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It is important to select the fault line rapidly when single-phase grounding fault

occurs in the small current grounding system. The fault information acquisition

of existing methods generally need hardware modification, so the high cost

makes it difficult to apply to the power grid in underdeveloped areas. Taking that

into consideration, this paper proposed a method of steady-state information

small current grounding fault line selection based on Optimization Spiking

Neural P Systems (OSNPS). Themethod only needs the steady-state voltage and

current data of the dispatch side to effectively identify the fault line, which

greatly improves the range of application. According to the characteristics of

power dispatching big data, the objective function is established and the

normalized model parameters are optimized by OSNPS to improve the

accuracy of fault line selection stably. Furthermore, PSCAD/EMTDC is used

to simulate the small current grounding system, the main factors affecting the

accuracy of fault line selection are analyzed and the relationship between fault

information features and fault identification accuracy is revealed. What’s more,

It is pointed out that the model parameters without optimization may have line

selection failure. Finally, specific examples are given to verify that the model

parameters optimized by OSNPS can effectively improve the accuracy of fault

line selection.
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1 Introduction

Fault line selection of small current grounding system has been a hot issue in the

power system. The accuracy of fault line selection is important to ensure the safe and

reliable working of the power system (Guo and Wu, 2010; Guo et al., 2015; Jun et al.,

2019). Depending on the source of fault information and the differences of deployment

way, the existing methods of fault line selection can be generally divided into two

categories: plant side and dispatch master side.
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There are many ways to obtain fault information at the plant

side, which can be roughly divided into three categories

according to the types of fault signal: injected signal method,

transient signal method and steady-state signal method. Injection

signal method is to inject a specific disturbance signal into the

system after a fault occurs and to select the fault line by

comparing the distribution characteristics of the injected

signal in each feeder (Zhu et al., 2011; Liu and Deng, 2019;

Niu et al., 2021). Transient signal method is to record the signals

of voltage and current at the moment of the fault occurring by a

high-speed data acquisition device. Intelligent algorithms such as

wavelet packet, Hilbert transform and differential filtering have

been used to extract transient features components and select

fault line by comparing transient feature signals (Xue et al., 2014;

Lai et al., 2015; Zhang et al., 2016; Sun et al., 2017; Xu et al., 2018;

Zhang et al., 2018). Although these two types of methods can

effectively improve the accuracy of fault line selection, both

require the installation of additional hardware in the

distribution network, which is more economically expensive

and difficult to implement, so they are not widely used. The

third method mainly uses various steady-state characteristics of

zero sequence currents (Guo-biao et al., 1995; Wang et al., 2014;

Liu and Ma, 2015; Zhang et al., 2015). However, in economically

underdeveloped regions, the construction method is widely used

to install only two-phase current transformers at the feeder,

without zero sequence current transformers. This method also

faces the problems of high cost and difficulty in large-scale

implementation.

Since the information at the dispatch side is affected by

differences in data transmission, storage and processing

capabilities, there are relatively few existing analyses of fault

line selection methods based on data at the dispatch side. The

literature (Zhu, 2019) proposed a fault line selection method for

steady-state zero sequence current based on SCADA system.

However, in the current practice, the actual zero sequence

current sampling coverage rate is less than 50% in a large

number of economically underdeveloped areas, so it is

necessary to improve the zero sequence loop of each branch,

resulting in high investment and operation and maintenance

costs. In the literature (Xu et al., 2021), a dispatching side

selection strategy based on the fusion of reactive power and

current variation is proposed, but its fusion operator is simply

half of each without effective optimization. At present, with the

continuous development of smart grid, the demand of using

SCADA system to realize the detection of small current single-

phase grounding fault is increasing. The large amount of data in

the system can achieve this purpose after processing. The

processing of a large number of steady-state information

requires the establishment of a relevant mathematical model,

and the selection of the relevant parameters in the mathematical

model is found to have a significant impact on the accuracy of the

establishedmathematical model through data analysis (Chen and

Wang, 2021), thus it is also crucial to find the most optimal

parameters through optimization algorithms.

