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Significant volumes of wastewater are routinely generated during agro-industry

processing, amounting to millions of tonnes annually. In line with the circular

economy concept, there could be a possibility of simultaneously treating the

wastewater and recovering bio-energy resources such as bio-hydrogen. This

study aimed to model the effect of different process parameters that could

influence wastewater treatment and bio-energy recovery from agro-industrial

wastewaters. Three agro-industrial wastewaters fromdairy, chicken processing,

and palm oil mills were investigated. Eight data-driven machine learning

algorithms namely linear support vector machine (LSVM), quadratic support

vector machine (QSVM), cubic support vector machine (CSVM), fine Gaussian

support vector machine (FGSVM), binary neural network (BNN), rotation

quadratic Gaussian process regression (RQGPR), exponential quadratic

Gaussian process regression (EQGPR) and exponential Gaussian process

regression (EGPR) were employed for the modeling process. The datasets

obtained from the three agro-industrial processes were employed to train

and test the models. The LSVM, QSVM, and CSVM did not show an

impressive performance as indicated by the coefficient of determination

(R2) < 0.7 for the prediction of hydrogen produced from wastewaters using

the three agro-industrial processes. The LSVM, QSVM, and CSVM models were

also characterized by high prediction errors. Superior performance was

displayed by FGSVM, BNN, RQGPR, EQGPR, and EQGPR models as indicated

by the high R2 > 0.9, an indication of better predictability with minimized

prediction errors as indicated by the low root mean square error (RMSE),

mean square error (MSE), and mean absolute error (MAE).
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Introduction

The agro-industrial often required a huge amount of water

for the processing of its agricultural feedstocks to value-added

products (Freitas et al., 2021; Martinez-Burgos et al., 2021). This

invariably results in a substantial amount of wastewater usually

obtain from the process (Libutti et al., 2018). The wastewater

generated from agro-industrial processing is increasing at an

alarming rate throughout the world (Zaharia et al., 2021). As

shown in Figure 1, agro-industrial processing of animals, oil

palm, cassava, milk, cheese whey, and vinasse generated a billion

liters of wastewater globally as reported Martinez-Burgos et al.

(Martinez-Burgos et al., 2021) Wastewater from agricultural and

industrial processes often contains high levels of nutrients like

phosphorus and nitrogen, which encourage the growth of

microorganisms and aquatic plants as well as microalgae

(Robles et al., 2020). As a result of eutrophication, the water

bodies that receive these effluents become unsuitable for various

purposes because they destabilized the ecosystems. To forestall

the environmental and health effects of the enormous amount of

wastewater from agro-industries, the circular economy concept

that utilizes innovative integrated processes of energy recovery

and the treatment of wastewater could be developed (Dutta,

Arya, and Kumar, 2021).

Several studies have delved into the application of the circular

economy concept to harness the opportunities from agro-

industrial wastewater. Omran and Baek (Omran and Baek,

2022), reported that agro-industrial biowaste can be valorized

to produce green nanomaterials suitable for use in the treatment

of wastewater. The potential of producing bio-hydrogen from

various agro-industrial wastewater has been reported by Marone

et al. (2017) and Kumar et al. (2022). A combination of dark

fermentation and microbial electrolysis displayed a promising

alternative for maximizing the conversion of agro-industrial

wastewaters and byproducts into bio-hydrogen, as

demonstrated by the findings. Marone et al. (2017)

investigated the possibility of producing bio-hydrogen from

microbial electrolysis cells utilizing palm oil mill effluent. The

study revealed that factors such as the incubation temperature,

initial pH, and influent dilution rate significantly influence the

bio-hydrogen production from the palm oil mill effluent. The use

of fermentation liquid of waste-activated sludge for biohydrogen

production in a microbial electrolysis cell has been reported by

Khongkliang et al. (2019). The study demonstrated that bio-

hydrogen may be recovered from activated sludge by integrating

microbial electrolysis cells with active sludge disposal. The

recovery of biohydrogen from the conversion of acidogenic

effluents in a microbial electrolysis cell has been reported by

Lenin Lenin Babu et al., 2013. The study revealed that applied

potential conditions in a microbial electrolysis cell are a huge

potential for simultaneously producing hydrogen and wastewater

treatment.

