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The remaining useful life (RUL) prediction of Lithium-ion batteries (LIBs) is a

crucial element of battery health management. The accurate prediction of RUL

enables the maintenance and replacement of batteries with potential safety

hazards, which ensures safe and stable battery operation. This paper develops a

new method for the RUL prediction of LIBs, which is combined with complete

ensemble empirical mode decomposition with adaptive noise (CEEDMAN),

whale optimization algorithm (WOA), and support vector regression (SVR).

Firstly, the CEEMDAN is employed to perform noise reduction in battery

capacity data for prediction accuracy improvement. Then, an SVR model

optimized by the WOA is proposed to predict the RUL. Finally, the public

battery datasets are selected to validate the performance of the CEEMDAN-

WOA-SVR method. The RUL prediction accuracy of the CEEMDAN-WOA-SVR

method is better than theWOA-SVRmethod. In addition, a comparison is made

between the proposed method and the existing methods (artificial bee colony

algorithm-SVR method, ensemble empirical mode decomposition-gray wolf

optimization-SVRmethod). The results show that the accurate prediction of the

proposed method is superior to the two methods.
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1 Introduction

Lithium-ion batteries (LIBs), as a green energy source, are characterized by high

capacity, high reliability, and high safety. They have been widely used in fields involving

electric vehicles, mobile phones, and computers (Xue et al., 2020; Ren L. et al., 2021).

However, as the number of LIBs operations increases, the batteries will experience aging

problems, and the failed batteries will affect the regular operation of the devices (ChenW.

et al., 2021). A LIB’s remaining useful life (RUL) is the number of remaining charge/

discharge cycles before the end of life (EOL). The accurate RUL prediction of LIBs could

guide timely battery repair and replacement to ensure safe operation. Therefore, the

research on RUL prediction of batteries has attracted extensive attention (Bracale et al.,

2021).
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Recently, many RUL prediction methods have been

developed in the research literature, and these methods are

mainly divided into two types: model-based methods and

data-based methods (Ge et al., 2021). The model-based

methods aim to build a mathematical-physical model to

estimate the RUL of LIBs based on the failure mechanisms.

Xing et al. (2013) presented an ensemble model that integrated an

empirical exponential, a polynomial regression, and particle

filtering (PF) for the RUL prediction. Su et al. (2017)

developed a new method based on the interacting multiple

model particle filter for the RUL prediction. Guha and Patra

(2018) presented a regression model combined with the

reconstructed electrochemical impedance spectrum, which was

applied to the PF method to predict the RUL. Deng et al. (2020)

proposed an empirical model to predict the RUL and used the PF

method to estimate the parameters of the model. Hong et al.

(2022) built an iterative model of the generalized Cauchy process

with long-range dependence characteristics for the RUL

prediction. The model-based methods are built based on the

battery failure mechanisms and could obtain high prediction

accuracy. However, the battery operating process is a complex

and dynamic system, and many parameters require

consideration to construct a model with high prediction

accuracy.

The data-based methods are different from the model-

based methods, which mainly mine the valid information

from historical degradation data without considering failure

mechanisms. Machine learning techniques such as the support

vector machine (SVM) and artificial neural network (ANN) are

used to predict the RUL of LIBs. Qin et al. (2019) proposed a

fusion model based on the PF algorithm and ANN to predict the

RUL. Ren X. et al. (2021) developed a novel method to predict

the RUL by combining the deep convolution neural network

(CNN) and long-short-term memory, and the experimental

results demonstrated the effectiveness of the proposed method.

Zhang et al. (2022) presented a hybrid parallel residual CNN

model for RUL prediction. Tang and Yuan (2022) extracted the

health indicators from all the measured parameters and

constructed an ANN model to predict the RUL from three

aspects of the shape feature. However, the ANN-based

prediction methods have high prediction accuracy, which

requires more computing time and computational

complexity. The support vector regression (SVR) model, as a

type of SVM model, has a simple structure and is widely used

for RUL prediction. Zhao et al. (2018) extracted health

indicators and proposed an SVR model combined with

feature vector selection to achieve the prediction of the RUL.