Membrane computing (MC) (Pan et al., 2019; Leporati

et al., 2020; Zhang, 2021), a new branch of natural

computing, has developed into an important research

direction in the past decades. MC (the models are called P

systems), initiated by Prof. Pǎun (P�aun, 2000), abstracts

computing models inspired from the structure and the

functioning of the biological cells, organs and colonies of

bacteria. In February 2003, MC was considered as an

“emerging research front in computer science” by Institute

for Scientific Information (ISI). Parallelism (multiple neurons

of P systems work in parallel) is one of the most basic and

typical features, and is often used to improve computational

efficiency (Alhazov, 2010). At present, there are various types of

membrane systems in terms of their membrane structures: cell-

like P systems (Pan et al., 2020; Orellana-Mart´ın et al., 2019;

Song et al., 2021), tissue-like P systems (Freund et al., 2005;

Song et al., 2017; Valencia-Cabrera and Song, 2020; Ceterchi

et al., 2021), neural-like P systems (Jiang et al., 2019; Ren et al.,

2019; Lv et al., 2021; Zhang and Mario, 2021; Dong et al., 2022a;

Zhang et al., 2022), and so on. These membrane computing

models not only stay in the theoretical research, but also are

used to solve various real-life application problems like medical

image processing (Hu et al., 2020; Li et al., 2020; Xue et al.,

2021), robot control (Wang et al., 2020; Wang et al., 2021), fault

diagnosis (Wang et al., 2015; Rong et al., 2019; Zhang X. et al.,

2021a), and other real-world problems (Zhang et al., 2017).

Spiking neural P (SN P) systems (Ionescu et al., 2006; Pan et al.,

2017; Zhang G. et al., 2021b; Wu and Jiang, 2021), extended

neural P systems, transmits spikes to other connected neurons

through synapses.

Optimization Spiking Neural P Systems (OSNPS), as a type

of spiking neural membrane system, is capable of generating

complete binary sequences (Zhang et al., 2014; Zhu et al., 2020;

Rong et al., 2022), which means that this membrane system is

theoretically capable of representing real number parameters

within arbitrary constraints. Therefore, OSNPS is highly

suitable for solving parametric optimization problems (Deng

et al., 2022). In addition, the study of OSNPS not only refines

the membrane system itself, but also provides ideas for exploring

new methods of power system fault diagnosis.

In this paper, due to the data characteristics of neutral

ungrounded system stored in the power dispatch system and

the advantages of OSNPS, the simulation modeling of PSCAD/

EMTDC is performed for the neutral ungrounded system of

10 kV distribution network, and the data of steady-state current

and reactive power in the ungrounded system are collected.

Secondly, the objective function is established and the

function is optimized by OSNPS. The practice of this method

proves that it can obviously improve the speed and accuracy of

fault line selection.
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2 Principle analysis of neutral
ungrounded system

The simplest equivalent network for a system with

ungrounded neutral points of both power source and load is

shown in Figure 1.

In normal operation, the same capacitance C0 exists between

the three phases, and under the action of phase voltage, each

phase has a capacitive current flowing into the ground which is

90° aheading of the phase voltage, while the sum of the capacitive

currents of the three phases is zero.

When the single-phase grounding fault occurs, the zero

sequence current in the normal line is the capacitive current

of line I itself, and the direction of capacitive reactive power flows

from the busbar to the line. When there are multiple lines in the

distribution network, the conclusion applies to each non-

faulty line.

At the power source G, there are B-phase and C-phase to

ground capacitive current, named I
•
BG and I

•
CG. Since G is also a

power source for other capacitive currents, the entire capacitive

current flowing from the fault point should flow to A-phase,

while the capacitive current to ground in the same name phase of

each line should flow from B-phase and C-phase. At this time, the

zero sequence current at the outlet of the power G line is still the

sum of the three phase currents. Since the capacitive current of

each line flows in from phase A and then out from phase B and C,

respectively, the zero-sequence current is the capacitive current

of the power supply itself, and the capacitive reactive power is

flowing from the bus to the power supply.

