transmission corridor wildfire in the previous section indicated

that the characteristic signal can realize the remote and rapid early

warning of a transmission corridor wildfire. However because the

grid equipment operation fault or abnormality will also trigger a

similar signal, relying only on the characteristic signal will trigger

the early warning frequently and the accuracy of early warning is

low. However, due to seasonal climate changes, vegetation

changes, human activities, and other factors, the transmission

corridor wildfires have the characteristics of time distribution

and an auxiliary feature signal for judgment, which can

improve the accuracy of the early warning.

A nonlinear regression model was established by polynomial

(Lamich et al., 2017). The frequency of wildfires distribution in

each month is expressed as follows:

Xmi(1≤ i≤ 12, i ∈ N), (2)

where i indicates a month in a year.

The monthly probability distribution of wildfires in this

region is as follows:

Pmi � Xmi

∑12
i�1Xmi

. (3)

Similarly, i indicates an hour in a day, and the hourly

probability distribution of wildfires in this region is

Phi � Xhi

∑24
i�1Xhi

. (4)

Equations 3, 4 were used to calculate the probability

distribution, and then curve fitting was carried out to establish

a nonlinear regression model, which was represented by polyfit

(x,y,n). x represents the number of months or hours, y represents

the probability value of the corresponding months or hours, and

n represents the order of the fitting curve function. Since the

occurrence probability of a wildfire near the transmission line is a

low-probability event, to ensure that the accuracy of the model

reaches 0.001, the order of fitting curve function is first

determined by the successive increment method. The monthly

distribution of wildfires in the transmission corridors can serve as

an example; the calculation process of order determination is

shown in Figure 6.

The expression of polyfit (x,y,n) for the fitting curve function

is as follows:

f(x, y, n) � polyfit(x, y, n) (5)

Initially, the order n of polyfit (x,y,n) is 1, Length (y) is the

length of counting months, which is 12. J is the cyclic value of

calculating the length, and j = 1 at the beginning.

The square of the difference between the probability fitting

value and the historical probability value is (y(j) -y (j)) 2̂. When

FIGURE 7
Optimization process of probability warning value.
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all the calculated results are less than the precision threshold, the

order n that satisfies the precision of the fitting curve is output.

Combined with the calculation process, the calculation is

cyclic from the time when the order n is 1, and finally the order n

when the required precision is obtained.

Similarly, we take the monthly probability distribution of

wildfires along the transmission corridor as an example; after

determining the order n that meets the accuracy requirement, the

sample point is (xmi, ymi), mi � 1, 2, 3,/, 12, so the probability

fitting value is ŷmi � anxn
mi + an−1xn−1

mi +/ + a0. The loss

function L is as follows:

L � ∑
12

i�1
(Ymi − ŷmi)2 � ∑

12

i�1
(Ymi − anx

n
mi − an−1xn−1

mi −/ − a0)2

(6)
Tominimize the loss function L, the partial derivative of each

coefficient of the loss function is taken so that the value of the

partial derivative is 0, which can be calculated using Eq. 7:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

zL

zan
� 0

zL

zan−1
� 0

..

.

zL

za0
� 0

(7)

By solving these equations, we obtain the regression

coefficient that minimizes the loss function L, that is, the

regression coefficient of the fitting curve function polyfit

(x,y,n), and finally have the nonlinear regression model with

the required accuracy.

4 An early warning method based on
the characteristic signal and time
distribution nonlinear regression
model

Here, we elucidate the early warning method by combining

the characteristic signals mined based on the Apriori association

rule algorithm and the established nonlinear regression model of

the time distribution of wildfires in the transmission corridor in

the previous section.

4.1 Optimization of probability warning
value

The probability warning value of the nonlinear regression

model is set as PAlarm. When the probability of the nonlinear

regression model reaches the warning value, the warning about

the time distribution is output. To optimize the probability early

warning value, the increasing substitution method is used to

optimize the early warning value. The final accuracy rate is set as

the target value, and the purpose of optimization is to maximize

it, as defined in the following formula:

PTarget � (min(number of warnings)∣∣∣∣max(The number of

correct warnings)). (8)

To ensure that no correct early warning is missed, the target

value is the probability of the minimum number of early warning

corresponding to the maximum number of correct early warning.

The calculation process is shown in Figure 7, where 1 hour is

taken as a step.