Although, several experimental studies have established the

potential of bioenergy recovery from agro-industrial wastewaters,

nevertheless how the various parameters influenced and relate to

the various bioenergy recovered from the wastewater is still

understudied. A huge amount of data is often generated from

the experimental runs capturing the process parameters and the

output. A data-driven modeling approach can be adopted to

explore the relationship that exists between these input

parameters and the targeted output (Sharabiani et al., 2022). As

shown in Table 1, various machine learning algorithms such as

support vector machine (SVM), Gaussian process regression

(GPR) and artificial neural networks (ANN), boost regression,

and random forest regression, have been widely employed for

modeling different processes involving wastewater treatment.

SVM has been reported to be robust in modeling microbial

lipid fermentation from cellulosic ethanol wastewater as

reported by Zhang, Chao, and Zhang, (2020). As indicated by

R2 of 0.9959 obtained for the data training, the findings show that

the SVM model has a great potential to optimize fermentation

conditions and could be a useful tool in the future. Themodeling of

microalgae-based wastewater treatment using SVM was

investigated by Hossain et al. (2022). A global optimal

treatment condition was achieved as indicated by the high

removal efficiency of nitrogen and phosphate from microalgae-

based wastewater. Hosseinzadeh et al. (2022) reported the

modeling of biohydrogen recovery from wastewater using SVM.

The SVM displayed a significant ability to predict hydrogen

production from the wastewater with an R2 of 0.885. GPR has

been employed to model full-scale wastewater treatment and

carbon-based material adsorption of organic pollutants from

wastewater (Hvala and Kocijan, 2020; Hosseinzadeh et al.,

2022). GPR and ANN were effective in modeling the prediction

of antibiotics removal from industrial wastewater (Hamza et al.,

2022). The GPR was reported to offer a good prediction of the

treatment of the wastewater effluent from full-scale wastewater

(Hvala and Kocijan, 2020). Bagheri et al. (Bagheri et al., 2015) and

Dewasme (Dewasme, 2020) reported the use of ANN for modeling

FIGURE 1
Agro-industrial wastewater generated from various
processes (Martinez-Burgos et al., 2021).
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the prediction of sludge in the wastewater treatment plant and key-

component estimation from brewery wastewater treatment plant.

The training and validation of the ANN models demonstrated a

nearly perfect agreement between the experimental and ANN

predicted values. Other machine learning algorithms such as

Ada Boost Regression, Gradient Boost Regression, and Random

Forest Regression have also been employed for modeling the

prediction of effluent quality parameters, and sludge bulking of

the wastewater treatment process (Sharafati, Asadollah, and

Hosseinzadeh, 2020; Elmaadawy et al., 2021; Han, Dong, and

Qiao, 2021). To the best of the authors’ knowledge the use of SVM

(incorporated with various kernel functions), GPR (incorporated

with various kernel functions), and Bi-layer neural network (BNN)

for the modeling the effect of various parameters on bio-hydrogen

recovery from agro-industrial wastewater has not been reported in

the literature. Data is fed into the kernel, and it performs the

necessary transformations. This study therefore employed SVM

and GPR incorporated with various kernel functions as well as

BNN for modeling bio-hydrogen recovery from three agro-

industrial wastewater namely dairy wastewater, chicken

processing wastewater, and palm oil mill effluent.

Experimental details of biohydrogen
production and model development

Experimental on biohydrogen production
from wastewaters

The biohydrogen under consideration was produced from

dairy wastewater, chicken processing wastewater, and palm oil

mill effluent. A detailed description of the processes involved in

bio-hydrogen production from dairy wastewater, chicken

processing wastewater, and palm oil mill effluent has been

reported by Gadhe et al. (Gadhe, Sonawane, and Varma,

2013), Thirugnanasambandham et al.

