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In order tomeet the needs of life and production and ensure the battery is stable

when using the battery, a scheme for reckoning the state of charge of lithium-

ion batteries derived from the competitive SIR model is proposed. During the

charging process of the battery, the electrolyte and the diaphragm reach the

negative electrode of the battery, and the electrolyte escapes from the graphite

of the negative electrode to the positive electrode in the case of discharge. The

analysis shows that the SIR model belongs to the internal information evolution

process, which can infect the surrounding data and evaluate the state of charge

better. Through experiments, it is substantiated that the scheme is able to better

estimate the state of lithium-ion batteries, the error value is 0.0189, the

accuracy is good, and the battery usage can be predicted in time.
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1 Introduction

With the continuous growth of the population, the human society and the world

economy have also developed rapidly (Xiong et al., 2021). However, energy crisis and

environmental pollution have become increasingly serious problems faced by people.

Therefore, both the government and scientists have paid attention to it (Zhang et al.,

2015a).

In order to solve the above problems, electric vehicles with clean energy as the power

source came into being.With the emergence of energy crisis and environmental problems,

the new energy automobile university gradually occupies an important position in the

global automobile industry (Yang et al., 2022).

In recent years, the development of hybrid electric vehicles has boosted the research

and development of batteries. At the same time, more lithium batteries are required to

meet the quality of life (Dey et al., 2015). In terms of principle and characteristics, different

types of batteries have their own characteristics, such as chemical composition,

performance (Li et al., 2021a), cost and safety. Later, dry batteries and nickel-

cadmium batteries appeared. Later, for environmental protection, the research focus

turned to batteries.

The battery state of charge (SOC) is an important parameter of the battery

management system (Li et al., 2021b). However, the SOC peak cannot be directly
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measured, and it is affected by factors such as application

environment, declining degree, self-discharge, current

amplification. Therefore, SOC reckoning, especially online

reckoning, is a hot and difficult issue in lithium battery

research. Based on this, a proportional-integral (PI) observer

was proposed in (Xu, 2014) to estimate the SOC of Li-ion

batteries in EDVs (End-diastolic volume). In literature (Ya-

Xiong and Zhang, 2016), in order to reckon SOC of lithium

batteries, the primary battery model is improved to develop the

accuracy of the model and enable the battery model to reflect the

actual internal state of the battery. The corresponding battery test

experiments are carried out. Reference (Jiang et al., 2022) uses the

EDVs Extended Rauch-Tung-Striebel Smoother (ERTSS) to

estimate SOC. Using a Genetic Algorithm (GA) to search for

the smoothing time interval for the optimal ERTSS, various

dynamic unit tests were performed. Reference (Hu et al.,

2022) extracts higher-level spatial features between multi

variables into the current SOC and historical input, to achieve

state assessment. However, the above-mentioned methods have

low accuracy and large errors, so they cannot be accurately

evaluated. Therefore, in this paper, the competitive SIR model

is used to reckon the state of charge, and its advantages are

clarified by analyzing the condition of lithium-ion batteries, and

the SIR model is used to reckon SOC of the battery, providing a

better method for battery condition assessment.

2 Lithium-ion batteries working
principle and performance

2.1 Analysis of the advantages of lithium
batteries

Lithium-ion batteries have superior properties that drive

their rapid development. Its advantages are as follows:

1) High energy density (Zou et al., 2014). There are many kinds

of materials that make up lithium-ion batteries, and different

materials have different electrical conductivity. The power

density of lithium-ion batteries is superior to other batteries

in terms of mass and volume.

2) The open circuit voltage is too high. The materials that make

up a lithium-ion battery determine its high open-circuit

voltage, about three times that of the same nickel-

chromium and nickel-metal hydride batteries.

3) The output power is large. This is also determined by the

materials that make up the lithium-ion battery.

4) No memory effect (Yang et al., 2021). This feature allows

the battery to function when it is not fully charged,

avoiding the need to fully charge and discharge the

battery every time, which is simpler to use and maintain

than normal batteries.

