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The classical Kalman filter is a very important state estimation approach,

which has been widely used in many engineering applications. The Kalman

filter is optimal for linear dynamic systems with independent Gaussian noises.

However, the independence and Gaussian assumptions may not be satisfied

in practice. On the one hand, modeling physical systems usually results in

discrete-time state-space models with correlated process and measurement

noises. On the other hand, the noise is non-Gaussian when the system is

disturbed by heavy-tailed noise. In this case, the performance of the Kalman

filter will deteriorate, or even diverge. This paper is devoted to addressing

the state estimation problem of linear dynamic systems with high-order

autoregressive moving average (ARMA) non-Gaussian noise. First, a triplet

Markov model is introduced to model the system with high-order ARMA

noise, since this model relaxes the independence assumption of the hidden

Markov model. Then, a new filter is derived based on correntropy, instead of

the commonly used minimum mean square error (MMSE), to deal with non-

Gaussian noise. Unlike the MMSE, which uses only second-order statistics

of error, correntropy can capture second-order and higher-order statistics.

Finally, simulation results verify the effectiveness of the proposed algorithm.

KEYWORDS

kalman filter, higher-order autoregressive moving average, non-Gaussian, triplet markov model,

correntropy

1 Introduction

State estimation is a very important problem in many engineering applications, such
as energy internet, system control, tracking, and so on [Zandavi and Chung (2019);
Zhang et al. (2022)]. These engineering applications are essentially a dynamic system,
which is usually described as a state-space model. The hidden Markov model (HMM) is
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the one of the most commonly used state-space models
(Zhang et al. (2018)). For linear case, the state estimation
problem is generally solved by the well-knownKalman filter(KF)
(Kalman (1960)), which is an optimal filter in the minimum
mean square error (MMSE) sense. MMSE is one of the most
commonly used cost function in the case of Gaussian noise,
and MMSE approach is an estimator which minimizes the mean
square error. In addition, a large number of nonlinear filters
have been proposed to solve nonlinear estimation problems, such
as extended Kalman filter, unscented Kalman filter, cubature
Kalman filter, particle filter, to name but a few (Anderson and
Moore (2012)).

Although the KF in general performs well, it has rigorous
requirements, that is, the process and measurement noises of
dynamic systems are independent and Gaussian. However, the
independence and Gaussian assumptions do not always hold in
practice (Zhang G. et al. (2021)). On one hand, in fact, the noise
of most dynamic systems is correlated. Research has shown that
modeling physical systems usually results in discrete-time state-
space models with correlated process and measurement noises,
and some practical applications are explained in (Saha and
Gustafsson (2012)). In addition, the dynamic and measurement
noise may even high-order (i.e., multi-step) correlated in
some severe environments (Zhang D. et al. (2021)). On the other
hand, the main reason for using the Gaussian assumption
is that it is mathematically simple, but in fact, dynamic
systems are usually disturbed by some heavy-tailed impulse
noise (Roth et al. (2013)).When the independence andGaussian
assumptions are not satisfied, the KF may fail to output reliable
estimation results.

To deal with correlated noise, the traditional method is
to reconstruct an HMM by prewhitening processing, and
then the classical KF can be used to estimate the state
(Bar-Shalom et al. (2001)). Another solution is to characterize
dynamic systems with correlated noise through more flexible
state-space models, such as the pairwise Markov model (PMM)
(Pieczynski and Desbouvries (2003)) and the triplet Markov
model (TMM) (Ait-El-Fquih and Desbouvries (2006)). In the
PMM, the state and measurement as a whole are regarded
as a Markov process, which improves the modeling ability of
complex dynamic systems. In the TMM, an auxiliary variable
is introduced to completely describe the dynamic systems. This
auxiliary variable can play a very significant role in some
engineering applications. For example, it can characterize the
uncertainty of parameters, non-stationarity and error sources.
It has been proved that the TMM is more general than the
HMM and the PMM, and it structural advantages make it
more preferable in addressing some real-world applications,
such as image segmentation (Derrode and Pieczynski (2004)),
speech processing (Ait El Fquih and Desbouvries (2005)), target
tracking (Zhang et al. (2017); Lehmann and Pieczynski (2020,
2021)), and so on.