Wei et al. (2018) combined a particle filter with the SVR model

for the RUL prediction, and the results showed that the

proposed method could achieve an accurate result. Wang

et al. (2019) developed a hybrid method based on an

artificial bee colony algorithm and SVR (ABC-SVR) to

predict the RUL, and the results indicated that an accurate

prediction was obtained. Yang et al. (2021) presented a hybrid

model to predict the RUL, which combined the ensemble

empirical mode decomposition (EEMD), gray wolf

optimization, and SVR (GWO-SVR). In a data-driven

approach, complex historical data are used to predict the

RUL effectively, and the feature information extracted from

the historical data is crucial.

FIGURE 1
Flowchart of the WOA-SVR method.
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Inspired by references (Wei et al., 2018; Wang et al., 2019;

Yang et al., 2021), a new data-based method is proposed to

predict the RUL in this paper, and the method combines the

complete ensemble empirical mode decomposition with

adaptive noise (CEEMDAN), whale optimization algorithm

(WOA), and SVR model (WOA-SVR). The CEEMDAN

method is used firstly for noise reduction processing of

battery capacity data, which effectively improves

prediction accuracy. The WOA is a new intelligent

optimization algorithm and has excellent search capability

compared to other optimization algorithms. The SVR model

has the advantages of global optimality and high

generalization ability in solving nonlinear problems, but

there are still some challenges in selecting the parameters

of the SVR model (Wang and Mamo, 2018). To address the

issue of selecting the SVR method parameters, the WOA is

applied to select the kernel parameters to facilitate the RUL

prediction of LIBs. Although the WOA-SVR method has been

used to solve signal series data problems in many fields (Li

et al., 2020; Tikhamarine et al., 2020; Wang et al., 2021), this

method is employed for the RUL prediction for the first time.

The proposed method is validated using a public battery

dataset provided by the NASA Prognostics Center of

Excellence (Goebel et al., 2008). The proposed method

accurately predicts the RUL of LIBs according to the

experimental results, thus enabling timely battery

maintenance and replacement.

The remainder of the paper is organized as follows. In

Section 2, the principle of the related theory is described,

including the CEEMDAN method, WOA algorithm, and

SVR model. Section 3 introduces the RUL prediction for

LIBs using the CEEMDAN-WOA-SVR method. Noise

reduction processing of the capacity degradation data is

analyzed, and the prediction results are discussed in

Section 4. Finally, the conclusion and future work are

shown in Section 5.

2 Related theory

2.1 Principle of complete ensemble
empirical mode decomposition with
adaptive noise

Empirical mode decomposition (EMD) is presented as a

signal processing method that transforms the signal

sequence into several intrinsic mode functions (IMFs) and

a residual (Huang et al., 1998). Although the EMD method

has been widely used in signal processing, it has significant

problems, such as end effect and modal aliasing. As an

improvement of EMD, the CEEMDAN method is

proposed by the addition of adaptive white Gaussian

noise, which efficiently suppresses the end effect and

modal aliasing (Zhang and Hong, 2019).

Assuming that the original signal sequence and Gaussian

white noise are s(n) and ](n), respectively, and the i-th

composite signal after the addition of Gaussian white

noise can be represented as si(n) � s(n) + ]i(n). The

detailed steps are given as follows (Chen Z. et al., 2021;

Peng et al., 2021):

FIGURE 2
Flowchart of RUL prediction based on CEEMDAN-WOA-SVR
method.

FIGURE 3
Curves of Li-ion battery capacity.

Frontiers in Energy Research frontiersin.org03

Meng et al. 10.3389/fenrg.2022.984991

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.984991


1) The signal time series si(n) is decomposed by the CEEMDAN

method. The calculation of the first modal component is

represented as:

IMF1(n) � 1
I
∑I
i�1
IMFi

1(n) � IMF1(n) (1)

where I represents the decomposition time.

2) The residual sequence is calculated, and the first residual

sequence is given by:

r1(n) � s(n) − IMF1(n) (2)

3) Adding ε1E1[]i(n)] to the first residual sequence, the

realization r1(n) + ε1E1[]i(n)], i � 1, 2,/, I. is achieved.