5) The self-discharge rate of the battery is low. Self-discharge is

not obvious and the efficiency is low. Even if it does not work

for a long time, the average monthly excretion is only 5–10%.

6) Wide operating temperature range. It can work in a wide

temperature range and can work normally at −20°C~+50°C.

7) The charging speed is fast. Lithium-ion batteries have high

charging efficiency. They can be charged with 1C or more and

can reach full state in a short period of time.

8) Long cycle life. Its cycle life is significantly better than other

batteries. The cycle life of ordinary lithium batteries can reach

500 times or even more than 1,000 times. However, the

theoretical charge-discharge cycles of batteries can reach

more than 2000 times.

9) Safe and pollution-free. This is an environmentally friendly

battery that can provide energy without producing heavy

metals (Zhang et al., 2015b), harmful gases and other

pollutants.

The superior performance of lithium-ion batteries is suitable

for electric vehicles, which has prompted more research on them.

2.2 Lithium-ion batteriesworking principle

This paper mainly introduces the internal structure of

lithium iron phosphate battery. Its cathode (Vo et al., 2015)

material is composed of lithium iron phosphate. On the left is

LiFePo4 , and the positive electrode of the battery is composed of

olivine-structured bubbles. Aluminum foil connects it to the

battery positive. On the right is the battery negative. Its

material is graphite (Xie et al., 2018). Copper foil connects it

to the battery negative. The middle part is the polymer

membrane (Hu et al., 2018). It separates the positive and

negative electrodes, allowing Li + to pass but preventing e-

from passing through. The battery electrolyte is usually an

organic electrolyte, which is located at the upper and lower

ends of the battery. The working process of the battery is

shown in Eq. 1 and Eq. 2:

In charge state:

LiFePo4 − xLi+ − xe− → xFePo4 + (1 − x)LiFePo4 (1)

In discharge state:

FePo4 + xLi+ + xe− → xLiFePo4 + (1 − x)FePo4 (2)

During the charging situation, the Li + escaped from the

anode reaches the negative electrode of the battery through

the electrolyte and the diaphragm through the action of the

electric field, and the current flows reversely from the cathode

to the anode. During the discharging situationf, Li + escapes

from the graphite of the cathode to the anode through the

electrolyte, and the current flows from the anode to the

cathode.
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3 State of charge estimation research
status

3.1 State of charge definition

State-of-charge batteries are usually expressed as a

percentage, with values ranging from 0 to 1. Remaining

power is an important parameter reflecting battery

performance. In many cases, SOC is often used to indicate

the remaining power of the battery. Strictly speaking,

however, the two definitions are different and the units

adopted are inconsistent.

At present, the definition of SOC is not unified (Sakile and

Sinha, 2021). Only a few simple definitions are introduced below,

and the following definitions are given from different

perspectives.

Definition 1. The most classic expression in the definition of

SOC is as follows:

SOC � Qremain

Qrated
× 100% (3)

where Qremain is the remaining charge scope (Le et al., 2021).

Qrated is the rated charge capacity. If we think thatQrated is a fixed

value (Gholizadeh and Salmasi, 2013), the definition (3) of SOC

can be rewritten as Eq. 4:

SOC � Qremain

Qramain + Qd
× 100% (4)

Among them, compared with the Eq. 3, the extra

denominator Qd in the Eq. 4 represents the amount that has

been released in the electric charge after the latest charging point.

Definition 2. Definition from the perspective of electricity: the

battery is discharged at a certain rate, the current remaining

battery capacity of the battery is used as the numerator (Zhang

et al., 2022), and the total available capacity is used as the

denominator. The corresponding mathematical expression is

shown in Eq. 5.

SOC � Qt

Q0
× 100% (5)

In Eq. 5, Qt represents the remaining power of the battery

during calculation, that is, the battery is fully discharged to the

discharge cut-off (Mitsuru and Yuhu, 2019) voltage under the

conditions of a certain discharge rate and temperature specified

in the actual experiment; Q0 indicates the total capacity of the

battery.