For non-Gaussian noise, several approaches have been
proposed, which are mainly divided into three categories
(Izanloo et al. (2016)). The first is to replace the Gaussian
distribution with a more extensive heavy-tailed distribution
(Huang et al. (2017)). For example, the Student’s t distribution
is one of the most commonly used heavy-tailed distribution.
The main disadvantage of heavy-tailed distributions is that they
are usually analytically difficult, which brings about that related
estimation approaches have no closed form solution.The second
is the multiple model technique. In this approach, non-Gaussian
noise is represented as a finite sum of Gaussian distribution
(Shan et al. (2021)). The main difficulty of this approach is how
to design the model set reasonably, and the disadvantage is
that the amount of calculation will increase sharply with the
increase of the number of models. The third is the Monte
Carlo approach, in which a set of weighted random particles are
employed to characterize the state (Liu et al. (2018)). Generally,
sampling-based algorithms can be categorized into deterministic
sampling method and random sampling method. Particularly, in
the random samplingmethod, enough particles can approximate
the real state with arbitrary precision, at the cost of expensive
computation.

In the past few years, the correntropy-based filtering
technology has become an important orientation to solve the
state estimation of dynamic systems with non-Gaussian noise
(Kulikova (2017); Chen et al. (2017)). In information theory,
correntropy is a significant mathematical tool to measure the
similarity of two randomvariables.Unlike the commonly utilized
MMSE cost function, which uses only second-order statistic of
error, the correntropy captures second-order and higher-order
information, and ismore suitable for non-Gaussian noise, such as
heavy-tailed impulsive noise. Several filtering algorithms based
on correntropy have been designed in the framework of HMMs,
and they are more robust to non-Gaussian noise than the KF and
its variants.

In this paper, we are devoted to addressing the state
estimation problem of linear dynamic systems with high-order
autoregressive moving average (ARMA) non-Gaussian noise. A
new Kalman-like filter is developed in the framework of the
TMM based on correntropy. First, we resort to a linear TMM to
describe dynamic systems with high-order ARMA noise, since
the TMM is more general than the HMM. Second, based on the
model, a new Kalman-like filter is derived by using correntropy
cost function, instead of the commonly used MMSE cost
function. Because correntropy can capture not only second-order
but also higher-order statistics of error, the proposed algorithm
is more robust to non-Gaussian noise than the traditional filter.
Finally, simulation results show the effectiveness of the proposed
algorithm.

The rest of the paper is organized as follows. Section 2 is
the modeling of linear dynamic systems with high-order ARMA
noise. Section 3 derives a newKalman filter by using correntropy
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cost function in the framework of the TMM. In Section 4,
we validate the proposed algorithm via simulations. Finally,
conclusion is provided in Section 5.

2 Modeling of linear dynamic
systems with high-order ARMA noise

2.1 Linear hidden markov model

Consider the following linear dynamic system

{
xk+1 = Fkxk +Gkwk
zk =Hkxk + vk

(1)

where k is the time index, xk ∈ ℝnx is the state vector of dimension
nx, Fk the transition matrix, Gk is the process noise matrix,
wk∼N (0,Qk) is the process noise, zk ∈ ℝnz is the measurement
vector of dimension nz , Hk is the measurement matrix, and
vk∼N (0,Rk) is the measurement noise. N (m,P) denotes a
Gaussian distributionwithmean vectorm and covariancematrix
P.

In general, noise sequences w = {wk}k∈IN and v = {vk}k∈IN
are assumed independent, jointly independent and independent
of the initial state x0∼N (x̂0,P0). Then the state estimate can
be obtained by the classical KF, which is an optimal filter in
the MMSE sense. However, the independence and Gaussian
assumptions that are typically assumed in the HMM do not
always hold in practice, such as dynamic systemswith high-order
ARMA non-Gaussian noise. In this case, the KF may not output
reliable estimation results.

