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Solar photovoltaic power generation has become the focus of the world energy

market. However, weak continuity and variability of solar power data severely

increase grid operating pressure. Therefore, it is necessary to propose a new

refined and targeted forecasting method to broaden the forecasting channels.

In this paper, a hybrid model (KM-SDA-ABWO-RBF) based on radial basis

function neural networks (RBFNNs), adaptive black widow optimization

algorithm (ABWO), similar day analysis (SDA) and K-means clustering (KM)

has been developed. The ABWO algorithm develops adaptive factors to

optimize the parameters of RBFNNs and avoid getting trapped in local

optima. SDA and K-means clustering determine the similarity days and the

optimal similarity day through meteorological factors and historical datasets.

Nine models compared forecast accuracy and stability over four seasons.

Experiments show that compared with other well-known models on the

four indicators, the proposed KM-SDA-ABWO-RBF model has the highest

prediction accuracy and is more stable.

KEYWORDS

radial basis function neural networks, adaptive black widow optimization algorithm,
similar day analysis, k-means clustering, photovoltaic power prediction, metaheuristic

1 Introduction

The traditional method of generating electricity is to use non-renewable fossil fuels

such as coal and oil. However, due to rising electricity prices, the depletion of non-

renewable energy sources and the consequent issues of climate change, solar photovoltaic

(PV) is one of the most popular renewable energy sources in the utility grid. Figure 1

(Renewable Energy Policy) shows the global capacity and annual increase in PV power

system from 2011 to 2021. The solar PV capacity has increased from 70 to 942 Gigawatts
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in the last 10 years. However, the photovoltaic (PV) power

generation industry and power system are faced with severe

challenges (Mahmud et al., 2021). Due to the influence of the

amount of solar radiation by weather factors (temperature, etc.),

photovoltaic power generation has the defects of instability,

uncertainty, difficulty in control, randomization and

intermittency. During grid-connected operation, the stable

operation and power quality of the power grid are disturbed.

The stability and safety of photovoltaic power generation grid-

connected operation not only has an important influence on

social and economic development, but also is the focus of current

social and economic concerns. Therefore, the method and system

research of PV power generation prediction has important

academic and application value. In the past, complex physical

models and statistical models were used in the field of

photovoltaic power generation forecasting. Reikard (Reikard,

2009) predicted solar irradiance using the Autoregressive

Integrated Moving Average (ARIMA) methods. To take

climatic factors into account, the ARMAX model is proposed,

and the prediction accuracy is higher than that of the ARIMA

model (Li et al., 2014). However, recent study (Sobri et al., 2018)

has demonstrated that machine learning algorithms, such as

neural networks (NNs) and support vector machines (SVMs),

are superior to other forecasting methods for predicting

photovoltaic power generation. A weighted SVM was

proposed in Ref. (Xu et al., 2012). Chen et al, (2011)

proposed an ANN-based weather classification method and

utilized radial basis function neural networks (RBFNNs) for

short-term photovoltaic power generation forecasting. Using

appropriate algorithms to optimize the parameters of the

model is one of the keys to improve the prediction effect (Du

et al., 2018). Several studies have found that the combined

approach of parameter optimization algorithms combined

with NN or SVM shows higher prediction accuracy (Dolara

et al., 2015). In Ref. (Ghimire et al., 2018), adaptive differential

evolution extreme learning machine model outperformed all

9 benchmark models. Hossain and Mahmood, 2020) proposed

a novel clustering method to classify irradiance values by weather

type, improving prediction accuracy by 33%. Dong et al, (2020)

proposed a convolutional neural network model based on genetic

algorithm and particle swarm algorithm to reduce the complexity

of irradiance prediction. Zhang et al, (2015) proposed SDD

Engine to construct a Euclidean distance metric for historical

data to obtain the similarity days of predicted days. Wang et al,

(2018) designed a RBFNN based on themulti-objective dragonfly

algorithm and obtained excellent prediction results. Liu et al,

(2015) used a BPNN to forecast output power by researching the

influence of aerosol index data etc. Combination forecasting

method, that is, combining the advantages of different

forecasting methods to forecast is a hot research topic at

present (Lin et al., 2018). Akhter et al, (2019) demonstrated

that the model combining machine learning methods (ANN,

SVM, ELM) and metaheuristics achieved the combined

advantages of two or more techniques in PV power

generation forecasting. The performance of the hybrid method

is determined by the performance of each method (Xu et al.,

2012). Therefore, several proven methods with better

performance are synthesized, which can maximize the

performance of the hybrid model.