There is also a definition of SOC as shown in the following

Eq. 6:

SOC � Q(t) − Q0

QE − Q0
× 100% (6)

Among them, Q(t) is the remaining scope, QE represents the

maximum scope, and Q0 represents the total capacity of the

battery.

Definition 3. , according to the definition of SOC:

SOC � SOC0 − 1
CN

∫t

0
ηidτ (7)

In the above formula: CN is the rated scope; i is the battery

current; η represents the efficiency during charge-discharge

situation, and SOC0 is the initial state under working conditions.

Definition 4, defined in terms of energy:

SOC � remaining available energy
total available energy

× 100% � 1 − Wh

WhE
(8)

In Eq. 8,Wh represents the used energy, andWhE represents

the total usable energy.

3.2 Reckoning scheme

Battery SOC evaluation plays a primary role in battery

systems. The state of charge can only be estimated indirectly

(Zheng et al., 2016), which needs to be estimated with the help of

information such as voltage, current, internal resistance, and

temperature. This is a physical quantity that cannot be directly

measured (Hu et al., 2018). Many scholars and experts have done

a series of related researches and discussions on the online

reckoning scheme. In line with the different algorithm

modeling methods, SOC estimation methods can be divided

into simple calculation methods, fitting methods and

nonlinear filtering methods (Tian et al., 2022). The specific

classification is as follows.

3.2.1 Simple calculation method
The so-called calculation methods (such as the open

circuit voltage method, the internal resistance method (Wu

et al., 2021), the ampere-hour integration method, the

discharge experiment method and the ultrasonic detection

method) calculate the SOC of the battery through the

definition formula of SOC. The simple parameter used in

the formula is the charge and discharge current collected by

the “black box”, without using any intelligent model or

equivalent model (Chen et al., 2022), and not caring about

the internal structure of the battery, but treating the battery as

a whole as a “black box”, which is a relatively basic estimation

method. The direct calculation method is a method that

realizes SOC estimation only by defining the formula

calculation. The direct calculation method referred to in

this article is the ampere-hour integration method.

According to the ampere-hour integration method, SOC is

defined as follows:
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SOC(t) � SOC(t0) −
η∫t

t0
Idt

QN
(9)

η is the Coulomb efficiency coefficient, QN is the nominal

capacity of the battery, I is the discharge current, and

SOC(t0) is the state of charge at t0.

The nonlinear relationship between OCV and SOC is first

fitted, and then the relationship is used to reckon SOC indirectly,

the so-called open circuit voltage method. In general, the open

circuit voltage method has a clear relationship with SOC in the

early and late stages of charging, and it is best to estimate SOC

within this range. The ampere-hour integration method has

become the most widely used method in practice due to its

simplicity and ease of implementation. Combining the

advantages and disadvantages of the two methods, it is found

that the two methods are obviously complementary. Therefore,

many scholars have proposed new ideas to combine these two

methods. The use of high-performance current sensors to

measure current solves the problem of current inaccuracy, but

also increases the cost. The advantage is that the principle is

simple, and the calculation of the internal resistance value is

simple. However, due to the influence of other factors, it is

difficult to determine the relationship with SOC. Ultrasonic

testing is a relatively new method. According to the advantage

that ultrasound is very sensitive to porosity changes, it can detect

the SOC state of the battery with high sensitivity.

3.2.2 Fitting method
The fitting estimation method fits the internal relationship

between the external characteristics and SOC (such as load

voltage method and the linear model method) according to

the experimental data of the battery under various operating

conditions, or uses various intelligent learning algorithms (such

as neural network, network method, fuzzy inference method,

support vector machine, etc.) offline training of the relationship

model between battery performance parameters and state of

charge, and then based on the relationship model, using

experimental data to reckon SOC, which is called the fitting

scheme. With the development of modern sensor technology and

data storage and processing technology, data-driven system

health prediction methods (neural network method, fuzzy

inference method, support vector machine, correlation vector

machine, etc.) have been widely used and popularized. The SOC

reckoning scheme can be enforced to various lithium-ion

batteries, the estimation accuracy is improved.