2.2 Linear triplet markov model for
dynamic systems with high-order ARMA
noise

2.2.1 Linear triplet markov chain model
We resort to a linear TMM to describe a linear HMM

with correlated noise. Let xk ∈ ℝ
nx is the state vector, zk ∈ ℝ

nz

is the measurement vector, rk ∈ ℝ
nr is an auxiliary variable,

and ζk = [x
T
k , r

T
k ,z

T
k−1]

T. If ζ = {ζk}k∈IN is a Markov process, the
following system is called a linear TMM (Ait-El-Fquih and
Desbouvries (2006)):

[[

[

xk+1
rk+1
zk

]]

]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
ζk+1

= [[

[

Fxx
k Fxr

k Fxz
k

F rx
k F rr

k F rz
k

F zx
k F zr

k F zz
k

]]

]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Fk

[[

[

xk
rk
zk−1

]]

]

+ [[

[

ξxk
ξrk
ξzk

]]

]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
ξk

(2)

where ξ = {ξk}k∈IN is zero mean white noise and independent of
the initial state ζ0.

2.2.2 Modeling high-order ARMA noise using
TMM

In this section, we utilize a linear TMM to model dynamic
systems with high-order ARMA noise (Zhang D. et al. (2021)).
The TMM provides a general framework for these typical
stochastic systems.

(1) High-Order ARMA Process Noise.
For high-orderARMAprocess noise, it can usually bewritten

in the form of the following difference equation:

wk = −
pw

∑
i=1

αwi wk−i +
qw

∑
i=0

βwi ξ
w
k−i (3)

where ξwk is white noise. Model (3) is a typical high-order
ARMA model, in which pw is the autoregressive order, qw is the
moving average order, and coefficient parameters αwi and βwi are
determined by the spectral factor Hw

k (z) of the power spectral
density Φw

k (z) of the process noise wk.
Suppose Φw

k (z) is a rational spectrum. According to the
spectral decomposition theorem, there is a spectral factor
satisfying

Φw
k (z) =H

w
k (z)H

w
k (z)
∗ (4)

where (⋅)∗ represents complex conjugate transpose operation,
and Hw

k (z) can be written by

Hw
k (z) = C

w
k (zI−A

w
k )
−1Bw

k +D
w
k (5)

Then, high-order ARMA process noise can be formulated by

{
xwk+1 = A

w
k x

w
k +B

w
k ξ

w
k

wk = C
w
k x

w
k +D

w
k ξ

w
k

(6)

If the process noise in model 1) is high-order ARMA noise,
it can be described by model (6). In this case, {xk} is no longer
a Markov process, but {(xk,x

w
k )} is a Markov process. Let ζk =

(xk, rk = x
w
k ,zk−1). Model 1) with (6) can be written in the form

of linear TMM (2), i.e.,

[[

[

xk+1
xwk+1
zk

]]

]

= [[

[

Fk GkC
w
k 0

0 Aw
k 0

Hk 0 0

]]

]

[[

[

xk
xwk
zk−1

]]

]

+[[

[

GkD
w
k ξ

w
k

Bw
k ξ

w
k

vk

]]

]

(7)

Assuming white noise ξwk∼N (0,Qk), the noise covariance
matrix of model 7) is

Qk =
[[

[

GkD
w
kQk(D

w
k )

TGT
k GkD

w
kQk(B

w
k )

T 0
Bw
kQk(D

w
k )

TGT
k Bw

kQk(B
w
k )

T 0
0 0 Rk

]]

]

(8)

(2) High-order ARMAMeasurement Noise.
For high-order ARMA measurement noise, it can also be

written in the following form of difference equation

vk = −
pv

∑
i=1

avi vk−i +
qv

∑
i=0

bvi ξ
v
k−i (9)
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where ξvk is white noise, p
v and qv are autoregressive order and

moving average order, respectively. If the spectral density of high-
orderARMAmeasurement noise isΦv

k (z) and the corresponding
spectral factor is Hv

k (z), similar to model (6), vk can be modeled
as follows

{
xvk+1 = A

v
kx

v
k +B

v
kξ

v
k

vk = C
v
kx

v
k +D

v
kξ

v
k

(10)