(Thirugnanasambandham, Sivakumar and Prakasmaran,

2015), and Kadier et al. (Kadier et al., 2021). The relationship

between maximal biohydrogen production from a given

concentration of substrate, pH, COD/Nitrogen ratio, and

COD/Phosphorus ratio was investigated (Gadhe, Sonawane

and Varma, 2013). For the chicken processing wastewater, the

effect of current density, hydraulic retention time, and electrode

surface area on the biohydrogen production from the chicken

processing wastewater in an electrochemical reactor was

investigated (Thirugnanasambandham, Sivakumar and

Prakasmaran, 2015). Also, the effect of process variables such

as temperature, initial pH of the palm oil mill effluent, and the

influent COD concentration on bio-hydrogen production in

microbial electrolysis cell was investigated (Kadier et al.,

2021). A total of 64 datasets comprised of the various process

variables and targeted output was employed to train and validate

the machine learning algorithms.

Model development

The stages involved in the model development are

represented in Figure 2. The stages include the data

acquisition from the experimental runs, data preprocessing,

model configuration, model training, model validation, and

model deployment for the prediction of the hydrogen

produced from wastewater. After the data acquisition from

the experimental runs, it ensured that the data are

preprocessed for any missing values or outliers. The model

configuration entailed the setting of the various models that

TABLE 1 Summary of related studies on the application of various machined learning models of wastewater processes.

S/N Process Machine learning type References

1 Microbial lipid fermentation from cellulosic ethanol
wastewater

SVM Zhang et al. (2020)

2 Microalgae-based wastewater treatment SVM Hossain et al. (2022)

3 Biohydrogen production from wastewater SVM Hosseinzadeh et al. (2022)

4 Full-scale wastewater treatment plant GPR Hvala and Kocijan, (2020)

5 Modeling carbon-based material adsorption of organic
pollutants from wastewaters

GPR and ANN Hamza et al. (2022)

6 Prediction of sludge in wastewater treatment plant ANN Bagheri et al. (2015)

7 Modeling key-component estimation from brewery
wastewater treatment plant

ANN Dewasme (2020)

8 Prediction of effluent quality parameters Ada Boost Regression, Gradient Boost Regression (GBR) and
Random Forest Regression (RFR

Sharafati, Asadollah and
Hosseinzadeh (2020)

9 Modeling sludge bulking of wastewater treatment process Data-knowledge-driven diagnosis Han et al. (2021)

10 Effluent prediction of wastewater treatment plant Random vector functional link integrated with manta ray Elmaadawy et al. (2021)
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would be employed for the modeling the prediction of the

hydrogen. Thereafter, the models are trained with a portion of

the data to ensure that the relationship between the predictors

and the targeted variable is well learned. While the remaining

portion of the data is employed to validate the trained model. The

performance of the model is tested before deployment for

predicting hydrogen production.

Eight machine learning algorithms namely LSVM, QSVM,

CSVM, FGSVM, BNN, RQGPR, EQGPR, and EQGPR were

configured for modeling the non-linear relationship between the

various input parameters to the wastewater treatment processes and

the biohydrogen produced from the wastewater. The effect of kernel

functions such as linear, quadratic, cubic, and fine Gaussian on the

performance of the SVMwas investigated (Leong et al., 2021).While

the effect of kernel functions such as rotational quadratic, squared

exponential, and exponential on the performance of the GPR was

also investigated. Altogether, a total of eight different models were

considered (Zeng, Ho and Yu, 2020).

The main objective of the SVM is to use various forms of

kernel functions to project nonlinearly separable samples onto a

higher-dimensional environment. Kernel functions are

frequently referred to as “generalized dot products” since they

compute the dot product of two vectors X and y in a (very high-

dimensional) feature space (Zanaty and Afifi, 2020). Kernel

functions are important in SVM for bridging the gap between

linearity and nonlinearity. In the higher dimensional space, the

linear model f(X,ψ) for SVM is as follows:

f(X,ψ) � ∑n

i�1ψigi(X) + b (1)

gi(x)denotes a set of linear transformations, the bias term is

denoted by b.