Fuzzy inference methods can estimate the time-varying

parameters of circuit models well, but lack the ability of self-

learning and self-adaptation. The SVM method uses a limited

number of samples. The algorithm is simple and stable, but

requires much data for computation. Support vector regression

has the ability to learn from small samples, but the algorithm is

not adaptive when battery performance parameters change (Liu

et al., 2021).

3.2.3 Nonlinear filtering method
The nonlinear filtering method treats the battery as a

dynamic system. The state variables of the system include

SOC, which is updated by observing the variable value

(usually selecting the battery terminal voltage as the

observation variable), and finally the standard error of the

state variable is minimized, sliding mode observer method, H

filter method, etc, are used in nonlinear stochastic systems, and

this kind of SOC estimation method is more suitable in terms of

estimation accuracy.

To sum up, among the existing SOC estimation methods, the

simple calculation scheme is straightforward to implement, and

is widely used in occasions with low precision requirements. In

occasions with high accuracy requirements, this method is

usually used as an auxiliary tool for other SOC estimation

methods; the fitting method is straightforward to perform and

has high accuracy, but requires much data for computation,

training data and method will directly affect the estimation

accuracy; The nonlinear filtering method can track the

changes of battery voltage and current in real time, update the

SOC estimation value, and realize online SOC estimation, but the

implementation process of this method is relatively complicated

and the amount of calculation is large.

3.2.4 SI model
Assuming that the total population of an area is a constant,

then in the process of spreading infectious diseases, it is divided

into susceptible groups (Susceptible) and infected persons

(Infective). Susceptible populations are those who are not yet

infected but are at risk of infection. S(t) represents the number of

people who are vulnerable at t , and I(t) represents to the number

of people who are infected at t. Obviously:

S(t) + I(t) � N (10)

Assuming that the infection rate is β , the number of people

who are newly infected is:

dI(t)
dt

� βI(t)S(t) (11)

The change of susceptible population per unit time is:

dS(t)
dt

� −βI(t)S(t) (12)

Assuming the initial infection number I0 � I(0) , the

simultaneous Eqs 10–12 can be obtained:

I(t) � N

1 + (NI0 − 1)e−βNt
(13)

As time t approaches infinity, the number of infected people

will approach N . Based on this feature, this paper uses the SI

model to represent the dissemination model of rumor-refuting

information in competitive information, that is, after the rumor-
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refuting information begins to spread, the number of users who

finally receive the information approaches N .

3.2.5 SIR model
Similar to the SI model, the SIR model has an additional

removal population. Removal populations are those who received

treatment after infection and then migrated from the infected

population. For example, such a population would not become

infected after developing antibodies to infectious diseases. R(t)
represents the number of people who are removed at time t , γ

and represents the probability of an infected person being

removed per unit time. Based on the advantages of the SIR

model over the SI model, this paper adopts the SIR model as the

propagation model.

Since the SIR model is similar to the SI model, the change

equation can be rewritten as:

dI(t)
dt

� βI(t)S(t) − γI(t) (14)
dS(t)
dt

� −βI(t)S(t) (15)
dR(t)
dt

� γI(t) (16)
S(t) + I(t) + R(t) � N (17)

Under normal circumstances, since the initial infected

population is not 0, so I0 � I(0)> 0 , S0 � S(0)> 0 .

Based on this, this paper proposes a SOC reckoning for Li-ion

batteries under a competitive SIR model. The SIR model was first

used to study the spread and evolution of infectious diseases (Du

et al., 2021). Since the 18th century, many research results have

been formed, most of which focus on the improvement of the

model and the application of the model in different fields. SIR is

an infectious disease model developed from the SI model, which

uses mathematical methods to analyze changes in the number of

infections, predict peak periods, and identify regulatory and

preventive mechanisms (Chen et al., 2020).

In the traditional SIR model, all participants in the system are

divided into three parties: S is the susceptible group, I is the

infected, i.e. the disseminator of opinions, and R is the immune,

i.e. the person who is immune to the current information and no

longer transmits it information. The mutual transformation of

the three groups reflects the evolution of public opinion or

information within the group.

4 Results and analysis

In this paper, a competitive SIR model is used to estimate the

SOC during steady-state discharge of lithium-ion batteries.