If the measurement noise in model 1) is high-order
ARMA noise, it can be described by model (10). Let ζk =
(xk, rk = x

v
k,zk−1). Model 1) with (10) can be written in the form

of linear TMM (2), i.e.,

[[

[

xk+1
xvk+1
zk

]]

]

= [[

[

Fk 0 0
0 Av

k 0
Hk Cv

k 0

]]

]

[[

[

xk
xvk
zk−1

]]

]

+[[

[

Gkwk
Bv
kξ

v
k

Dv
kξ

v
k

]]

]

(11)

Assuming white noise ξvk∼N (0,Rk), the noise covariance
matrix of model 11) is

Qk =
[[

[

GkQkG
T
k 0 0

0 Bv
kRk(B

v
k)

T Bv
kRk(D

v
k)

T

0 Dv
kRk(B

v
k)

T Dv
kRk(D

v
k)

T

]]

]

(12)

(3) High-Order ARMA Process and Measurement Noises.
If the process noise and measurement noise are high-order

ARMAnoises, they can be described bymodel 6) andmodel (10),
respectively. Let ζk = (xk, rk = (x

w
k ,x

v
k) ,zk−1). Model 1) with (6)

and (10) can be written in the form of linear TMM (2), i.e.,

[[[[

[

xk+1
xwk+1
xvk+1
zk

]]]]

]

=
[[[[

[

Fk GkC
w
k 0 0

0 Aw
k 0 0

0 0 Av
k 0

Hk 0 Cv
k 0

]]]]

]

[[[[

[

xk
xwk
xvk
zk−1

]]]]

]

+
[[[[

[

GkD
w
k ξ

w
k

Bw
k ξ

w
k

Bv
kξ

v
k

Dv
kξ

v
k

]]]]

]

(13)

Assumingwhite noises ξwk ∼N (0,Qk) and ξ
v
k ∼N (0,Rk), the

noise covariance matrix of model 13) is

Qk =
[[[[[

[

GkD
w
kQk(D

w
k )

TGT
k GkD

w
kQk(B

w
k )

T 0 0
Bw
kQk(D

w
k )

TGT
k Bw

kQk(B
w
k )

T 0 0
0 0 Bv

kRk(B
v
k)

T Bv
kRk(D

v
k)

T

0 0 Dv
kRk(B

v
k)

T Dv
kRk(D

v
k)

T

]]]]]

]
(14)

2.3 Restoration algorithm

Let x*k = (xk, rk). Then model 2) can be written as

[
x∗k+1
zk
] = [

Fx∗x∗
k Fx∗z

k
F zx∗

k F zz
k
][

x∗k
zk−1
]+[

ξx
∗

k
ξzk
] (15)

where the initial state x*0 and noise ξk are

x∗0 ∼N (x̂∗0 ,P
∗
0 ) , ξk ∼N(0, [

Qx∗x∗
k Qx∗z

k
Qzx∗

k Qzz
k
]

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Qk

) (16)

For model 15) with (16), a Kalman-like filter, called triplet
Kalman filter (TKF), has been derived to estimate the state x*k. For
convenience, the recursive equations are summarized as follows
(Ait-El-Fquih and Desbouvries (2006)).