As shown in Figure 7, the probability warning value of each time

point of the year P is calculated in hourly steps, and then the warning

value PAlarm is set. The occurrence of wildfires in transmission

corridors is a small probability event. To ensure the accuracy of

the model reaches 0.001, it is calculated in steps of 0.0001,

incrementing from 0 to 1, and finally making PTarget reach the

maximum, i.e., the output of the corresponding optimalwarning value.

4.2 The early warning process

The probability of the early warning process of wildfire along

transmission corridor based on the characteristic signals and

FIGURE 8
Warning model based on the characteristic signal and time
distribution nonlinear regression.

Frontiers in Energy Research frontiersin.org07

Duan et al. 10.3389/fenrg.2022.990509

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.990509


time distribution nonlinear regression model is shown in

Figure 8.

Figure 8 and Eq. 9 show that, among the characteristic signals

of transmission lines with different voltage levels, the output

Boolean quantity is 1 when the characteristic signals are detected.

Otherwise, the output Boolean quantity is 0:

Ti → bool: 1
Ti → bool: 0

(9)

As shown in Eq. 10, the warning value of the nonlinear

regression of the time distribution is set as PAlarm. When the

warning value is reached, the Boolean value of the output

warning value is 1; otherwise, the Boolean value of the output

is 0:

P≥ PAlarm → bool: 1
P< PAlarm → bool: 0

(10)

When both the characteristic signal and the nonlinear

regression warning of the time distribution meet the

conditions, the warning will be output to realize the

estimation of the wildfire occurrences along the power grid

driven by the power system monitoring data.

5 Experimental verification

5.1 Examples of typical areas

5.1.1 Characteristic signal mining
We take the states with the most serious wildfire hazards in

southwest China as an example: 277 wildfire incidents occurred

in 2020, including 57 directly affecting the power grid. The

records of the wildfire incidents along the transmission

corridor are shown in Table 2.

The events include the fire start time, fire end time, and the

name of the transmission line. The start time is the time when the

fire is discovered and reported, and the end time is the time when

the fire is confirmed to be over.

There were 31 events involving transmission lines of 110 kV

and above. The recorded data of the wildfires in the transmission

corridor with the substation or power plant on both sides of the

line are matched, and the alarm data from 5 h before the

transmission corridor fire starts to the end of the fire are

associated to form a dataset. Based on the alarm signals in

Table 1 and the process in Figure 5, the dataset was scanned

to obtain the support of each candidate, and the minimum

support threshold was set to 0.1. By comparing the candidate

support count with the minimum support, Z4 and Z7 do not

satisfy the condition of one-dimensional frequent set. {Z2, Z5}
and {Z3, Z5} do not satisfy the two-dimensional frequent itemset.

All items do not satisfy the three-dimensional frequent itemset.

Therefore, the maximum frequent itemset is two dimensions.

Then the confidence of each two-dimensional frequent itemset is

calculated, and the calculation results are shown in Table 3.

Similarly, there are 26 events in 35 kV and below lines, and

the dataset is scanned to obtain the support of each candidate

item. Since the data are relatively dense, the minimum support

threshold is set to 0.9. Compared to the candidate support count

with the minimum support, Z2, Z3, Z5, Z6, and Z7 do not meet

the one-dimensional frequent set. {Z1, Z2}, {Z1, Z5}, and {Z1, Z7}
do not meet the two-dimensional frequent itemset. All are not

satisfied with the three-dimensional frequent itemset. The

maximum frequent itemset is two-dimensional. Then the

confidence of each two-dimensional frequent itemset is

calculated. The calculation results are shown in Table 4.

Using the calculation results for 35 kV and below lines, the

grounding alarm signal Z1 and voltage overrun signal Z4 were

selected as the characteristic signals.

5.1.2 Nonlinear regression model
The distribution probability of the hours and months was

obtained through the processing of the historical record data, as

shown in Tables 5, 6.

Using the calculation process of fitting the order of the curve

function in Figure 6, the order is determined as 5 by substituting

the data in Tables 5, 6, that is, n = 5.

Using the monthly distribution probability of wildfires in

Table 5, the nonlinear regression model of the monthly

distribution was established, as shown in Eq. 11:

f(xm, ym, 5) � polyfit(xm, ym, 5)
� a5x

5
m + a4x

4
m + a3x

3
m + a2x

2
m + a1xm + a0 (11)

By solving Eqs 6, 7, the regression coefficient of the nonlinear

regression model of the monthly distribution was obtained, as

shown in Eq. 12:

TABLE 2 Manual record of wildfires.