Compared with other neural networks, RBFNNs have

stronger robustness, learning and memory ability. It not only

has good classification ability, but also is the optimal network to

FIGURE 1
Solar PV global capacity and annual additions, 2011–2021.
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complete the mapping. However, the original RBFNNs are easy

to get trapped in local optima and have poor global convergence

ability (Han et al., 2017). Therefore, it is necessary to select an

appropriate learning algorithm to improve the convergence

performance of RBFNNs. The focus is on optimizing the

parameters of RBFNNs (i.e. the center, width of the basis

functions, and the weights from the hidden layer to the

output layer), as well as determining the number of hidden

layer neurons. Combined with common training algorithms,

RBFNNs have been widely used in a large number of

classification and regression problems. For example, Huang

et al, (2004) designed a Growing and pruning RBF (GAP-

RBF), which was improved and called GGAP-RBF (Huang

et al., 2005). The goal of these two models is to make the

network more compact to achieve less time consumption. Liu

et al, (2005) tested on UCI classification datasets and seismic

datasets using original RBFNNs and outperformed other models.

However, what leaves these algorithms with little room for

improvement is that they do not have a way to adjust

parameters and network size simultaneously (Xie et al., 2012).

Later, some studies introduced metaheuristic algorithms to

simultaneously optimize network parameters and scale, which

provided some unified and regular learning algorithms for

researchers, broadening the space for improvement and

optimization. Such as, Feng (Feng, 2006) proposed the

SORBFNN based on particle swarm optimization (PSO)

algorithm to solve three nonlinear problems such as

approximation of nonlinear functions. Joe et al. (Qiao et al.,

2019) combined an improved immune algorithm (IA) to

optimize RBFNNs. Li et al. (Lee and Ko, 2009) developed the

time-varying evolutionary PSO algorithm and compared it with

other improved versions of the PSO algorithm. Duvvuri et al.

(Duvvuri and Anmala, 2019) used the genetic algorithm to learn

RBFNNs to predict fecal coliforms.

It is statistically known that the PSO algorithm and other

improved PSO algorithms are used more for training RBFNNs

than other metaheuristic algorithms. However, the PSO algorithm

converges faster, but produce a low performance in exploitation

search ability, and have low convergence precision (Parsopoulos

and Vrahatis, 2002). To overcome this limitation, other

metaheuristic algorithms that balance exploration and

exploitation search capabilities can be considered, such as

cuckoo search (CS) (Yang and Deb, 2009), symbiotic organisms

search (SOS) (Cheng and Prayogo, 2014), gravitational search

algorithm (GSA) (Rashedi et al., 2009), sine cosine algorithm

(SCA) (Mirjalili, 2016), grey wolf optimizer (GWO) (Mirjalili

et al., 2014), differential evolution (DE) (Storn and Price, 1997),

etc. Although many metaheuristic algorithms have been proposed

for many years, however, due to the “No Free Lunch (NFL)

Theorem” (Wolpert and Macready, 1997), there is no one-size-

fits-all algorithm that can reach the upper limit of the optimization

capability, which is sufficient to solve all optimization problems. In

terms of training neural network parameters, the black widow

optimization algorithm proposed in the past two years showed

excellent talent due to its powerful search and extraction

capabilities. Since BWO was proposed, several papers have

verified its superiority in optimizing neural networks, such as

adaptive network-based fuzzy inference system (ANFIS). For

example, Katooli et al. (Katooli and Koochaki, 2020) applied

BWO in the training process of ANFIS to improve its accuracy

and robustness, and combined the association rule mining

technique (ARMT) to select the most necessary input data.

Tightiz et al, (2020) demonstrated that BWO trains faster and

has higher classification accuracy than gradient-based learning

algorithms. Memar et al, (2021) used BWO to learn ANFIS and

SVR and forecast maximum wave height. Panahi et al, (2021)

proposed the ANFIS-BWO and SVM-BWO models for hydraulic

engineering prediction. It is known from previous research that

both BWO and RBFNN have excellent performance. Therefore,

the combined method of BWO and RBFNN combines the

advantages of both methods, and it is expected to have higher

prediction performance than other methods.

In addition, it is necessary to ensure not only the efficiency of

the predictive model, but also the accuracy of the input data. This

requires the prediction model not only to consider the

relationship between power generation and meteorological

factors, but also to take historical power generation data as

one of the influencing factors (Lin et al., 2018). Similar day

analysis (SDA) is a mathematical model used to filter historical

datasets, selecting similar days for training from a large amount

of historical data (Zhou et al., 2020). Moreover, many literatures

have also demonstrated that clustering algorithms can improve

the prediction efficiency (Ghayekhloo et al., 2015; Lin et al., 2018;

Hossain and Mahmood, 2020). Combining the advantages and

disadvantages of previous research works, this paper proposes a

combined prediction model based on K-means, SDA, ABWO

and RBFNN, namely KM-SDA-ABWO-RBF, for real-life

photovoltaic power generation prediction. The innovations

and contributions of this paper are summarized as follows:

1) The ABWO algorithm is designed. The performance of the

original BWO algorithm on optimizing RBFNNs needs to be

improved. Numerous studies (Mirjalili et al., 2012; Gonzalez

et al., 2015; Justus and Anuradha, 2022) have found that PSO

algorithm, gravitational search algorithm (GSA), golden eagle

optimizer (GEO) have better results than other algorithms in

training neural network parameters. By analyzing the

parameter design methods in these algorithms, it is known

that they all have adaptive inertia weights that vary with the

number of iterations. Therefore, the BWO algorithm is

adaptively designed, and the parameters of the crossover

stage are changed from random values to adaptively

reduce with the increase of the number of iterations.