Experimental data was gathered during discharge situation of

a set of lithium-ion batteries. The specification of the lithium-ion

battery used in the experiment is shown in Table 1.

The SOC recorded during the entire discharge process is

calculated by Eq. 18:

SOC � SOC0 + 1
CR

∫t

t0

Icmdτ, CR � ∫tEDV

0
Icmdτ (18)

In Eq. 18, SOC0 represents the original SOC, CR is the rated

scope, Icm is the discharge current, and tEDV represents the

discharge time.

The root-mean-square error (RMSE) was used to evaluate the

accuracy of the SIR model estimation. RMSE is defined as

follows:

δRMSE �
��������������
1
n
∑n
i�1

∣∣∣∣f(xi) − yi

∣∣∣∣2√
(19)

In Eq. 19, f(xi) represents the estimated value based on the

model, yi represents the true value of the equation SOC, n is the

number of reckoned points.

Design experiments to complete the state of the battery, and

continuously charge and discharge the battery under specific set

conditions.

The capacity is obtained by the corresponding standard

measurement, and the specific steps are as follows:

1) Charging experiment, keep the lithium-ion battery charged at

a constant current of 0.2°C at an ambient temperature of 36°C,

and switch to constant voltage charging when the voltage

reaches 4.2 V.When the charging current reaches 0.12 A, stop

charging. It was left to stand for 15 min, cycling this process

until the charge cut off current.

2) The discharge experiment is also carried out at the same

ambient temperature. When the battery terminal voltage

drops to 2.75 V, the discharge is stopped.

It was left to stand for 30 min; this process was applied to two

batteries, called No. 4 and No. 5, respectively, to discharge the

No. 4 battery at a constant current of 1.0°C, and the No. 5 battery

to discharge at a constant current of 2.0°C.

Based on this step, the accelerated aging test of the battery

under the corresponding conditions was carried out.

Data such as degree, number of charge and discharge cycles and

time are saved and recorded. The experiment was carried out for a

TABLE 1 Lithium-ion battery parameters.

Parameter Numerical value

Rated Capacity/mAh 2000

Discharge initial voltage/V 4.1

Discharge cut-off voltage/V 2.5

Ambient temperature/°C 25

Discharge current/A 2
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month, and the 4th and 5th batteries were respectively charged and

discharged cyclically. However, due to the failure of the experimental

platform, the 4th battery was overcharged, resulting in damage to the

internal mechanism of the battery, and it could not continue to

charge. A total of 200 times were charged. Discharge, only 200 sets of

data. It took nearly a year for the AA battery to complete 789 charge

and discharge experiments. So far, the capacity of the battery has

dropped to the failure value. The aging experiment of the battery has

been completed, and a total of 789 sets of data have been obtained.

During stable discharge experiment, the data used is the

lithium-ion battery data provided by the database prediction

center (Kim et al., 2021). The data of the No. 5 lithium-ion

battery during discharge situation is used as the basis for the

experimental data. In data set No. 5, the first to fourth groups of

discharge data are used as the training set of the model, the

seventh group of discharge data is used for the accuracy

estimation of the model, and the seventh group of discharge

process data are as follows Figure 1.

The battery voltage, current, and temperature are the

characteristic input of the model, and the SOC value is the model

output. The number of random forest trees is set to 500 (the test

results show that the model is guaranteed to converge), and the

randomly selected features are set to 2. In order to verify the

evaluation performance of the random forest regression algorithm

in the SOC reckoning scheme of lithium-ion batteries, the BP neural

network and the T-S fuzzy neural network use the same parameters

as the benchmark for comparison. The obtained sixth group of

experimental prediction results and experimental errors are shown in

Figure 2.