No. Transmission line name Start time End time Affects
the power grid

1 220 kV Xilin February 3 15:10 February 3 22:20 Yes

2 35 KV Lula January 8 14:52 January 9 07:04 Yes

3 10 KV Kaiyuan February 8 15:40 February 9 08:00 Yes
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⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

a5 � 0.0016
a4 � −0.0728
a3 � 1.2164
a2 � −8.8449
a1 � 22.8692
a0 � 4.4424

(12)

Using the hourly distribution probability of line mountain

fire in Table 6, the nonlinear regression model of the hourly

distribution was established, as shown in Eq. 13:

f(xh, yh, 5) � polyfit(xh, yh, 5)
� a5x

5
h + a4x

4
h + a3x

3
h + a2x

2
h + a1xh + a0 (13)

By solving Eqs 6, 7, the regression coefficient of the nonlinear

regression model with the hourly distribution was obtained, as

shown in Eq. 14:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

a5 � 0.0001
a4 � −0.0070
a3 � 0.1376
a2 � −1.0139
a1 � 2.7384
a0 � −1.5313

(14)

Finally, the nonlinear regression model of time distribution is

shown in Eq. 15:

P � polyfit(xm, ym, 5)•polyfit(xh, yh, 5) (15)

The time probability of wildfires along the transmission

corridor of this region was obtained by inputting the monthly

hours of the whole year into the nonlinear regression model of

time distribution with an hour as the step, as shown in Figure 9.

It can be seen from the figure that the time distribution

probability of wildfires in this area is very obvious, and it is

impossible for wildfires to occur during certain times. In

February at 16:00, the time probability of wildfires is the

highest (0.025). From the 12-month distribution of the whole

year, the frequency of wildfires is lower in the summer and

autumn and higher in the winter and spring. During the Chinese

New Year and Tomb-Sweeping Day, it reaches the peak

(February). In the months with a high frequency of line

wildfires, the probability of wildfires in 24 h presents a normal

distribution.

5.1.3 Optimization of the probability warning
value

After the time probability of wildfires is obtained, the

probability warning value PAlarm of the time distribution is

optimized. Multiple mountain fires occurring at the same

hour are assumed as one time for calculation, so that the

probability warning value PTarget can be reached. The

calculation results are shown in Figure 10.

As it can be seen in Figure 10 and according to the definition

of Eq. 8, through the optimization of probability early warning

value PAlarm, PTarget � 0.005. At this time, the number of correct

early warnings is 57, the total number of early warnings is 61, and

the probability of an accurate early warning is 93%. When the

probability warning value continues to increase, the probability

of an accurate warning can be further improved, but the number

of correct warnings is sacrificed.

TABLE 3 Transaction dataset of 110 kV and above transmission lines.

Signal P(Zi) Rule P(Zi Zj) P(Zi|Zj)

Z1 54% Z1 → Z2 14% 26%

Z2 46% Z2 → Z1 14% 31%

Z3 46% Z3 → Z1 14% 31%

Z4 3% Z1 → Z3 14% 26%

Z5 28% Z2 → Z3 100% 100%

Z6 0% Z3 → Z2 100% 100%

Z7 3% Z5 → Z1 14% 50%

Z1 → Z5 14% 26%

TABLE 4 Transaction dataset of 35 kV and below transmission lines.

Signal P(Zi) Rule P(Zi Zj) P(Zi|Zj)

Z1 100% Z1 → Z4 96% 96%

Z2 88% Z4 → Z1 96% 100%

Z3 88%

Z4 96%

Z5 77%

Z6 0%

Z7 85%

TABLE 5 Monthly distribution probability of wildfires.

Month 1 2 3 4 5 6

Pmi 0.21 0.18 0.27 0.13 0.10 0.023

Month 7 8 9 10 11 12

Pmi 0.002 0.014 0.009 0.008 0.02 0.047

TABLE 6 Hourly distribution probability of wildfires.

Hour 1 2 3 4 5 6

Phi 0.006 0.008 0.002 0.002 0 0.003

Hour 7 8 9 10 11 12

Phi 0.008 0.017 0.014 0.045 0.055 0.048

Hour 13 14 15 16 17 18

Phi 0.067 0.12 0.11 0.10 0.13 0.08

Hour 19 20 21 22 23 24

Phi 0.06 0.04 0.05 0.02 0.008 0.003
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5.1.4 Warnings of wildfires along transmission
corridors

The monitoring and alert information of the power grid in

January 2021 was extracted from the database of the main power

grid regulation and control station of the city and state and

calculated by substituting the alert process in Figure 8. In

January 2021, there were three transmission corridor wildfire

events affecting the grid operation in the region. To verify the

accuracy of the time distribution regression model for the

transmission corridor fires, the monitoring and warning

information of the power grid was also substituted into the

characteristic signal model without considering the time

distribution regression warning. The prediction results using

satellite image recognition technology for the same period were

collected and compared to obtain the results shown in Figure 11.