Compared with many algorithms such as PSO, the

accuracy of the adaptive black widow optimization

algorithm is guaranteed.
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2) The goal of the metaheuristic algorithm is to find the optimal

value of a function. Moreover, the goal of RBFNNs in the PV

power generation problem is to minimize the prediction

error, which boils down to the problem of solving the

function minimum problem. Therefore, the metaheuristic

algorithm is used to optimize RBFNNs to solve the PV

power prediction problem.

3) In photovoltaic power generation forecasting, in order to

avoid excessively long forecasting time caused by a large

number of irrelevant abnormal historical data, and to

synthesize the advantages of different forecasting methods,

this paper adopts a combined forecasting method, namely the

KM-SDA-ABWO-RBF model. The model uses the Pearson

correlation coefficient to analyze the correlation between

historical data weather factors and photovoltaic power

generation, and then calculates the weighted Euclidean

metric. Some days with smaller weighted Euclidean metric

results are used as the similarity days useful for forecasting

days. The influencing factors of power generation are not only

temperature, humidity, irradiance, etc. Under different

weather types (sunny, cloudy, rainy), the output power is

different. Therefore, this paper conducts in-depth cluster

analysis on the input data, extracts refined modalities, and

performs classification prediction.

4) A limitation of most studies is that they do not take into

account the stability of the predicted results. The model

proposed in this paper not only has a small prediction

error, but also has a relatively stable prediction result.

The remainder of this article is summarized as follows: The

specific scheme of the KM-SDA-ABWO-RBF model is proposed

in Section 2. The specific implementation process of PV power

prediction is introduced and discussed in Section 3. Section 4

presents and discusses the experimental results. Finally,

conclusions and future work in Section 5.

2 KM-SDA-adaptive black widow
optimization-RBF model

2.1 RBF neural network

RBFNN is a special type of fully connected feedforward

network (Er et al., 2002), (Chen et al., 1991), consisting of

only three layers: input layer, output layer and hidden layer,

each of which has an activation function. RBFNNs have achieved

higher convergence accuracy, with more convergence speed for

training, less convergence time (Mandal et al., 2012). The

network topology of a multiple-input multiple-output RBFNN

is drawn in Figure 2 below.

The hidden layer can directly map the input vector to the

high dimension space without the need for weight connection.

When the center point of the RBFNN is determined, this

mapping relationship is also determined. The number of

hidden layer neurons determines the network size. The

activation function of the hidden layers neuron uses the

Gaussian function, which is a nonlinear transformation

function. Each hidden layer neuron of the RBFNN obtains the

output of the hidden layer by calculating the activation function,

and the final output of the output layer is the linear weighted sum

of the outputs of the hidden layer. The output equation is

described as follows:

yj � ∑h
i�1
wi,je

−‖x−ci‖2/2σ2i (1)

where i � 1, 2, ..., h, h is the number of hidden layer; j � 1, 2, ..., n,

n is the number of output neurons; wi,j is the output weight

between the ith hidden neuron and the jth output neuron. The

input vector is expressed as x � [x1, x2, ..., xp]T, and x ∈ Rp×1; p

is the number of input neurons; ci is the center vector of the ith
hidden neuron; ‖ x − ci ‖ is the Euclidean distance between the

input vector and the center vector; σ i is the width of the ith

hidden neuron. The proposed ABWO-based method

simultaneously searches all parameters of RBFNNs.

2.2 BWO and adaptive black widow
optimization algorithm

Metaheuristic algorithms can be divided into three broad

categories: evolutionary algorithms, physicochemical-based

algorithms, and swarm intelligence algorithms (Wang et al.,

2020). Swarm intelligence algorithms are based on the natural

biological proliferation of social connections and the behavior of

natural animals and other people in their lives (Abualigah and

Diabat, 2021). As a swarm intelligence algorithm, the BWO

algorithm (Hayyolalam and Kazem, 2020) is based on the

mating and reproduction behavior of black widow spiders.

Each individual spider corresponds to a candidate solution to

FIGURE 2
Multiple-input multiple-output RBFNN.
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the optimization problem, and survivability represents a fitness

function. Getting the strongest spider is getting the optimal

solution to the problem. The mating and reproduction

behaviors of black widow spiders include crossover,

cannibalism and mutation.

1) Crossover: The crossover phase is the exploration search

phase. Firstly, combined with the parameter optimization

problem of RBFNNs, the solution of root mean square error

(RMSE) is used as the fitness function. Secondly, the

populations are sorted according to their fitness. According

to the fertility rate, spiders with high fitness values in the

population were selected to participate in mating, and a pair

of parents (male and female spiders) were randomly selected

from them for mating and reproduction each time. Each black

widow spider displays the value of the problem variable. The

structure is treated as a one-dimensional array, where n is the

dimension of the feature:

spider � [s1, s2, ..., sn] (2)

Each pair of parents simulates the reproductive process with

the help of an α array:

{y1 � α.ps1 + (1 − α).ps2
y2 � α.ps2 + (1 − α).ps1 (3)

where αirepresentative is a random value in [0,1], s1 and s2
representative is parent, y1 and y2 representative is offspring,

and each pair of parents mating is repeated n/2 times.