Then, decompose r1(n) + ε1E1[]i(n)], i � 1, 2,/, I, and the

second modal component can be calculated as:

IMF2(n) � 1
I
∑I
i�1
E1(r1(n)) + ε1E1(]i(n)) (3)

4) Similarly, the k-th residue sequence is calculated in the

remaining phase. Then, the next modal component can be

given by:

rk(n) � rk−1(n) − IMFk(n) (4)

IMFk+1(n) � 1
I
∑I
i�1
E1(rk(n)) + εkEk(]i(n)) (5)

5) The decomposition process is terminated when the residual

sequence is unsuitable for further decomposition. The

decomposition process is carried out K times, and the final

result of the residual sequence is shown as:

R(n) � s(n) −∑K
i�1
IMFk(n) (6)

The original signal series s(n) can be represented as:

s(n) � R(n) +∑K
i�1
IMFk(n) (7)

2.2 Support vector regression method

SVR is a type of the SVMmodel developed through statistical

learning (Smola and Schölkopf, 2004). The SVR model can

effectively express the nonlinear mapping relationship between

input and output data, which has been widely used to solve

regression and prediction problems (Amroune et al., 2018; Liu

et al., 2021).

FIGURE 4
Decomposition results of B5 capacity by EEMD and CEEMDAN. (A) EMD, (B) CEEMDAN.
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Supposing that data sample is D � {(xi, yi)}, i � 1,/, N,

where xi and yi represent the input and output data, respectively.

The nonlinear mapping of sample data can be expressed as

(Malik et al., 2021):

f(x) � ω · φ(x) + bc (8)

where f(·) denotes the regression function, φ(·) indicates the

transfer function, ω is the weight parameter, and bc represents the

intercept parameter.

The regression problem is formulated as:

minR(ω, b, ζ) � 1
2
‖ω‖2 + C∑n

i

(ξ i + ξpi ) (9)

s.t.
⎧⎪⎨⎪⎩ yi − ω · φ(x) − bc ≤ ε + ξ i

ω · φ(x) + bc − yi ≤ ε + ξpi
ξ i, ξ

p

i ≥ 0.
(10)

where C represents the penalty parameter, ξi and ξ*i are the slack

variables, and ε is the boundary value.

The regression problem is transformed by the Lagrange

multipliers and the solution of the nonlinear regression

function is obtained by simplification, which can be expressed as:

f(x) � ∑n
i

(αi − αpi )K(xi, x) + bc (11)

where K(xi, x) is the kernel function, and αi, α*i are Lagrange

multipliers.

The kernel function has various forms, and this paper selects

the radial basis function, represented as:

KRBF(xi, x) � exp( − 1
2σ2

‖xi − x‖2) (12)

where σ represents the kernel parameter.

For the SVR model, the parameters C and σ affect the

complexity and prediction accuracy of the model. Therefore,

intelligent optimization algorithms are used for the optimal

selection of parameters.

2.3 Whale optimization algorithm
algorithm

WOA is a novel metaheuristic algorithm inspired by humpback

whales (Mirjalili and Lewis, 2016). The WOA is featured with

excellent search capability and simple structure, and has been

employed for solving practical optimization problems.

In the WOA, there are three stages for finding superiority:

searching for prey, encircling prey, and spiral update of position

(Saidala and Devarakonda, 2018; Chakraborty et al., 2021).

Encircling prey (p < 0.5 and |A1| < 1):

Xi,t+1 � Xbest − A1 ·D, 0≤ i≤NP (13)
D � ∣∣∣∣C ·Xbest −Xi,t

∣∣∣∣ (14)
A1 � 2 · a · r − a (15)

C � 2 · r (16)
a � 2 − t · (1 − t/T max) (17)

where Xi,t denotes the solution in the current generation, Xi,t+1
represents the solution in the next generation, Xbest is the best

solution, NP is the population number, t is the current number

of iterations, Tmax is the maximum number of iterations, p andr

are random numbers,

Searching for prey (p < 0.5 and |A1|≥1):

Xi,t+1 � Xrand,t − A1 ·D (18)
D � ∣∣∣∣C ·Xrand,t −Xi,t

∣∣∣∣ (19)

where Xrand,t represents a random solution in the current

generation.

Spiral update of position (p ≥ 0.5):

Xi,t+1 � Xi,t +Dp · ebl · cos(2πl) (20)
Dp � ∣∣∣∣Xbest −Xi,t

∣∣∣∣ (21)

where b indicates a constant, and l represents a random number

in [−1,1].