Figure 11 shows that for the example of the transmission

corridor wildfires affecting the power grid that occurred in the

region in January 2021, the early warning model based on the

FIGURE 9
Time probability of wildfires.

FIGURE 10
Optimization results of probability warning values.
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characteristic signal and time distribution regression warned three

times, while the satellite image recognition only warned correctly

two times. There is a significant difference in the accuracy of these

methods. With the proposed model, it warns 13 times with an

accuracy of 23%. For the characteristic signal model without

considering the time distribution regression warning, it warned

183 times with an accuracy rate of only 1.6% due to the numerous

disturbing signals in the actual operation of the power grid. The

satellite image recognition warned 134 times with an accuracy rate

of 1.5%. Further analysis of the warning time is shown in Table 7.

FIGURE 11
Comparison of prediction results.

TABLE 7 Warning times.

No Model based on
characteristic signal and
time distribution regression

Satellite image recognition Manual recording

1 January 3 15:05 January 3 15:25 January 3 15:05

2 January 7 13:40 January 7 13:50 January 7 13:57

3 January 3 13:15 None January 3 13:30

TABLE 8 Records of wildfires affecting power grid in Liangshan district in March 2020.

No Voltage level (kV) Start time End time Impact and measures

1 220 March 30 17:12 March 30 21:09 Relay protection starts trip

2 10 March 30 17:00 March 30 17:41 Ground fault and no trip

TABLE 9 Warning times.

No. Voltage Level (kV) Warning condition Early warning model
in this paper

Lead time

1 220 The characteristic signal is triggered, and the time probability reaches the warning value March 30 17:12 0 min

2 10 The characteristic signal is triggered, and the time probability reaches the warning value March 30 15:33 87 min
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The data in Table 7 indicate the satellite image identification

technique is limited by the long transit time interval, the

existence of blind areas in the scanning coverage, and the

influence of weather. Two warning times are later than the

method described in this paper. Because of the monitoring

background alarm information update time of 1 minute, the

early warning model based on the feature signal and time

distribution regression was 12 and 15 min earlier than the

manually determined start time in events 2 and 3, respectively.

5.2 Examples of “30 March” forest fire in
liangshan, sichuan province

For the “30 March” forest fire in Liangshan, Sichuan in 2020,

the fire was caused by a transmission line fault. Since the

Liangshan region is adjacent to the above modeled area and

has similar geographical and climatic conditions, the above

model was used to extract the monitoring alarm information

from the monitoring background for the Liangshan region in

March 2020. In March 2020, there were two incidents of wildfires

affecting the power grid in the Liangshan region, as shown in

Table 8, among which the “3–30” forest fire is incident 2.

Our calculations show that the number of early warnings was

11, the correct number was two times, and the accuracy was 18%.

The early warning results were analyzed (in March 2020, wildfire

warnings based on satellite image recognition technology were

not issued in this province), as shown in Table 9.

Table 9 indicates that the warning time of the proposed

method is synchronized with the start time of the manual

recording for 220 kV lines. For the “30 March” forest fire

incident, since a single-phase ground fault does not directly

trigger a trip in the transmission lines of 35 kV or below, the

method in this paper has more obvious warning timeliness and

can warn of a wildfire 87 min in advance.

6 Conclusion

This paper puts forward a rapid warning method for

wildfires based on state grid monitoring information. First,

the characteristic signals of wildfires were determined based

on the mechanism analysis of the power grid alarm signals of a

transmission line wildfire. To improve the warning accuracy,

the time distribution characteristics of wildfires were

analyzed, and the nonlinear regression model of the time

distribution was established. We combined them to develop

an early warning method based on the

characteristic signals and the time distribution nonlinear

regression model.

The effectiveness of the method was verified through typical

regional arithmetic examples. Compared with the method based on

satellite image recognition technology, the method can overcome

the disadvantages of a long transit time interval, areas without

adequate scanning coverage, weather, and other types of

interference. The accuracy rate reaches 23%, which is much

higher than that of satellite image recognition, and can provide

earlier warnings compared with the start time of manual recordings.