2) Cannibalism: The behavior of cannibalism refers to strong

spiders eating weak spiders, that is, keep spiders with high

fitness values and eliminating spiders with low fitness values.

It includes sexual cannibalism and sibling cannibalism. Sexual

cannibalism is when female spiders eat male spiders due to

their smaller size, gaining nutrients that give offspring a

higher chance of surviving. After mating, this behavior is

achieved by destroying the mated parent. Corresponding to

the optimization problem, this means that those with high

fitness values are females, those with low fitness values are

males, and females with higher fitness values are retained.

Sibling cannibalism is when the offspring hatch and the

stronger offspring eats the weaker siblings, thereby

increasing the survival rate of the survivors. It achieves its

goal by destroying a portion of offspring with weak fitness

values according to the cannibalism rate. Each time through

the crossover and cannibalistic stages, only one parent and

one offspring are retained for each pair of parent spiders

that mate.

3) Mutation: The mutation phase is the exploitation search

phase. At this stage, the algorithm selects multiple spiders

with higher fitness values according to the mutation rate,

changes the attribute information of these spiders, and

obtains new candidate solutions, so as to increase the

diversity of the population. The mutation method

randomly swaps the two eigenvalues in the array for each

spider. e.g.,[s1, ..., si, ..., sj, ..., sn] mutates to

[s1, ..., sj, ..., si, ..., sn].

The advantage of the BWO algorithm is that the equation is

simple, easy to improve, and the principle is obvious, easy to

understand, and even has a fast convergence speed. In order to

increase the diversity and difference of the population and avoid

getting trapped in local optima, only the equation of the

crossover stage is improved, and the other stages remain

unchanged. The parameter optimization of the improved

algorithm on RBFNNs will be more accurate. Since the

improved algorithm is adaptive, it is called adaptive black

widow optimization (ABWO) algorithm.

The specific improvements are as follows: Eq. 3 shows that in

the crossover stage, the α array is used to represent the process of

generating offspring from the parent generation. In Eq. 4, the β

array is introduced:β � [β1, β2, ..., βn]. Each component of this

array is not randomly selected in the range [0, 1] like the α array.

It is randomly given in the range [0, 1] at the beginning, and then

it adaptively decreases as it increases. The detailed description of

the β array is as follows:

βi �
5 × (Maxiter − it + 1)

Maxiter
(4)

Eq. 3 is changed to

y1 � α.ps1 + (1 − α).ps2
y2 � β.ps2 + (1 − β).ps1 (5)

where s1 and s2 are parents, y1 and y2 are descendants,Maxiter

is the maximum number of iterations, and it is the current

number of iterations.

2.3 Similar day analysis

In order to avoid training numerous irrelevant abnormal

data, which leads to a long prediction time, this paper introduces

the similar day analysis to obtain historical data that is instructive

for the prediction results. The weather characteristics of certain

days in the historical data are very similar to the weather

characteristics of the forecasting days, and these days are

called the similarity days (Zhou et al., 2020). The similarity

days are obtained from the day the dataset starts to the day

before the prediction day. There are many machine learning

methods to obtain the similarity days: Euclidean metric (Mandal

et al., 2007), PCC and cosine similarity, etc. When comparing the

similarity of a certain meteorological factor between two days,

more attention is paid to the numerical difference of weather

characteristics between two days, rather than the similarity of

change trends and the difference of numerical direction.
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Therefore, a weighted Euclidean metric based on the influence of

multiple meteorological factors was chosen instead of PCC and

cosine similarity.

When predicting photovoltaic power generation, only the

influence of meteorological factors on the output power needs to

be considered. Different meteorological factors will lead to

different output photovoltaic power. In order to obtain the

influence weight of each meteorological factor on the output

power, this paper uses the Pearson correlation coefficient (PCC)

to conduct a correlation analysis on the relationship between

weather factors and photovoltaic power generation. PCC (Bugała

et al., 2018) is used to measure the degree of correlation between

two variables, and its absolute value ranges from [0,1]. The closer

the calculated PCC value is to 1 or -1, the stronger the correlation

between the two variables. Conversely, the closer the value of

PCC is to 0, the weaker the correlation. This study randomly

selects a day from the dataset and calculates the PCC between the

output power and each meteorological factor, as the weight

coefficient of the weighted Euclidean metric. The greater the

influence of the meteorological factor on the output power, the

higher the weight coefficient of the meteorological factor. PCC is

calculated as follows:

P(k) �
∑n
i�1
(ui − �u)(vi − �v)���������∑n

i�1
(ui − �u)2

√ ���������∑n
i�1
(vi − �v)2

√ (6)

where n represents the number of power data of the day; k

represents the number of weather factors of the day; ui represents

the kth weather factor at the ith hour of the day; vi represents the

photovoltaic power generation at the ith hour of the day. P(k) is
the PCC between the kth weather factor and the output power,

that is, the degree of influence of the weather factor on the output

power.