Initialization:

x̂∗0|0 = x̂
∗
0 , P0|0 = P

∗
0 (17)

̂Fx∗x∗
k = F

x∗x∗
k −Q

x∗z
k (Q

zz
k )
−1F zx∗

k (18)

̂Fx∗z
k = F

x∗z
k −Q

x∗z
k (Q

zz
k )
−1F zz

k (19)

̂Qx∗x∗
k =Q

x∗x∗
k −Q

x∗z
k (Q

zz
k )
−1Qzx∗

k (20)

Prediction:

x̂∗k|k−1 = ̂F
x∗x∗
k−1 x̂∗k−1|k−1 +Q

x∗z
k−1(Q

zz
k−1)
−1zk−1 + ̂Fx∗z

k−1zk−2 (21)

P∗k|k−1 = ̂F
x∗x∗
k−1 P∗k−1|k−1( ̂F

x∗x∗
k−1 )

T + ̂Qx∗x∗
k−1 (22)

Update:

ek = zk −F zx∗
k−1x̂
∗
k|k−1 −F

zz
k−1zk−1 (23)

Re,k = F zx∗
k−1P
∗
k|k−1(F

zx∗
k−1)

T +Qzz
k−1 (24)

Kk = P∗k|k−1(F
zx∗
k−1)

TR−1e,k (25)

x̂∗k|k = x̂
∗
k|k−1 +Kkek (26)

P∗k|k = (I−KkF zx∗
k )P
∗
k|k−1 (27)

The TKF is also an optimal filter in the MMSE sense.
It in general performs well in Gaussian noise. However, it
performance will deteriorate or even diverge when applied to
non-Gaussian systems, since the TKF is derived under MMSE
criterion, which only uses second-order statistics of error. To
solve this problem, in the next section, a newfilter is developed by
using correntropy cost function, which utilizes not only second-
order but also higher-order statistics information.

3 Correntropy-based triplet kalman
filter

3.1 Correntropy

Correntropy is a very useful metric tool to measure the
similarity of two random variables in information theory
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(Chen et al. (2017)). For variables X and Y, the correntropy is
defined by

C (X,Y) = E [κ (X,Y)] = ∫κ (x,y)dfXY (x,y) (28)

where E [⋅] is an expectation operator, κ (⋅, ⋅) is a kernel function,
and fXY (x,y) is the joint probability density function of X and Y.
Generally, fXY (x,y) is unknown, and only a limited amount of
data is provided. Thus, the correntropy can be computed by

Ĉ (X,Y) = 1
N

N

∑
i=1

κ (x,y) . (29)

There are many options for kernel function. In this paper, we
choose the Gaussian kernel function

κ (x,y) = Gσ (xi − yi) , (30)

where σ is the kernel size, and Gσ (xi − yi) = exp(−
‖xi−yi‖

2

2σ2
). The

Gaussian kernel function is positive definite and bounded.When
X = Y, it takes the maximum value.

For the Gaussian kernel function, its Taylor series expansion
can be written as

C (X,Y) =
∞

∑
n=0

(−1)n

2nσ2nn!
E[(X−Y)2n] . (31)

It can be seen that the correntropy is in essence the
weighted sum of all even-order moments of error. Compared
with the MMSE, which uses only the second-order statistics of
error, correntropy captures the second-order and higher-order
statistics.

3.2 Main results

In this section, a new filter, called correntropy-based TKF
(CTKF), is derived by using correntropy under TMM. For clarity,
we first provide the main results, and then give the mathematical
derivation.

The initialization and prediction steps of the CTKF are the
same as those of the TKF, and its update step is summarized as
follows:

ek = zk −F zx∗
k−1x̂
∗
k|k−1 −F

zz
k−1zk−1 (32)

λk = Gσ (‖ek‖(Qzz
k )
−1) (33)

Re,k = F zx∗
k−1P
∗
k|k−1(F

zx∗
k−1)

T +Qzz
k−1 (34)

Kλ
k = λkP

∗
k|k−1(F

zx∗
k−1)

TR−1e,k (35)

x̂∗k|k = x̂
∗
k|k−1 +K

λ
kek (36)

P∗k|k = (I−K
λ
kF

zx∗
k )P
∗
k|k−1 (37)

Proof. For the linear TMM (2), we have

[
x̂∗k|k−1
zk
] = [

I
F zx∗

k
]x∗k +[

0
F zz

k
]zk−1 + ηk (38)

where I and 0 are identity and zeros matrices, and

ηk = [
−(x∗k − x̂

∗
k|k−1)

wz
k
]with E[ηkη

T
k ] = [

P∗k|k−1 0
0 Qzz

k
] (39)