The advantage is obvious for the wildfires caused by transmission

line faults. For the example case of the “30 March” wildfire in

Liangshan, the method could have provided a warning 87 min

earlier, further proving its effectiveness and rapidity, especially for

low-voltage lines.

The method proposed in this paper does not require

additional sensors and can avoid the interference of

satellite image identification due to meteorological

conditions. By combining with existing monitoring

methods, such as satellite image identification technology

and sensor detection, it can provide a complementary

advantage for wildfire warning systems. Thus, it can be

used as a powerful supplement to the existing wildfire

prevention and control measures to guarantee the security,

stability, and economic operation of large power grids.

Furthermore, this can be effective in protecting people’s

lives and property from devastating wildfires.

Data availability statement

The original contributions presented in the study are

included in the article/supplementary

material, further inquiries can be directed to the

corresponding author.

Author contributions

This work was supported by Power system wide area

measurement and control of the Key Laboratory of Sichuan

Province. XD found this problem in his daily work and

proposed a solution, he also collected field data. QH, ZC, and JL

gave instructions on how to solve the problem, XR conduct

experiment.

Funding

This work was partially supported by Science and

Technology Innovation Talent Program of Sichuan Province

(grant number:22CXRC100).

Acknowledgments

This work was supported by the Power system wide area

measurement and control of the Key Laboratory of Sichuan

Frontiers in Energy Research frontiersin.org12

Duan et al. 10.3389/fenrg.2022.990509

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.990509


Province. In addition, XD wants to thank QH, ZC, and JL for

them affirmation and all those who love him.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their

affiliated organizations, or those of the publisher, the

editors and the reviewers. Any product that may be

evaluated in this article, or claim that may be made by

its manufacturer, is not guaranteed or endorsed by the

publisher.

References

Antonov, S. (2021). “Impact of the wildfires on the power supply networks,” in
2021 IV International Conference on High Technology for Sustainable
Development (HiTech), Sofia, Bulgaria, 07-08 October 2021 (IEEE). doi:10.
1109/HiTech53072.2021.9614216

Beltramone, G., Alaniz, E., Ferral, A. E., Aleksinkó, A., Arijón, D. R., Bernasconi,
I., et al. (2017). “Risk mapping of urban areas prone to flash floods in mountain
basins using the analytic hierarchy process and geographical information systems,”
in 2017 XVII Workshop on Information Processing and Control (RPIC), Mar del
Plata, Argentina, 20-22 September 2017 (IEEE), 1–6. doi:10.23919/RPIC.2017.
8214379

Chen, W., Zhou, Y., Chen, J., Zhou, E., Zhou, W., and Sui, S. (2019). “Wildfire
monitoring technology of transmission lines based on Himawari8 geostationary
meteorological satellite,” in Proc. IEEE 3rd Conf. Energy Internet Energy Syst.
Integr. (EI), Changsha, China, 08-10 November 2019, 2408–2412. doi:10.13336/j.
1003-6520.hve.20190498

Dian, S. Y., Cheng, P., Ye, Q., Wu, J., Luo, R., Wang, C., et al. (2019). Integrating
wildfires propagation prediction into early warning of electrical transmission line
outages. IEEE Access 7, 27586–27603. doi:10.1109/access.2019.2894141

Lamich, M., Balcells, J., Corbalán, M., and Griful, E. (2017). Nonlinear loads
model for harmonics flow prediction, using multivariate regression. IEEE Trans.
Ind. Electron. 64 (6), 4820–4827. doi:10.1109/tie.2017.2674596

Li, H., and Long, Z. (2021). Risk analysis of forest fire in Liangshan Prefecture,
Sichuan Province based on Logistic model. Journal of Safety and Environment 21
(2), 498–505.

Liang, Y., Zhou, L., Chen, J., Huang, Y., Wei, R., and Zhou, E. (2020). Monitoring
and risk assessment of wildfires in the corridors of high-voltage transmission lines.
IEEE Access 8, 170057–170069. doi:10.1109/access.2020.3023024

Liu, H., Wang, S., Jiang, M., and Li, J. (2020). “Analysis of millimeter-wave radar
for monitoring mountain fire in power grid,” in 2020 IEEE 5th Information

Technology and Mechatronics Engineering Conference (ITOEC), Chongqing,
China, 12-14 June 2020 (IEEE), 805–809. doi:10.1109/ITOEC49072.2020.9141870

Liu, Y., Lu, J. Z., Luo, J., Zhang, G. Y., and He, L. F. (2018). Synchronous satellite
wide area monitoring for overhead transmission line wildfire and tower location.
Power Syst. Technol. 42 (4), 1322–1327. doi:10.13335/j.1000-3673.pst.2017.1812