The polynomial kernel function which includes, quadratic,

and cubic compares input samples not just on their individual

properties, but also on their combinations. The polynomial kernel

represented in Eq. 2 produces enlarged features using n original

features and d polynomial degrees (Koschwitz et al., 2018).

k (Xi, Xj) � (Xi .Xj + 1)d (2)

SVM regression analysis may be utilized to circumvent the

challenges of utilizing linear functions in the high-dimensional

feature space, and the optimization issue is turned into dual convex

quadratic algorithms (D Koschwitz et al., 2018). Errors larger than

or equal to the threshold are penalized by applying the loss

function to the regression. As a result, the sparse representation

of the decision rule provides considerable advantages in terms of

algorithmic and representational efficiency.

Just like the SVM, the GPR is a robust machine learning

algorithm that can be applied to modeling bioenergy recovery

from agro-industry wastewater (Gao et al., 2018). The fact that

GPR is non-parametric means that it may be used to handle a

broad range of supervised learning problems, even though only a

limited amount of information is provided. Any subset of the

GPR’s random variables can be said to be jointly Gaussian as

represented in Eq. 3 (Bang, Yoon and Jeon, 2020).

p(x) � 1

((2π)d)Δ∣∣∣∣∑∣∣∣∣)1/2 e
(−1

2(x−μ)T(∑−1(x−μ))
,

x � [xi . . .xj]T ∈ Rd

(3)

In Eq 3, d depicts the number of random variables, μ

represents the vector of mean values, Σ is the covariance

matrix of the random variables, x is a set of random variables

between i and j. Given observed training data, GPR uses this data

to compute the parameters of a posterior Gaussian distribution

for targets over the test points x. A Gaussian distribution may be

thought of as being predicted at each test point.

The BNN consists of the hidden and the output layer. Input

signals into the BNN are combined linearly, and the activation

function is used to transform the output (Zhu, Duong and Liu,

2020). The BNN configurations are made up of layers of neurons

that feed each other’s output till the ultimate output is reached.

Training the network means learning the relationship between the

inputs and the targets that the network is presented with (Martinez

et al., 2020). At each iteration (epoch), the difference between the

target data and the network output was computed, and the network

FIGURE 2
Schematic representation of the steps involved in the
modeling process.
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weights were updated until a low mean standard error (MSE) was

achieved. The MSE of the targeted output on the training set is

computed as weights are provided to the training set at each epoch.

Every epoch, the MSE of the validation set is computed and training

is stopped when the MSE of the validation set rises.

The configuration of the SVM, GPR, and BNNwas performed

using a regression learner application in theMathlab environment.

K-fold cross-validation was to prevent data overfitting. For this

study, 2-fold cross-validation was employed. Each data sample is

divided into a certain number of groups by a single parameter

called k in this technique. In applied machine learning, cross-

validation is used to measure the model’s ability to learn from new

data. A small sample may be utilized to get an idea of how well the

model will performwhen it is applied to data that was not included

in the training process. The performance of each of the models was

evaluated using mean square error (MSE), root mean square error

(RMSE), mean absolute error (MAE) and coefficient of

determination (R2) defined in Eqs 4–7 (Ayodele et al., 2020).

MSE � ∑n

i�1
⎛⎝(zpi − zai)2

n
⎞⎠ (4)

RMSE � ∑n

i�1
⎛⎝(zpi − zai)2

n
⎞⎠1/2

(5)

MAE � ∑n
i�1
∣∣∣∣zpi − zai

∣∣∣∣
n

(6)

R2 � 1 − ∑n
i�1(zpi − zai)2

∑n
i�1(zpi − �zai)2 (7)

where zpi, zai are the predicted and actual outputs for each data

set i, respectively, n is the number of observed datasets, �zai is the

mean actual output.