FIGURE 5
Noise reduction results of B5 capacity using EMD and
CEEMDAN methods.

TABLE 1 Parameter setting of the algorithm.

Parameter Value

Population size, Np 20

Variable dimension, Dm 2

Max iteration number, T 100

Penalty factor, C [0.01, 100]
Kernel parameter, σ [0.01, 100]
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3 Remaining useful life prediction for
lithium batteries based on complete
ensemble empirical mode
decomposition with adaptive noise
and whale optimization algorithm-
support vector regression methods

3.1 Whale optimization algorithm-support
vector regression model

In the SVR model, the penalty factor C and kernel

function parameter σ are critical parameters, and they

have a direct impact on the performance of the SVR

model. Thus, the WOA is used to optimize the kernel

parameters of the SVR model. The flowchart of the WOA-

SVR method is shown in Figure 1, and the detailed process is

described as follows:

Step 1: The parameters setting.

Before the predictionmethod execution, the population number

Np, dimension of variablesDm, the maximum iteration number T,

the optimal range of C, and the optimal range of σ are set.

Step 2: Data preprocessing.

In this step, the battery capacity datasets are normalized, and

the capacity values are mapped in the range [−1, 1] with Eq. 22.

The preprocessed data is divided into two parts, one part is

training data and the other part is testing data.

xi � 2 ×
xi − x min

x max − x min
− 1 (22)

where xi represents the i-th battery capacity value, xmax

represents the maximum value of battery capacity, and x min

represents the minimum value of battery capacity.

Step 3: Setting the fitness function.

The fitness function is established with the mean square error

(MSE) between the actual and predicted value, which can be

expressed as:

FIGURE 6
Prediction results of WOA-SVR and CEEMDAN-WOA-SVR (training samples with 40% cycle data). (A) B5, (B) B6, (C) B7, (D) B18.
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MSE � 1
n
∑n
i�1
(ŷi − yi)2 (23)

where ŷi and yi represent the predicted value and the actual value

at the i-th cycle, respectively. n indicates the cycle time.

Step 4: Optimizing the kernel parameters of the SVR.

According to the search process of the WOA, the parameters

of the SVR are selected in the solution space.

Step 5: The RUL prediction of LIBs: The RUL prediction

accuracy of the WOA-SVRmodel is validated by the testing data.

3.2 The remaining useful life prediction of
lithium-ion batterie based on CEEMDAN-
GWO-SVR

To improve prediction accuracy, the CEEMDAN is firstly

used to perform noise reduction in battery capacity series.

Figure 2 shows the flowchart of RUL prediction based on

CEEMDAN-WOA-SVR, and the detailed steps are introduced

as follows:

Step 1: Getting the capacity data.

Step 2: Decomposition of capability degradation series into

IMFi(i � 1, 2,/, n) and a residual by applying CEEMDAN.

Step 3: To represent the correlation between each IMFi

component and the original signal, the correlation coefficient

is utilized and expressed as Eq. 24. The sensitive IMF

components are selected when the correlation coefficient is

more than the threshold value.

Ci �
∑N−1

t�1
IMFi(t)x(t)���������������������∑N−1

i�1
[IMFi(t)]2 ∑N−1

i�1
[x(t)]2

√ (24)

where Ci denotes the correlation coefficient of the i-th modal

component with the original signal, IMFi(t) represents the i-th
modal component, x(t) represents the original signal sequence
value, and N denotes the length of the time series.

FIGURE 7
Absolute prediction errors of CEEMDAN-WOA-SVR and WOA-SVR (training samples with 40% cycle data). (A) B5, (B) B6, (C) B7, (D) B18.
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Step 4: The battery capacity sequence is reconstructed according

to the selected IMF components and the residual. A WOA-SVR

model is constructed for the reconstruction sequence.

Step 5: Obtaining the prediction of RUL.

4 Performance evaluation and
analysis

4.1 Capacity degradation dataset of
lithium-ion batterie

In this section, the public battery datasets provided by the

NASA Prognostics Center of Excellence (Goebel et al., 2008) are

employed to verify the accuracy and validity of the proposed

method. These data were obtained from charge and discharge

tests at room temperature (24°C) using 18650 LIBs with a

capacity of 2 Ah. In the datasets, there are many parameters

such as voltage, current, and capacity. Because the change in

battery capacity directly indicates the degree of battery

degradation, the capacity can be applied to the RUL

prediction of LIBs. The capacity degradation curves of B5,

B6, B7, and B18 are shown in Figure 3.