Lu, J., Zhou, T., Wu, C., Li, B., Liu, Y., and Zhu, Y. (2017). Prediction and early
warning technology of wildfire nearby overhead transmission lines.High. Volt. Eng.
43 (8), 2524–2532. doi:10.13336/j.1003-6520.hve.20161227041

Melnikov, V. M., Zrnic, D. S., Rabin, R. M., and Zhang, P. (2008). Radar
polarimetric signatures of fire plumes in Oklahoma. Geophys. Res. Lett. 35 (14),
148155–L15443. doi:10.1029/2008gl034311

Muhs, J. W., Parvania, M., Nguyen, H. T., and Palmer, J. A. (2021).
Characterizing probability of wildfire ignition caused by power distribution
lines. IEEE Trans. Power Deliv. 36 (6), 3681–3688. doi:10.1109/tpwrd.2020.
3047101

Muhs, J. W., Parvania, M., and Shahidehpour, M. (2020). Wildfire risk mitigation:
A paradigm shift in power systems planning and operation. IEEE Open J. Power
Energy 7, 366–375. doi:10.1109/oajpe.2020.3030023

Shu, S., Zhang, S., Xu, J., Xie, W., and Fang, C. (2020). Study on automatic
identification algorithm of wild fire near transmission lines based on CINRAD-net
monitoring. Proc. CSEE 40 (13), 4200–4209. doi:10.13334/j.0258-8013.pcsee.
190516

Tian, M., Zhang, L., Guo, P., Zhang, H., Chen, Q., Li, Y., et al. (2020). Data
dependence analysis for defects data of relay protection devices based on apriori
algorithm. IEEE Access 8, 120647–120653. doi:10.1109/access.2020.3006345

Wu, T., Ruan, J., Hu, Y., Liu, B., and Chen, C. (2011). Study on forest fire induced
breakdown of 500 kV transmission line in terms of characteristics and mechanism.
Proc. CSEE 31 (34), 163–170. doi:10.13334/j.0258-8013.pcsee.2011.34.0

Frontiers in Energy Research frontiersin.org13

Duan et al. 10.3389/fenrg.2022.990509

https://doi.org/10.1109/HiTech53072.2021.9614216
https://doi.org/10.1109/HiTech53072.2021.9614216
https://doi.org/10.23919/RPIC.2017.8214379
https://doi.org/10.23919/RPIC.2017.8214379
https://doi.org/10.13336/j.1003-6520.hve.20190498
https://doi.org/10.13336/j.1003-6520.hve.20190498
https://doi.org/10.1109/access.2019.2894141
https://doi.org/10.1109/tie.2017.2674596
https://doi.org/10.1109/access.2020.3023024
https://doi.org/10.1109/ITOEC49072.2020.9141870
https://doi.org/10.13335/j.1000-3673.pst.2017.1812
https://doi.org/10.13336/j.1003-6520.hve.20161227041
https://doi.org/10.1029/2008gl034311
https://doi.org/10.1109/tpwrd.2020.3047101
https://doi.org/10.1109/tpwrd.2020.3047101
https://doi.org/10.1109/oajpe.2020.3030023
https://doi.org/10.13334/j.0258-8013.pcsee.190516
https://doi.org/10.13334/j.0258-8013.pcsee.190516
https://doi.org/10.1109/access.2020.3006345
https://doi.org/10.13334/j.0258-8013.pcsee.2011.34.0
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.990509

	A rapid warning method for wildfire occurrences along the transmission corridor driven by power system monitoring data
	1 Introduction
	2 Mining characteristic signals of wildfires along the transmission corridor based on the apriori association rule algorithm
	2.1 Signal generation mechanism analysis
	2.1.1 Power grid failure caused by wildfires
	2.1.2 Wildfires caused by transmission line faults

	2.2 Characteristic signal mining

	3 Time distribution of regional wildfires along the transmission corridor
	4 An early warning method based on the characteristic signal and time distribution nonlinear regression model
	4.1 Optimization of probability warning value
	4.2 The early warning process

	5 Experimental verification
	5.1 Examples of typical areas
	5.1.1 Characteristic signal mining
	5.1.2 Nonlinear regression model
	5.1.3 Optimization of the probability warning value
	5.1.4 Warnings of wildfires along transmission corridors

	5.2 Examples of “30 March” forest fire in liangshan, sichuan province

	6 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References