FIGURE 3
Non-linear relationship between (A) COD/N ratio and substrate concentration (B) pH and substrate concentration and (C) COD/P ratio and
COD/N ratio on hydrogen produced from dairy wastewater.

Frontiers in Energy Research frontiersin.org05

Safdar Hossain et al. 10.3389/fenrg.2022.980360

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.980360


Results and discussion

Parametric analysis of input and target
variables

Three different wastewaters from a dairy, chicken processing,

and palm oil mill were investigated for the possibilities of

biohydrogen production. The hydrogen from the dairy

wastewater was produced from the batch fermentation process

considering the effect of COD/nitrogen ratio, COD/phosphorus

ratio, and substrate concentration. The relationship between the

various input variables and the hydrogen produced from the

dairy wastewater is represented in Figure 3. In Figure 3A, a non-

linear relationship exists between the COD/N ratio, substrate

concentration, and hydrogen production. An increase in the

COD/N ratio resulted in a corresponding increase in

hydrogen production which is consistent with the work of Liu

et al. (2022) for hydrogen production from herbal wastewater.

The presence of nitrogen in the wastewater medium helps to

facilitate the breaking down of the organic matters in wastewater

to release biohydrogen (Goswami et al., 2021). It can be seen that

hydrogen production from dairy wastewater is promoted using

substrate concentrations ranging from 5 to 15 g COD/L (Gadhe,

Sonawane and Varma, 2013). A decline in hydrogen production

has been observed at a substrate concentration >15 g COD/L. In
Figure 3B, an increase in the pH of the fermentation medium

produces an increase in hydrogen production. Higher hydrogen

production is favoured at 5.6. Similarly in Figure 3C, an

undulating effect of COD/P ratio on hydrogen production is

observed. A higher concentration of phosphorus in the

FIGURE 4
Non-linear relationship between (A) hydraulic retention time and current density (B) electrode surface area and current density and (C)
electrode surface area and hydraulic retention time on hydrogen produced from chicken processing wastewater.
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fermentation facilitated microbial decomposition of the

substrates to release hydrogen.

Figure 4 displays the relationship between the various input

variables like hydraulic retention time, current density, electrode

surface area, and hydrogen produced in an electrochemical reactor.

The relationship depicted in Figure 4A revealed that the hydrogen

produced from the electrochemical reactor is favoured at high

current density and low retention time (Sharma and Li, 2010;

Kirkaldy et al., 2018).Whereas, using an electrode surface of 3.8 m2

produces maximum hydrogen (Figure 4B). A decline in hydrogen

production is observed at an electrode surface area >3.8 m2. In

Figure 4C, increasing the hydraulic retention time promotes an

increasing hydrogen production as a result of the interaction with

the electrode surface area.

The relationship between the input variables on the hydrogen

produced from palm oil mill effluent using microbial

fermentation is represented in Figure 5. The increase in batch

reactor temperature from 28 to 36 °C favours an increase in the

hydrogen production from the palm oil mill effluent as shown in

Figure 5A (Norfadilah et al., 2016). For the interaction between

the two variables (temperature and pH), hydrogen production is

favoured at pH of 5.5. Using a higher amount of substrate

concentration also promotes a high volume of hydrogen

production as shown in Figures 5A, B (Cisneros-Pérez et al.,

2015). It can be seen that the highest hydrogen production of

280 × 10−6 m3/L is obtained with the interaction between the

substrate concentration and pH (Figure 4B) as well as substrate

concentration and temperature (Figure 5C).

FIGURE 5
Non-linear relationship between (A) Temperature and pH (B) Substrate concentration and pH and (C) Substrate concentration and
Temperature time on hydrogen produced from palm oil mill effluent wastewater.
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Performance analysis of the models

The production of hydrogen from the dairy wastewater, chicken

processing, and palm oil mill effluent was modeled using eight

machine learning algorithms namely, LSVM, QSVM, CSVM,

FGSVM, BNN, RQGPR, SEGPR, and EGPR. The performance

of the eight models in modeling hydrogen production from dairy

wastewater is depicted in Figure 6. Figure 6A represents the

performance of the models as a function of comparison between

the actual and the predicted hydrogen production. As shown in

Figure 6A, the SVM did not show impressive performance in

modeling the prediction of the hydrogen production from the

dairy wastewater. There is a huge deviation between the actual

and the predicted values of hydrogen production even with the

incorporation of the linear, quadratic and cubic kernel functions.