Generally, it is considered that the EOL of a battery is reached

when the capacity degrades by 30%. In the experiment, the cyclic

testing of battery charging and discharging test was terminated when

the battery degraded to the EOL. However, for battery

B7 degradation at 30%, it does not drop to the EOL, so this

study resets the failure threshold of the battery, which is set to

72% of the rated battery capacity (1.44 Ah).

4.2 Evaluation criterion

To assess the proposed method’s performance, the mean

absolute error (MAE) and the root mean square error (RMSE) are

FIGURE 8
Prediction results of WOA-SVR and CEEMDAN-WOA-SVR (training samples with 50% cycle data). (A) B5, (B) B6, (C) B7, (D) B18.
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selected as the evaluation criteria, denoted as (Wang and Mamo,

2018):

MAE � 1
n
∑n
i�1

∣∣∣∣∣∣yi
∧ − yi

∣∣∣∣∣∣ (25)

RMSE �
������������
1
n
∑n
i�1

∣∣∣∣∣∣yi
∧ − yi

∣∣∣∣∣∣2√
(26)

where yi
∧

and yi represent the i-th predicted and the actual

capacity value, respectively. n indicates the estimated number.

MAE is the average error of all prediction results. RMSE is the

root mean square of all prediction errors. However, MAE and

RMSE are applied to reflect the accuracy of the predicted method.

4.3 Noise reduction of lithium-ion batterie
capacity sequences

The capacity decay curves of LIBs can be seen that there is a

decreasing trend with the charging and discharging cycles, but in some

cycles, the capacity of LIB has a fast and short rise, mainly due to

random noise disturbance. To reduce the impact of noise, the capacity

data need to be processed for noise reductionbefore theRULprediction.

In this paper, the noise reduction process on capacity data is

performed using CEEMDAN, and the sensitive IMF components

are selected when the threshold value is more than 0.05. In this

section, B5 capacity data is chosen to prove the efficacy of the

CEEMDAN. Figure 4 shows the decomposition results of EMD

and CEEMDAN. The B5 capacity after noise reduction by the

EMD and CEEMDAN methods is shown in Figure 5. As can be

seen from Figure 5, CEEMDAN can effectively reduce the noise

of the capacity data, and the noise reduction effect of CEEMDAN

is closer to the original data compared with the EMD method.

4.4 Simulation results analysis

To verify the prediction performance of the proposed

method, 40% (prediction start: 68, 68, 68, and 53) and 50%

FIGURE 9
Absolute prediction Errors of CEEMDAN-WOA-SVR and WOA-SVR (training samples with 50% cycle data). (A) B5, (B) B6, (C) B7, (D) B18.
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(prediction start: 84, 84, 84, and 66) of the total cycle data were

used as training samples for prediction with the WOA-SVR

method, respectively. The parameters of the WOA are set in

Table 1. The prediction results are shown in Figures 6–9,

Tables 2, 3.

When the capacity failure threshold of the LIB is reached, the

errors between the predicted remaining useful life (PRUL) and

the RUL are calculated as:

Er � |PRUL − RUL| (27)
pEr � |PRUL − RUL|

RUL
× 100% (28)

Er is used to reflect the predicted error of RUL, and pEr is applied

to assess the accuracy of RUL prediction.

In Figures 6, 8; Table 2, the Er andpEr of the CEEMDAN-

WOA-SVR method are less than the WOA-SVR method except

for B5 (start = 68). Take the B7 battery as an example (start = 68),

the Er and pEr of the WOA-SVR method are 18 and 23.1%

respectively, whereas, the Er and pEr of the CEEMDAN-WOA-

SVR method are 2 and 2.6% respectively. Compared with the

WOA-SVR method, the Er and pEr of the CEEMDAN-WOA-

SVR method are reduced by 89%.