To address non-Gaussian noise, we use correntropy instead
of MMSE to derive update equations.The cost function based on
correntropy is established by

J(x∗k) = Gσ(‖zk −F zx∗
k x∗k −F

zz
k zk−1‖(Qzz

k )
−1)

+Gσ(‖x
∗
k − x̂
∗
k|k−1‖(P∗k|k−1)

−1) (40)

Then the optimal estimation of x∗k is x̂∗k = argmax
x∗k

J(x∗k),

which can be obtained by

∂J(x∗k)

∂x∗k
= 1
σ2
Gσ(‖zk −F zx∗

k x∗k −F
zz
k zk−1‖(Qzz

k )
−1)

(F zx∗
k )

T(Qzz
k )
−1 (zk −F zx∗

k x∗k −F
zz
k zk−1)

− 1
σ2
Gσ(‖xk − x̂∗k|k−1‖(P∗k|k−1)

−1)(P∗k|k−1)
−1

(xk − x̂∗k|k−1)

= 0.

(41)

Equation 41 can be written by

Ψkx
∗
k = (P

∗
k|k−1)
−1x̂∗k|k−1 + λk(F

zx∗
k )

T(Qzz
k )
−1

(zk −F zz
k zk−1) (42)

where

Ψk = (P
∗
k|k−1)
−1 + λk(F zx∗

k )
T(Qzz

k )
−1F zx∗

k , (43)

λk =
Gσ(‖zk −F zx∗

k x∗k −F
zz
k zk−1‖(Qzz

k )
−1)

Gσ(‖x∗k − x̂
∗
k|k−1‖(P∗k|k−1)

−1)
. (44)

Adding and subtracting a term λk(F zx∗
k )

T(Qzz
k )
−1F zx∗

k x̂∗k|k−1
on the right-hand side of (42), we have

Ψkx
∗
k = Ψkx̂

∗
k|k−1 + λk(F

zx∗
k )

T(Qzz
k )
−1

(zk −F zx∗
k x̂∗k|k−1 −F

zz
k zk−1) . (45)

Thus, the estimation of x∗k can be computed by

x̂∗k|k = x̂
∗
k|k−1 +K

λ
k (zk −F

zx∗
k x̂∗k|k−1 −F

zz
k zk−1) (46)

where

Kλ
k = Ψ
−1
k λk(F zx∗

k )
T(Qzz

k )
−1 (47)
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Note that the parameter λk is function of x∗k . For simplicity,
let x∗k ≈ x̂

∗
k|k−1 in (44), and λk can be obtained by

λk = Gσ(‖zk −F zx∗
k x̂∗k|k−1 −F

zz
k zk−1‖(Qzz

k )
−1) (48)

In addition, parameter σ plays an important role in
correntropy-based filters. Inspired by (Kulikova (2017)),
this paper adopts an adaptive method to choose
σ, i.e.,

σ = ‖zk −F zx∗
k x̂∗k|k−1 −F

zz
k zk−1‖(Qzz

k )
−1 (49)

In this section, aCTKF is developed to address the estimation
problem of dynamic systems with high-order ARMA non-
Gaussian noise. Instead of the commonly used MMSE criterion,
which uses only second-order statistics of error, correntropy

is employed to derive the filter, since it can captures second-
order and higher-order statistics of error. It can be seen that the
structure of CTKF is similar to that of TKF, except that an extra
scale parameter λk is involved. The scale parameter is computed
according to correntropy criterion to control the gain matrix Kλ

k,
which results in that the CTKF in general performs well for non-
Gaussian noise. In addition, the CTKF has a simple form, which
facilitates its practical application.

4 Numerical simulations

In this section, two scenarios, i.e., dynamic system with
high-order ARMA Gaussian and non-Gaussian noise, are taken
into account to verify the effectiveness of the TMM and CTKF.
In model (1), the state is xk = [px,k,vx,k,py,k,vy,k]

T, and relevant

FIGURE 1
RMSE results for different filters. (A) Position RMSE. (B) Velocity RMSE.