The Euclidean distance for each meteorological factor

between two days is described as follows:

ED(k) �
�����������∑n
i�1
(Xi − Yi)2

√
(7)

where Xi and Yi represent the kth weather factor at the ith hour

of the forecasting day and the history day, respectively; n

represents the number of power data per day; k represents the

number of weather factors per day. The smaller the value of

ED(k), the higher the similarity of the kth weather factor

between two days.

The similarity between a historical day and a forecasting day

is defined as the sum of the weighted Euclidean metric, described

as follows:

S � ∑K
k�1

P(k)ED(k) (8)

where P(k) represents the weight coefficient of the kth weather

factor; ED(k) represents the Euclidean distance of the kth

weather factor between two days. K represents the number of

weather factors per day. The smaller the value of S, the higher the

similarity between the historical day and the predicted day. The

historical day corresponding to the minimum value of S is

considered as the best similar day.

2.4 K-means clustering

In addition to meteorological factors, the type of weather can

also affect the output power value. However, there is no

information on weather types such as sunny, cloudy, rainy,

etc. In the dataset used in this paper. In order to determine

the weather type for each day of each season, the K-means

algorithm is used to classify the input meteorological factors.

Meteorological factors such as temperature and humidity in the

same season are not very different. On the contrary, the

irradiance of each day varies greatly. Therefore, the proposed

clustering algorithm classifies the irradiance within the forecast

horizon (similar days and the forecasting day). After the cluster

center is obtained, the original irradiance value is replaced with

the cluster center of the class to which the irradiance belongs.

Different irradiance values represent different weather types. The

flowchart of the clustering process is shown in Figure 3.

2.5 adaptive black widow optimization-
RBF neural network

ABWO-RBF neural network can adjust all parameters during

the learning process. Taking the structure of multiple-input and

multiple-output as an example, in the widow initialization stage,

the ith widow is described as

widowi � [cTi,1, σ i,1,wT
i,1, c

T
i,2, σ i,2,w

T
i,2, ..., c

T
i,h, σ i,h,w

T
i,h] (9)

where ci,h, σ i,h, and wi,h are the center vector, width, and output

vector of the hth hidden neuron in the ith widow, respectively; h

is the network size; D is the dimension of the widow satisfying

D � p + 1 + j, with p being the number of input variable and j

being the number of output variable. The fitness value of each

widow represents the accuracy of the ABWO-RBF neural

network. In order to optimize the parameters of RBFNNs, the

fitness value of each widow is the RMSE. Taking the structure of

multi-input and multi-output as an example, the specific

definitions are as follows:

RMSE �
���������������
1
n
∑n
j�1
(yj − f(xj))2√√

(10)
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where n is the number of output neuron, yj and f(xj) are the
real output of the network and the desired output, respectively.

2.6 KM-SDA-adaptive black widow
optimization-RBF model

The system architecture of the KM-SDA-ABWO-RBF model

for PV power generation forecast is shown in Figure 4. The

procedure is elaborated as follows:

Step 1. Obtain historical datasets, including attribute information

such as several meteorological factors and photovoltaic power

generation.

Step 2. The data is preprocessed for outliers and normalized.

Step 3. According to the equation of weighted Euclidean metric,

several days with more similar meteorological characteristics to

the predicted day are selected from the historical data as similar

days, that is, days with smaller weighted Euclidean metric value.

The day with the smallest weighted Euclidean metric is the

optimal similarity day.

Step 4. The K-means algorithm classifies the daily average global

horizontal radiation and the daily average diffuse horizontal

radiation respectively, and replaces the original radiation value

with the corresponding cluster center.

Step 5. Initialize the center, width and weights of the RBFNN

using the ABWO algorithm.

Step 6. The data of similar days are input into RBFNN as training

samples, including daily average weather temperature, daily

average weather relative humidity, daily average global

horizontal radiation, daily average diffuse horizontal radiation

and active power; ABWO algorithm updates the parameters of

RBFNN to obtain the optimal parameters of the KM-SDA-

ABWO-RBF model.

Step 7. Input the data of the optimal similarity day and the

forecasting day as the test sample into RBFNN to obtain the

photovoltaic power generation on the forecasting day.

3 Specific implementation process of
PV power prediction

All the schemes were programmed in MATLAB version

2019 and run on a normal personal computer with an

Intel(R) Core(TM) i7-9700 CPU and 16.0 GB RAM, under a

Microsoft Windows 10.0 environment.