From Figures 7, 9; Table 3, it can be seen that MAEs and

RMSEs of the CEEMDAN-WOA-SVR method are less than the

WOA-SVR method. For example, when the prediction start

number is 84 for the B6 battery, the MAE and RMSE of the

WOA-SVR are 0.027 and 0.0341 respectively, whereas, the MAE

and RMSE of the CEEMDAN-WOA-SVR are 0.0084 and

0.0124 respectively. Compared with the WOA-SVR method,

the MAE of the CEEMDAN-WOA-SVR method is reduced by

69%, and the RMSE is reduced by 64%. Therefore, the accuracy of

RUL prediction with the CEEMDAN-WOA-SVR method is

better than the WOA-SVR method.

To further verify the effectiveness of the proposed method, the

proposed method is compared with the methods in the literature

under the same conditions. Wang et al. (2019) proposed an ABC-

SVR method to predict the RUL, they employed ABC algorithm to

select the kernel parameters of the SVR model. Yang et al. (2021)

TABLE 3 Results of WOA-SVR and CEEMDAN-WOA-SVR methods for RUL prediction.

Battery Prediction start WOA-SVR CEEMDAN-WOA-SVR

MAE RMSE MAE RMSE

B5 68 0.0111 0.0158 0.0100 0.0120

84 0.0104 0.0154 0.0061 0.0088

B6 68 0.0328 0.0407 0.0079 0.0118

84 0.0270 0.0341 0.0084 0.0124

B7 68 0.0132 0.0192 0.0066 0.0090

84 0.0094 0.0164 0.0054 0.0084

B18 53 0.0214 0.0250 0.0192 0.0232

66 0.0145 0.0160 0.0067 0.0105

TABLE 2 The RUL prediction results of WOA-SVR and CEEMDAN-WOA-SVR methods.

Battery Prediction start RUL WOA-SVR CEEMDAN-WOA-SVR

PRUL Er pEr(%) PRUL Er pEr(%)

B5 68 43 42 1 2.3 40 3 7.0

84 27 25 2 7.4 26 1 3.7

B6 68 31 37 6 19.4 30 1 3.2

84 15 21 6 40 15 0 0

B7 68 78 96 18 23.1 80 2 2.6

84 62 71 9 14.5 63 1 1.6

B18 53 30 37 7 23.0 36 6 20

66 17 18 1 5.9 16 1 5.9
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presented a hybrid model based on EEMD, GWO, and SVR to

predict the RUL, they used EEMD to extract the degradation trend of

battery capacity and employed the GWO algorithm to search the

parameters of the SVRmethod. Table 4 lists the detailed comparison

results of the CEEMDAN-WOA-SVRmethod and the twomethods.

From Table 4, it is apparent that the prediction errors of the

proposed method are also less than those of the existing methods in

the literature. Take the B7 battery as an example (start = 84), the Er,

pEr, MAE, and RMSE of the EEMD-GWO-SVRmethod are 1, 1.6%,

0.0054, and 0.0084, respectively. Compared with the twomethods, the

prediction errors of the proposed method are smaller.

Based on the above discussion, it can be concluded that the

CEEMDAND method reduces the influence of noise on the

prediction, and the CEEMDAN-WOA-SVR method could

effectively improve the RUL prediction accuracy of LIBs.

5 Conclusion

The accurate RUL prediction of LIB is a critical technology

for battery health management, which ensures the safe, stable,

and efficient operation of the battery. In this study, a newmethod

for the RUL prediction of lithium-ion batteries is proposed,

which is combined with the CEEMDAN, WOA, and SVR

methods. First, the battery capacity data is processed by

CEEMDAN to reduce the impact of noise on the data

sequence. Then, the WOA is applied to the SVR model for

solving the parameter selection problem. Finally, a new method

based on CEEMDAN and WOA-SVR is used for the RUL

prediction of LIBs. To verify the efficacy of the CEEMDAN-

WOA-SVR method, simulation experiments of LIBs RUL

prediction using the WOA-SVR and CEEMDAN-WOA-SVR

methods are performed. The results show that the Er and pEr of

CEEMDAN-WOA-SVR method are less than the WOA-SVR

method, and MAEs and RMSEs of the proposed method are less

than theWOA-SVRmethod. As a result, the noise of the capacity

sequence is reduced by CEEMDAN, which effectively improves

the prediction performance. In addition, the prediction

experiments are performed using the ABC-SVR and EEMD-

GWO-SVR methods, and the results indicate that the errors of

the CEEMDAN-WOA-SVR method are also smaller than the

ABC-SVR method and EEMD-GWO-SVR method. Therefore,

the CEEMDAN-WOA-SVR method is an effective tool for the

RUL prediction of LIBs.