FIGURE 2
RMSE results for different filters. (A) Position RMSE. (B) Velocity RMSE.
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matrices are

Fk =
[[[[

[

1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1

]]]]

]

,Gk =
[[[[[[

[

T2

2 0
T 0

0 T2

2
0 T

]]]]]]

]

,

Hk = [
1 0 0 0
0 0 1 0

] (50)

where T = 1 is the sampling period. The spectral factors of
process and measurement noises are

Hw (z) = z
4 − 0.4z3 + 0.9z2 − 0.1z− 0.3
z4 − z3 + 0.5z2 + 0.2z− 0.4

(51)

Hv (z) = z
6 + 0.6z5 + 0.4z4 + 0.3z3 − 0.08z2 + 0.05z+ 0.01
z6 + 0.8z5 + 0.6z4 + 0.2z3 − 0.09z2 − 0.08z+ 0.01

(52)

Case 1: ξwk ∼N (0,Qk) and ξ
v
k ∼N (0,Rk) areGaussian noises,

where Qk = diag(0.01
2,0.012) and Rk = diag(0.1

2,0.12). For
comparison, the standardKalman filter (KF), the traditional state
augmented Kalman filter (SAKF) (Bar-Shalom et al. (2001)), and
the triplet Kalman filter (TKF) are tested. Besides, the root mean
square error (RMSE) is used to evaluate estimation performance,
which is computed by

RMSE = √ 1
M

M

∑
i=1
((xik − x̂

i
k)

2 + (yik − ŷ
i
k)

2) (53)

where xik and yik are the true values at time k in the ith Monte
Carlo trail, and x̂ik and ŷ

i
k are the corresponding estimation values.

The number of Monte Carlo trails isM = 200.
Position and velocity RMSE results are provided in Figure 1.

It can be seen that the TKF and SAKF have similar estimation
performance, and are better than the standard KF. High-
order ARMA process and measurement noises do not meet
the independence assumption, resulting in poor estimation
performance of the KF. The TKF and SAKF are essentially
equivalent, and they are optimal in the MMSE sense.The former
models dynamic system with high-order ARMA noise through
TMM, and the latter deals with high-order ARMAnoise through
prewhitening technique. Simulation results show that TMM
can accurately model dynamic systems with high-order ARMA
noise.

Case 2: ξwk ∼N (0,Qk) and ξvk ∼N (0,Rk) are Gaussian noise
disturbed by shot noise with probability of 0.2, where Qk and Rk
are the same as those in case 1, and the shot noise is generated by
0.1× randi([5,10]). Symbol randi([a,b]) denotes that an integer
is returned from the uniform distribution of [a,b].

For comparison, the TKF and the proposed CTKF are
tested. Position and velocity RMSE results are provided in

Figure 2. It can be seen that the CTKF performs better than
the TKF. Non-Gaussian noise results in the poor estimation
performance of the TKF, since it adopts the MMSE criterion,
which uses only second-order statistic of error. The CTKF
shows stronger robustness to non-Gaussian noise, because
the adopted correntropy cost function can capture second-
order and higher-order statistics of error. Simulation results
show that the CTKF is an effective state estimation method
for dynamic systems with high-order ARMA non-Gaussian
noise.

5 Conclusion

In this paper, a new filter is designed to solve the state
estimation problem of dynamic systems with high-order ARMA
non-Gaussian noise. In this filter, high-order ARMA process and
measurement noises are modeled in the TMM framework, and
then the recursive algorithm is derived by using corretropy cost
function. On the one hand, the TMM is more general than the
HMM, and it can directly model dynamic systems with high-
order ARMA noise. On the other hand, correntropy can capture
second-order and higher-order statistics of error, and is more
suitable for non-Gaussian noise than the MMSE cost function,
which uses only second-order statistics of error. In addition,
the CTKF has a simple form, which facilitates its practical
application.
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