3.1 Data description

Effective forecasting needs to meet two requirements, one is

the validity of forecasting methods and software, and the other is

the reliability of historical meteorological data. The dataset for

FIGURE 3
The process of the K-means clustering.
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the experiment is from the Desert Knowledge Australia Solar

Centre (DKASC), Alice Springs, (http://dkasolarcentre.com.au/

download?location=alice-springs). The photovoltaic power

plants use 60 monocrystalline panels and were installed in

2009 with an array rating of 10.5 kW. The dataset is from

August 14, 2013 to November 28, 2021 with a time interval of

5 min. A large number of original datasets are inconvenient to

organize, so this section extracted data from 7:30 to 18:30 with an

interval of 1 h. The properties of the dataset include weather

temperature, weather relative humidity, global horizontal

radiation, diffuse horizontal radiation, and active power. The

four seasons in Australia: spring days are from September to

November; summer days are from December to February;

autumn days are from March to May; winter days are from

June to August. According to the time of the four seasons, the

datasets from 2013 to 2021 are divided into four categories by

season. Four days were arbitrarily selected from the four seasons

in the dataset, that is, November 19, 2021, February 22, 2020,

May 13, 2021 and June 29, 2021 as the forecasting day,

respectively. The similar days for four forecasting days were

selected from the day from the beginning of the four types of

datasets to the day before the forecasting day, respectively.

Data mining methods are very common in classification and

regression problems (Hossain and Mahmood, 2020). The data

mining methods used in this section are dataset selection, outlier

processing, data normalization and correlation analysis. There

may be errors in the process of data collection and transmission,

such as metering failure, system disconnection for cabling works,

system outage for new array connection and so on. In a word,

there are incomplete and abnormal data in a large number of

original datasets, so the data needs to be preprocessed. So when

the data at a certain sample is empty, the empty value is replaced

with the data at the previous sample. When data missing is

severe, consider removing missing data for a whole day. Data

FIGURE 4
System architecture of the KM-SDA-ABWO-RBF model.
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normalization refers to scaling each meteorological attribute and

output power respectively and mapping them to the interval [-1,

1]. Through outlier processing and normalization, the quality of

the data is improved, and can be better adapted to algorithms and

neural network models.

In order to study the correlation between the four weather

factors and active power, an arbitrary day was selected from the

dataset to calculate the PCC of weather factors and active power.

TABLE 1 PCC of meteorological factors and active power.

Meteorological factors PCC

Weather temperature 0.22523

Weather relative humidity −0.13469

Global horizontal radiation 0.91518

Diffuse horizontal radiation 0.87048

FIGURE 5
Correlation curve. (A) Between weather temperature and active power. (B) Between weather relative humidity and active power. (C) Between
global horizontal radiation and active power; (D) Between diffuse horizontal radiation and active power.
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The specific calculation results are shown in Table 1. Moreover,

Figures 5A–D shows the correlation curves of weather

temperature, weather relative humidity, global horizontal

radiation, diffuse horizontal radiation and photovoltaic power,

respectively. The time point interval for this day is 15 min. From

the correlation analysis, it is known that among the multivariate

meteorological factors affecting photovoltaic power generation,

the correlation coefficient of global horizontal radiation is the

highest, while the correlation coefficient of weather temperature

is the lowest. In descending order of influence on power

generation are global horizontal radiation, diffuse horizontal

radiation, weather relative humidity and weather temperature.

Therefore, the predicted days and the similarity days have the

most consistency in radiation intensity, followed by temperature

and humidity.

After determining the correlation between meteorological

factors and power generation, the SDA model is used to

determine the similarity days and the optimal similarity day.

For each forecasting day, the weighted Euclidean metric values

are sorted in ascending order, and the first 56 days are selected as

the similarity days and the first 1 day as the optimal similarity

day. The optimal similarity days of the 4 forecasting days are

shown in Table 2. The K-means clustering method sets three

cluster centers for the two irradiances respectively. It takes

temperature, humidity, sunny/cloudy/rainy, irradiance all into

account to get complete weather information. Thereafter, taking

the weather information of the similarity days as the input value,

the KM-SDA-ABWO-RBF model was used to establish the

functional relationship between the weather factors and the

output power of photovoltaic power generation, and finally

the output power value was obtained.

3.2 Experimental setup and evaluation
metrics

This paper compares the proposed SDA-ABWO-RBF model

with SDA-BWO-RBF, SDA-PSO-RBF, SDA-RBF, SDA-ELM,

SDA-BPNN, RBF, ELM, BPNN. The population size of all

metaheuristic algorithms is 50 and the number of iterations is

250. Acceleration constants of PSO is [2.1, 2.1], and inertia

weights is [0.9, 0.6]. In addition, the number of hidden

neurons is 4. The number of input neurons and output

neurons are 16 and 12, respectively.

The performance of the SDA-ABWO-RBF model is

evaluated by four evaluation indicators, namely RMSE, MAE,

the standard deviation of error (SDE) (Eseye et al., 2018) and the

coefficient of determination (R2). Four metrics are expressed as:

RMSE �
��������������
1
n
∑n
i�1
(yp,i − ya,i)2√

(11)

MAE � 1
n
∑n
i�1

∣∣∣∣∣yp,i − ya,i

∣∣∣∣∣ (12)

SDE �
�����������������
1
n
∑n
i�1
(yp,i − ya,i − �e)2√

(13)

R2 �
(n∑n

i�1
yp,iya,i − ∑n

i�1
yp,i∑n

i�1
ya,i)2

(n∑n
i�1
y2
p,i − (∑n

i�1
yp,i)2)(n∑n

i�1
y2
a,i − (∑n

i�1
ya,i)2) (14)

�e � 1
n
∑n
i�1
(yp,i − ya,i) (15)

where yp,i and ya,i are the predicted output and actual output at

ith hour; n is the number of predicted samples, which is 12.