At the faulty line II, phases B and C flow through their own

capacitive currents, named I
•
B2 and I

•
C2. In addition, the sum of the

B-phase and C-phase ground capacitance currents of the entire

system will also flow through the fault point. The value is:

I
•
f � (I•B1 + I

•
C1) + (I•B2 + I

•
C2) + (I•BG + I

•
CG) (1)

The current effective value is:

If � 3Uφω(C01 + C02 + C0G) � 3UφωC0Σ (2)

Where, C0Σ is the sum of the capacitance currents of per pair of

ground in the whole system.

The zero sequence current flowing at the beginning of line

II is:

3I
•
02 � I

•
A2 + I

•
B2 + I

•
C2 � −(I•B1 + I

•
C1 + I

•
BG + I

•
CG) (3)

The effective value is:

3I02 � 3Uφω(C0Σ − C02) (4)

The zero sequence equivalent network in case of single-phase

grounding when the neutral point is not grounded is shown in

Figure 2.

There is a zero sequence voltage U0

•
at the grounding point,

and the circuit of zero sequence current is constituted by the

capacitance of each component to ground, and because the zero

sequence resistance in the distribution line is much smaller than

the zero sequence capacitance, which is completely different from

the direct grounding grid.

In summary, when the neutral ungrounded system occurs

single-phase grounding fault, the zero sequence current of fault

line is numerically equal to the sum of capacitive current to

ground of all the components in the non-faulty line. The

capacitive reactive power is flowing from the line to the

busbar, which happens to be different from the normal line,

can be used as the line selection criteria.

As can be seen from the foregoing, in the neutral ungrounded

system, the current flowing through the fault point in the fault

line is the sum of the capacitive currents to ground of the

components on the non-faulty line of the whole system. As a

FIGURE 1
Distribution of capacitive current in single-phase to ground
fault with neutral ungrounded.

FIGURE 2
Zero sequence equivalent network for single-phase
grounding.
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result, the reactive power at the fault line differs significantly

from the reactive power amplitude of the non-faulty line. It can

be used as part of the fusion criterion.

3 Modeling and optimization analysis

3.1 Model

Based on the aforementioned analysis of the characteristic of

faults in neutral ungrounded systems, and taking the complexity of

the operation mode and the weakness of fault signal in the actual

lines into account, the single-component criterion approach is not

sufficient to ensure that effectively improve accuracy of fault

selection. Therefore, the data components such as phase

current and reactive power in the line are mainly used as the

line selection criterion. The phase current is normalized by

dispersion analysis, and then the phase current and reactive

power are fused and multiple by the corresponding weights.

This criterion is applied to the simulation data to obtain the

accuracy of fault selection, and the optimal objective function is

obtained by optimizing it with a pulsed membrane neural system.

The effective value of phase current and reactive power of the

line can be calculated by collecting phase current and phase voltage

of the line in the dispatching data, and at the same time calculate

the change of phase current ΔIi and reactive power ΔQi .

From the aforementioned principle analysis, it can be

obtained that in the ungrounded system, the change of phase

current and reactive power when a single-phase ground fault

occurs is more obvious, which can be used as the line selection

criterion. Normalize the pre- and post-fault change data to

facilitate the fusion criterion, and subsequently optimize the

line selection weights in the two change quantities.

Normalization of the variation of phase currents:

αi � |ΔIi|
∑n

k�1|ΔIk|
(5)

Normalization of the amount of change in reactive power:

βi �
|ΔQi|

∑n
k�1|ΔQk| (6)

Where, αi and βi are the normalized parameters of the variation

of phase current and reactive power of line I, respectively. |ΔIi|,
|ΔQi| are the amplitude of the phase current and reactive power

changes of line i. |ΔIk|, |ΔQk| are the changes in phase current

and reactive power of the line k, respectively.

Calculation of the corresponding fault probability for all

feeders at the busbar:

Pi � m · αi + (1 −m) · βi (7)

Where, Pi is the fault probability of the feeder line and m is the

weight parameter to be optimized.

The single current or reactive power criterion can not meet

the requirements of fault line selection in complex power grid

and has certain limitations in the application of line selection in

different grounding modes. Therefore, the parameter m

(dimensionless) is used to fuse the two criterions. In addition,

different values of m have a great impact on the accuracy of fault

line selection, hence an optimization method is needed to

optimize the value of m.