TABLE 4 The RUL prediction results of CEEMDAN-WOA-SVR and other methods.

Battery Method Prediction
start

RUL PRUL Er pEr

(%)
MAE RMSE

B5 ABC-SVR 68 43 43 0 0 0.0071 0.0132

84 27 27 0 0 0.0072 0.0139

EEMD-GWIO-SVR 68 43 46 3 6.9 0.0096 0.0113

84 27 26 1 3.7 0.0076 0.0096

CEEMDAN-
WOA-SVR

68 43 40 3 7.0 0.0100 0.0120

84 27 26 1 3.7 0.0061 0.0088

B6 ABC-SVR 68 31 38 7 22.6 0.0418 0.0463

84 15 19 4 2.6 0.0313 0.0353

EEMD-GWIO-SVR 68 31 32 1 3.2 0.0075 0.0096

84 15 18 3 20 0.0121 0.0156

CEEMDAN-
WOA-SVR

68 31 30 1 3.2 0.0079 0.0118

84 15 15 0 0 0.0084 0.0124

B7 ABC-SVR 68 78 80 2 2.6 0.0075 0.0144

84 62 64 2 3.2 0.0080 0.0151

EEMD-GWIO-SVR 68 78 80 2 2.6 0.0131 0.0150

84 62 60 2 3.2 0.0096 0.0113

CEEMDAN-
WOA-SVR

68 78 80 2 2.6 0.0066 0.0090

84 62 63 1 1.6 0.0054 0.0084

B18 ABC-SVR 53 30 30 0 0 0.0302 0.0332

66 17 17 0 0 0.0104 0.0194

EEMD-GWIO-SVR 53 30 38 8 26.7 0.0101 0.0127

66 17 15 2 11.8 0.0113 0.0134

CEEMDAN-
WOA-SVR

53 30 36 6 20 0.0192 0.0232

66 17 16 1 5.9 0.0067 0.0105
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In this study, the MAE and RMSE are used to demonstrate

the effectiveness of the CEEMDAN-WOA-SVR method.

Compared with other SVR-based methods, the predicted

results of the proposed method do not appear to be

significantly improved. In future work, we will use other

prognostics metrics, such as the accuracy index, alpha-

lambda, and precision index, to verify the method’s

performance. In addition, we will calculate the lower and

upper bounds of the RUL prediction and compare them with

the threshold value to achieve the prediction of the RUL.
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Nomenclature

Variables

b constant number

bc intercept parameter

C penalty parameter

Ci i-th correlation coefficient

Dm variable dimension

Er absolute predicted error of RUL

f (x) regression function

I decomposition time

IMFi(t) i-th modal component

K(xi, x) kernel function
l, p, r random numbers

n cycle time number

N length of the time series

NP population number

pEr relative prediction error of RUL

r1(n) first residual sequence
rk(n) k-th residue sequence

R(n) residual sequence
s(n) original signal sequence
t current number of iteration

T max maximum number of iteration

ν(n) Gaussian white noise

xi i-th battery capacity value

x max maximum value of battery capacity

x min minimum value of battery capacity

Xi,t solution in the current generation

Xi,t+1 solution in the next generation

Xbest best solution in the current generation

Xrand,t random solution in the current generation

x(t) original signal sequence value
ŷi predicted value at the i-th cycle

yi actual value at the i-th cycle

φ(x) transfer function
ω weight parameter

ξi, ξ
*
i slack variables

ε boundary value

σ kernel parameter

αi, α*i Lagrange multipliers

Abbreviations

ABC artificial bee colony

ANN artificial neural network

CEEMDAN complete ensemble empirical mode decomposition

with adaptive noise

CNN convolutional neural networks

EEMD ensemble empirical mode decomposition

EMD empirical mode decomposition

EOL end of life

GWO gray wolf optimization

IMF intrinsic mode function

LIB lithium-ion battery

MAE mean absolute error

MSE mean square error

PF particle filtering

PRUL predicted remaining useful life

RMSE root mean square error

RUL remaining useful life

SVM support vector machine

SVR support vector regression

WOA whale optimization algorithm
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