4 Prediction results and discussion

In order to verify the superiority of the proposed KM-

SDA-ABWO-RBF model in PV power generation prediction,

this paper compares the model with 8 prediction models

(SDA-ABWO-RBF, SDA-BWO-RBF, SDA-RBF, SDA-ELM,

SDA-BPNN, RBF, ELM and BPNN). The experiment selects

4 days, spring, summer, autumn and winter, and 12 forecast

points per day for forecasting. The optimized number of

neurons in the hidden layer is 4 in both ABWO-RBF and

BWO-RBF in four seasons. The prediction results obtained

from the experiments are discussed from two aspects. On the

one hand, four metrics (RMSE, MAE, SDE and R2) are used to

evaluate the accuracy of the predicted values; on the other

hand, each prediction model is run 10 times independently,

and the stability of the prediction results of the 10 runs is

compared on the four metrics sex.

4.1 The accuracy of the forecast results

Figures 6A–D shows the predicted power output curve of the

9 models in different seasons. It can be seen that the predicted

values of the KM-SDA-ABWO-RBF model and the ABWO-RBF

model are closer to the actual values, while the predicted outputs

TABLE 2 The optimal similarity day.

Season Spring summer autumn winter

Optimal similarity day November 18, 2021 February 19, 2020 May 13, 2019 June 30, 2020
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of the other models are far from the actual values. Figures 7A–D

shows the predicted error curve of 9 models in different seasons.

Similarly, the error of the proposed model is less volatile around

0. Figure 8 shows the correlation between the predicted power of

the proposed model and the actual power in four seasons. It is

obvious from Figure 8 that R2 of the proposed model in the four

seasons is 0.9929, 0.9934, 0.9862 and 0.9881, respectively. Its

value is very close to 1, showing the superiority of the model for

prediction. summer in the selected dataset has the largest R2 and

the most accurate forecast result.

Figure 9A shows predicted RMSE of 9 models for

4 forecasting days. Figure 9B shows predicted MAE of

9 models for 4 forecasting days. Figure 9C shows predicted

SDE of 9 models for 4 forecasting days. Figure 9D shows

predicted R2 of 9 models for 4 forecasting days. RMSE, MAE,

SDE are several types of errors; the smaller the predicted error

value, the higher the prediction accuracy of the model. R2

represents the correlation between two variables; a larger value

of R2 indicates a more reliable model. From the figure it can be

concluded that the proposed model achieved the smallest RMSE,

FIGURE 6
Forecasting and real PV power curves. (A) A spring day. (B) A summer day. (C) An autumn day. (D) A winter day.
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MAE, SDE, and the largest R2 for each forecasting day. The

prediction accuracy of SDA-ABWO-RBF and SDA-BWO-RBF is

second only to the proposed model and higher than the other

6 traditional models that lack metaheuristic optimization. It

proves that the metaheuristic algorithm to optimize neural

network parameters greatly improves the prediction

performance of traditional neural network models. In

addition, SDA-ELM outperforms SDA-BPNN and SDA-RBF;

SDA-RBF and RBF exhibit the worst performance. The reason

for this result is that the parameters of the ELM are random so

that the predicted output has a wide range. Therefore, it is

possible to obtain more accurate output power values.

Traditional BPNN and RBF have a high probability of leading

to early convergence. Overall, it can be seen that on each

evaluation metric, SDA-RBF performed better than RBF,

SDA-ELM performed better than ELM, and SDA-BPNN

performed better than BPNN. It can be shown that the SDA

method greatly improves the prediction performance.

Figures 10A–D shows Taylor diagram of 9 models in

different seasons. It visually presents the performance of

9 models on Standard Deviation, RMSE and R2. KM-SDA-

ABWO-RBF is closest to the observation in all four seasons,

FIGURE 7
Predicted error value. (A) A spring day.
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while RBF is farthest from observation. Accordingly, it validates

the accuracy of KM-SDA-ABWO-RBF model on three metrics.

Table 3 specifically describes the mean values of RMSE,

MAE, SDE and R2 for the four seasons. The mean values of

RMSE, MAE, SDE and R2 of the proposed model were 0.227,275,

0.19175, 0.215,725 and 0.99015, respectively. KM-SDA-ABWO-

RBF has a 13%, 8% and 17% decrease in RMSE, MAE and SDE,

and a 0.4% increase in R2 compared to SDA-ABWO-RBF. It

shows that adding K-means algorithm can further improve the

prediction accuracy. In addition, the errors of KM-SDA-ABWO-

RBF, SDA-ABWO-RBF and SDA-BWO-RBF were smaller than

those of SDA-RBF, and the correlation with the actual value was

greater. It illustrates the reliability of the combination of

metaheuristics and machine learning methods. Again, the

prediction results of KM-SDA-ABWO-RBF and SDA-ABWO-

RBF were more accurate than SDA-BWO-RBF. The effectiveness

of the improved BWO algorithm is proved. In a word, KM-SDA-

ABWO-RBF achieves the best value for all forecasting days on all

evaluation metrics. In the PV power prediction, the experimental

results verified that the KM-SDA-ABWO-RBF model

outperforms the other models in terms of robustness,

effectiveness and accuracy.