3.2 Optimization analysis

3.2.1 Optimization spiking neural P systems
As a kind of optimization algorithm, the Optimization

Spiking Neural P Systems (OSNPS) has the characteristics of

parallelism (Zhang et al., 2020). Therefore, OSNPS enables to

optimize parameters rapidly. The core idea of parameter

optimization based on optimization spiking neural P systems

is to first convert the parameters into binary pulse bursts as

inputs to OSNPS, and then use the OSNPS to achieve parameter

optimization (Dong et al., 2022b). In general, OSNPS includes

two parts: the multiple Extended Spiking Neural P Systems

(ESNPSs) and the Guider algorithm.

An ESNPS with degree m (m ≥ 1) is shown in Figure 3 and its

formal definition is as follows (Dong et al., 2021):

∏ � (O, σ1, ... σm+2, syn, out) (8)

In Eq. 8:

(1) O � {a} is the set of spikes, and a represents the spikes in

this set;

(2) σ1, ...σm+2 are (m + 2) neurons in ESNPS. Where, σm+1 and
σm+2 have the same function and the mathematical

expression is σm+1 � σm+2 � (1, {a → a}). The

mathematical expression of σ i(i � 1, 2, ..., m) is

σ i � (1, Ri, Pi). Where, Ri � {r1i , r2i } is a finite set of rules;

r1i and r2i represent the firing rule (r1i � {a → a}) and the

forgetting rule r2i � {a → λ}, respectively. Pi � {P1
i , P

2
i } is an

expression for the probability of choosing the firing rule or

the forgetting rule, where, P1
i and P2

i represent the

probability of r1i and r2i , respectively. In particular, P1
i +

P2
i � 1.

(3) syn represents the connection relationship (synapse)

between neurons;

(4) out � {σ1, ...σm} is an output set, which is a binary string

consisting of an arrangement of binary characters derived

from each σ i(i � 1, 2, ..., m).

OPNPS consists of multiple ESNPSs, the number of which is

H and each of which is defined and structured in Figure 3. An

ESNPS family containing a Guider is called OSNPS. First, H

ESNPSs are arranged in parallel and the Guider is added to
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support spikes to m neurons. The Guider regulates the

probability P1
i of the firing rule r1i . An OSNPS is consisted by

the multiple ESNPSs and the Guider algorithm, showen in

Figure 4.

The parameter optimization in Eq. 7 is realized by using the

guide algorithm designed in literature (Zhang et al., 2014), and

the pseudo-code of the guide algorithm is shown in

Supplementary Table S1.

According to the specific optimization objective function, the

general processing flow is as follows:

(1) Convert the decimal of the optimized parameters to binary after

preprocessing, followed by arranging the binary into a binary

string (the current parameter m is real number, m will be

converted to binary, i.e., ifm � (0.125)d, thenm � (0.001)b. In
OSNPS, if the firing rule is performed, then the current neuron

output 0/1, otherwise, the current neuron output 0. Therefore, a

binary string of 0/1 from the multiple neurons represents the

binary number.), i.e., an individual. The above process is

repeated until a complete population is produced.

(2) The probability corresponding to the first individual in the

population is adjusted according to the probability

adjustment strategy until all probabilities corresponding to

all individuals are adjusted.

(3) Repeat step (2) over and over again, and after the

probabilities corresponding to all individuals in the

population have been adjusted, proceed to the next iteration.

(4) After finding the optimal value, the iteration of the algorithm

stops and the optimal value is output.

3.2.2 Optimization spiking neural P systems is
used for single-phase grounding fault line
selection according to steady-state information

For the objective function derived in the second part, the

objective function in Eq. 7 is solved using OSNPS. All the

experiments are implemented on the platform PYTHON and

on a work station with GPU 3080, 32 GB RAM andWindows 10.

The specific solution procedure is as follows.

(1) Build the PSCAD parametric simulation model and

obtain the data required for the model, such as label

data, steady-state current data and steady-state reactive

power data.