Figure 2 shows that the SIR model, BP neural network and T-S

fuzzy neural network all have high estimation accuracy. Compared

with the BP neural network and the T-S fuzzy neural network, the

SOCprediction of the SIRmodel is almost close to the true value. The

reckoning lapse of BP neural network and T-S fuzzy neural network

is in a large range with the change of input vector, and the SIRmodel

can assure that the lapse is within a certain range. Figure 2D shows

that the maximum reckoning lapse of the SIR model, BP neural

network and T-S fuzzy neural network are 0.0189, 0.021 and 0.026,

respectively. Through the simulation results of the MATLAB

platform, it is concluded that the root mean square error (RMSE)

of the SIR model, BP neural network and T-S fuzzy neural network

are 0.003203, 0.044561, and 0.018213, respectively.

The calculation error of the nuclear state of the lithium-ion

battery calculated by the SIR model is shown in Figure 3. It can be

seen from Figure 3 that with the increase of the number of iterations,

the calculation error gradually becomes in a stable state, that is, to say,

FIGURE 1
Discharge data. When the current is constant, the voltage drops slowly with time, and at 3500s, the voltage reaches 2.8 V. The temperature
gradually increased with time, and the highest value could reach 3.7°C. The SOC value increases with time, from the initial 0.92 to 0 at 3500s
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when the number of iterations reaches a certain number, the

estimated error result will not be greatly improved.

5 Discussion

The scheme for reckoning SOC of lithium-ion batteries

should be studied in depth, because the parameters will

change when the capacity fades and temperature changes,

which allows the circuit parameters in the model to be

adjusted as the conditions change, so that the static circuit

model can be adjusted. Converting into a dynamic model,

inevitably, this will increase the difficulty of the processor’s

operation, and at the same time, more experiments are

required as a basis, which also means that more manpower,

material resources and time are required. In estimating SOC,

there are many parameters that need to be measured, such as

current and voltage. However, due to noise, electromagnetic

FIGURE 2
Prediction results of the sixth group of experiments. (A) the BP neural network has an error between the SOC prediction and the real value, but
the value is small. Observing (B), it can be seen that the T-S fuzzy neural network has obvious errors at 3000s, indicating that there is a small gap with
the real value. (C) shows the SIRmodel. The SOCprediction of the SIRmodel is almost close to the real value, and is basically in a coincident state. The
SIR model can ensure that the error is within a certain range. It can be seen from (D) that the maximum estimation errors of the SIR model, BP
neural network and T-S fuzzy neural network are 0.0189, 0.021, and 0.026, respectively. Through the simulation results of the MATLAB platform, it is
concluded that the root mean square error (RMSE) of the SIR model, BP neural network and T-S fuzzy neural network are 0.003203, 0.044561, and
0.018213, respectively.

FIGURE 3
Iterations and errors.

Frontiers in Energy Research frontiersin.org07

Xu 10.3389/fenrg.2022.984107

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.984107


interference and other factors, the accuracy of the measured value

may be distorted, which will affect the estimated result. Improve

the measurement accuracy as much as possible, and try to

eliminate the influence of noise and other factors on it is the

direction of future efforts.

6 Conclusion

This paper proposes a scheme for reckoning SOC of lithium-

ion battery using the competitive SIR model, and compares the

error value between the method proposed in this paper and the

BP neural network and T-S fuzzy neural network method

through experiments. The experimental results of the designed

research show that:

1) We have compared the SIR model, BP neural network and

T-S fuzzy neural network to reckon SOC of lithium-ion

batteries, and concluded that the estimation error of the

SIR model is the smallest compared to 0.0189. Through

the simulation results of the MATLAB platform, it is

concluded that the root mean square error of the SIR

model is 0.003203.

2) Compared with BP neural network and T-S fuzzy neural

network, the competitive SIR model has higher accuracy in

estimating the battery charge; in the case of a limited number

of estimated samples, the SIR model can effectively avoid the

problem of overfitting.

3) The variable importance analysis of the SIR model can

analyze the importance of the features, which can improve

the accuracy of the parameters by improving the

accuracy of the parameters when measuring the

parameters, thereby improving the estimation accuracy

of the results.

The method in this paper has higher accuracy and can avoid

the probability of fitting problems. The competitive SIR model in

this paper can be adopted to estimate SOC of lithium-ion

batteries, which provides a reference for the model building of

future lithium-ion battery charge reckoning systems.
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