4.2 The stability of the forecast results

Figures 11A,B show the RMSE, MAE, SDE, and R2 values for

10 runs of 9 models for a spring day. Figures 12A,B show the

RMSE, MAE, SDE, and R2 values for 10 runs of 9 models for a

summer day. Figures 13A–D show the RMSE, MAE, SDE, and R2

values for 10 runs of 9 models for an autumn day. Figures 14A–D

show the RMSE, MAE, SDE, and R2 values for 10 runs of

FIGURE 8
The correlation between the predicted power of KM-SDA-ABWO-RBF and the actual power.
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FIGURE 9
Predicted (A) RMSE. (B) MAE. (C) SDE. (D) R2 for 4 forecasting days.
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9 models for a winter day. Taking a spring day as an example, it

can be seen from Figures 26, 27 that the violin plots of SDA-ELM,

SDA-BPNN, ELM and BPNN are narrower and longer, while

KM-SDA-ABWO-RBF, SDA-ABWO-RBF and SDA-BWO-RBF

are flatter and wider. It shows that the RMSE and MAE values of

KM-SDA-ABWO-RBF, SDA-ABWO-RBF and SDA-BWO-RBF

are closer and more stable. The SDA-RBF and RBF models have

the highest stability, with the same values for 10 runs but the

lowest accuracy. Roughly, the stability differences of KM-SDA-

ABWO-RBF, SDA-ABWO-RBF and SDA-BWO-RBF are small,

and the prediction results of the three models all have high

stability and accuracy. However, SDA-BWO-RBF has higher

stability than SDA-ABWO-RBF, which is more stable than

KM-SDA-ABWO-RBF. Stability is reflected in the length of

the box in Figures 11A,B. It can be clearly found from Figures

11A,B that SDA-ELM and SDA-BPNN are more stable than

ELM and BPNN, respectively. It verifies that SDA can not only

improve the prediction accuracy of PV generation power

prediction, but also enhance the stability. Similarly, the same

conclusion is reached for summer, autumn and winter.

FIGURE 10
Taylor diagram of 9 models. (A) A spring day. (B) A summer day. (C) An autumn day. (D) A winter day.

TABLE 3 Average value of RMSE, MAE, SDE and R2 in four seasons.

Model RMSE MAE SDE R2

KM-SDA-ABWO-RBF 0.227,275 0.19175 0.215,725 0.99015

SDA-ABWO-RBF 0.261,695 0.20815 0.2603 0.98595

SDA-BWO-RBF 0.400,383 0.312,025 0.361,625 0.975,025

SDA-RBF 0.586,443 0.43995 0.550,675 0.943,675

SDA-ELM 0.402,948 0.29595 0.346,525 0.974

SDA-BPNN 0.412,488 0.294,275 0.361,975 0.973

RBF 3.421 2.508,375 3.2487 0.32185

ELM 1.01976 0.73165 0.9475 0.841,875

BPNN 0.818,888 0.56285 0.701,475 0.894,425
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FIGURE 11
(A–D) shows the RMSE, MAE, SDE, and R2 values for 10 runs of 9 models for a spring day.

Frontiers in Energy Research frontiersin.org16

Liu et al. 10.3389/fenrg.2022.990018

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.990018


FIGURE 12
(A–D) show the RMSE, MAE, SDE, and R2 values for 10 runs of 9 models for a summer day.
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FIGURE 13
(A–D) show the RMSE, MAE, SDE, and R2 values for 10 runs of 9 models for an autumn day.
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FIGURE 14
(A–D) show the RMSE, MAE, SDE, and R2 values for 10 runs of 9 models for a winter day.
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5 Conclusion and future work

This paper develops a KM-SDA-ABWO-RBF model, and

utilizes the ABWO algorithm to train the parameters of RBFNNs

to improve the generalization performance of RBFNNs and

reduce the computational complexity. The ABWO algorithm

enhances the search ability by introducing an adaptive factor,

that is, the ability to search for optimal neural network

parameters. Since the structure and parameters of the network

determine the performance of RBFNNs, constructing the

ABWO-RBF algorithm improves the performance and

stability of the neural network. In addition, SDA and

K-means methods are introduced to obtain historical data

with strong correlation with the forecast day, which improves

the overall accuracy of ABWO-RBF neural network in

photovoltaic power prediction. The experimental results

demonstrate the simplicity and high efficiency of the proposed

model in the prediction of PV power generation. In the future,

the hybrid model is still valid for forecast of the PV power output.

Deep learning methods used in this field are expected to have

higher prediction accuracy. The model in this paper can be used

can be used in power plants to stably and efficiently regulate

photovoltaic power generation in the future.
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