(2) Set the basic parameters of the model: In OSNPS, the basic

parameters include the number of evolutionary populations

H, learning probability pa
j , learning rate Δ and maximum

number of iterations Nmax.

(3) Initialize model parameters: Enter relevant steady-state

information, including steady-state current information

before and after the fault, steady-state reactive power

information before and after the fault, and label values

corresponding to the fault line and the non-fault line.

(4) Calculate the fitness value: determine the number of

optimization parameters, and establish a model of the

optimized pulsed neural membrane system. The

optimization parameters are used as the input of the

FIGURE 3
Extended spiking neural P system.

FIGURE 4
Optimization spiking neural P system.
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optimized pulsed neural membrane system, and the

optimized parameters are used as the inputs, and the

output results of the optimized pulsed neural membrane

system are performed.

(5) Verify the validity and correctness of the optimization

parameters based on the results obtained by optimization

spiking neural P systems.

The specific process is shown in Figure 5 below.

4 Simulation model verification

4.1 10 kV distribution network simulation
model

This paper uses PSCAD/EMTDC to build a 10 kV small

current grounding system disribution network simulation model

as shown in Figure 6. All the experiments are implemented on the

platform PSCAD/EMTDC45 and on a work station with GPU

GTX960M, 8 GB RAM and Windows10.

The model contains 4 lines (L1 ~ L4), and the line types are

overhead lines, cable lines, overhead cable hybrid lines. The simulation

parameters related to themodel are shown in Supplementary Table S2.

In this paper, a large number of simulations and analyses

are made by PSCAD/EMTDC for the neutral point

ungrounded system of the distribution network. In order

to obtain data on faults occurring during stable operation of

the system, the fault time is set at 2s and the duration is 0.4s.

The conditions when a single-phase ground fault occurs are:

(1) the fault line is line L1~L4; (2) the fault is set at the end of

the line in the simulation model for setting the different fault

line lengths; (3) the grounding fault is set to 0Ω, 20Ω, 100Ω,

600Ω, 800Ω, 1000Ω. Because only the steady-state RMS data

in the scheduling system is considered, the simulation is not

considered for different fault closing angles, and a total

of 120.

In 120 sets of data, each set of data mainly includes label

data, steady-state current data and steady-state reactive power

data. Some of the sample data are shown in Supplementary

Table S3.

4.2 Analysis of themain influencing factors

In order to further clarify the relationship between fault

information features and fault identification accuracy and

study its internal mechanism, this section analyzes the main

influencing factors of fault line selection accuracy.

The fault line selection model established in the previous

section is based on the IQ normalized criterion composed of

the change of phase current and reactive power. Where, the

current criterion is closely related to the capacitive current and

the phase of the capacitive current is always 90° ahead of the

voltage. Therefore, only the amplitude of the capacitive

current is considered to be influenced by the capacitive

reactance to ground. The reactive power criterion is related

to the capacitive current and the amplitude and phase of line

voltage, obviously which influenced by the transition

resistance.

In summary, the main influencing factors of the proposed

steady-state component selection method are the capacitive

current to ground ICΣ and the transition resistance Rf.

According to the standard, arc suppression coil should be

installed when the capacitive current of 35 kV power grid

exceeds 10A. At the present stage, the neutral ungrounded

system should be analyzed first, so the range of capacitive

current to ground ICΣ should be 3 ~ 20A, the transition

resistance Rf ranges from 0 to 1000Ω.

Based on the simulation model established in Section 4.1, it is

assumed that the fault occurs on line Lf and the other three non-

fault lines are L1~L3.

Supplementary Tables S4–S7 show the fault probabilities for

Lf, L1, L2 and L3 (m = 0.5) obtained from the variations of

transition resistance and capacitive current when the fault

location and load current are fixed.

FIGURE 5
Schematic diagram of parameter determination and fault line
selection.
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As can be seen from Supplementary Table S4 to

Supplementary Table S7, when the capacitive current IC is

very small at 3A and at the same time the transition

resistance Rf is large at 1000Ω, the probability of the fault

line Lf is only 18.0%, which is no longer the largest in all lines and

in this case will lead to wrong line selection.

In addition, when the IC is 3A and Rf is 600 Ωwill also fail in

line selection, Pf = 21.3%, which is less than 28.1% of P1 and

26.0% of P2 and 24.6% of P3.

From the above analysis, it is clear that when the

capacitive current is small and at the same time the

transition resistance is large, the original selection method

FIGURE 7
The characteristics of the grounding probability with the variation of capacitive current IC. (A) Rf = 0 Ω;(B) Rf = 200 Ω;(C) Rf = 600 Ω;(D) Rf =
1000 Ω

FIGURE 6
Neutral ungrounded system.
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without optimization of the fusion operator may result in a

wrong selection.

To further illustrate the law of grounding probability with the

variation of capacitive current IC and transition resistance Rf,

Figures 7, 8 are especially plotted.

The law of the grounding probability of each line with the

variation of the system capacitive current IC under different

transition resistance conditions is shown in Figure 7.

(a) and (b) of Figure 7 show the characteristics of the

grounding probability with the variation of capacitive current

IC for Lf, L1, L2 and L3 when Rf � 0Ω and Rf � 200Ω,

respectively. In general, Pf increases with IC and always

maintains the highest grounding probability among the four

lines, thus ensuring the correct line selection. However, when the

capacitive current is very small, the grounding probability of the

four lines is almost close.

(c) and (d) of Figure 7 show the characteristics of the

grounding probability with the variation of capacitive current

IC for Lf, L1, L2 and L3 when Rf � 600Ω and Rf � 1000Ω,

respectively. It can be seen that in the case of larger transition

resistance, the grounding probability curve of Pf has intersected

with that of P1, P2 and P3, which means that Pf can no longer be

maintained as the largest of the four lines. That is, the line

selection method fails.

FIGURE 8
The characteristics of the grounding probability with the variation of transition resistance Rf . (A) Ic = 3A;(B) Ic = 4A;(C) Ic = 10A;(D) Ic = 20A

FIGURE 9
Parameter optimization results.

Frontiers in Energy Research frontiersin.org08

Tian et al. 10.3389/fenrg.2022.981404

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.981404


The law of the grounding probability of each line with the

variation of transition resistance Rf under different system

capacitive current conditions is shown in Figure 8.

(a) and (b) of Figure 8 show the characteristics of the grounding

probability with the variation of capacitive current Rf for Lf, L1,

L2 and L3 when IC � 3A and IC � 4A, respectively.When the IC is

small, Pf gradually decreases with the gradual increase of Rf and

finally intersects with the probability curve of the non-fault line and

there is a situation where Pf is less than Pi, which means the line

selection method fails. When the IC is larger, the grounding

probability in each line always remains the largest, that is, the

IQ selection method can ensure the accuracy of the selection rate.

4.3 Optimization results analysis

The optimal parameter values of m and n are solved

according to the known sample data and Eq. 7 in Section 3.1.

The trend of m during its 20 independent optimization and the

final results are shown in Figure 9.

Based on the results after 20 independent optimizations, the

average value of m is taken as the final value in order to reduce

the error. The resulting objective function is shown in Eq. 9.

Pi � 0.5988αi + 0.4012βi (9)

The 40 sets of test data were validated according to Eq. 9 and

their accuracy was obtained as 99.79%. Therefore, the line

selection model established in this paper and the applied

parameter optimization method are feasible and effective for

the selection of the line of the steady-state information single-

phase grounding fault.

5 Conclusion

In this paper, due to the data characteristics of neutral

ungrounded system stored in the power dispatch system

and the advantages of OSNPS, the simulation modeling of

PSCAD/EMTDC is performed for the neutral ungrounded

system of 10 kV distribution network, the parameters are

optimized by OSNPS and the line selection model is finally

determined.The following conclusions are obtained

through experiments and research analysis.

(1) The established fault line selection model can effectively

identify fault lines by steady-state current and power

alone, improving the practical application of the model.

(2) The parameters determined by OSPNS can effectively identify

the fault line and the recognition accuracy can reach 99.79%.

(3) It provides a better choice for the traditional manual method

of fault line selection and can effectively improve the

efficiency of selection.
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