However, it is interesting to note that the performance of the SVM

increases with an increase in the degree of polynomial from linear to

fine Gaussian. As shown in Figure 6B, higher RMSE, MSE, and

MAEwere obtained for the LSVM,QSVM, andCSVMcompared to

the QSVM. Also, lower R2 values of 0.11, 0.40, and 0.74 were

obtained for the LSVM, QSVM, and CSVM, respectively compared

to 0.94 obtained for the FGSVM. The performance of the FGSVM

compared to the LSVM, QSVM, and CSVM could be attributed to

its unique advantage. The fine Gaussian kernels are universal

kernels, which implies that when used in conjunction with

adequate regularisation, they ensure the creation of an optimum

predictor that minimizes both the estimate and approximation

FIGURE 6
(A) Dispersion plot of actual and predicted hydrogen
produced from the dairy wastewater (B) error analysis of the
various models and (C) performance of each of the models in
terms of R2.

FIGURE 7
(A): Dispersion plot of actual and predicted hydrogen
produced from the chicken processing wastewater (B) error
analysis of the various models and (C) performance of each of the
models in terms of R2.
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errors of a predicted value (Bang, Yoon and Jeon, 2020). The

FGSVM however displayed a lesser performance when compared

to other models like the BNN, RQGPR, SEGPR, and EGPR. As

shown in the dispersion plots, the predicted hydrogen production

from the BNN, RQGPR, SEGPR, and EGPR models is in close

agreement with the actual values. This can also be confirmed by the

low values of the RMSE, MSE, and MAE as well as the high R2 in

Figures 6B, C. The prediction of the hydrogen production from the

dairy wastewater resulted in R2 of 0.999, 0.960, 0.960, and 0.990,

respectively.

Figure 7 depicts the performance of the eight models in terms

of the dispersion plot which compares the actual and the

predicted hydrogen production, the error analysis, and the R2

analysis. As shown in Figure 7A, the predicted hydrogen

produced from the chicken processing wastewater by the

LSVM, QSVM, CSVM, and FGSVM is a variant of the actual

values. This is evident in the high values of the RMSE, MSE and

MAE obtained for the prediction of the hydrogen as depicted in

Figure 7B. The R2 values of 0.140, 0.280, 0.440, and

0.670 obtained for LSVM, QSVM, CSVM, and FGSVM,

respectively imply that only the short range of the dataset can

be generalized by the models. A better performance was obtained

using the BNN, RQGPR, SEGPR, and EGPR, as indicated by the

proximity of the predicted and the actual hydrogen production

from the chicken processing wastewater as indicated in

Figure 7A. Very low RMSE, MSE, and MAE were obtained

for the BNN, RQGPR, SEGPR, and EGPR models compared

to the SVM-based models. The R2 values of 0.999, 0.990, 0.990,

and 0.990 obtained for the BNN, RQGPR, SEGPR, and EGPR

models, respectively are indications of better generalization of the

models.

Figure 8 represents the performance of the eight models as

a function of the dispersion plots, the error analysis, and the

R2. As established in the previous sections, the LSVM, QSVM,

and CSVM did not show impressive performance in modeling

the hydrogen production from the palm oil mill effluent as

indicated in Figure 8A. The predicted hydrogen production

obtained by LSVM, QSVM, and CSVM models largely deviate

from the actual values obtained from the experimental runs. A

large error analysis was obtained for the prediction of

hydrogen production as indicated in Figure 8B. The R2

values of 0.15, 0.28, and 0.51 obtained for LSVM, QSVM,

and CSVM, respectively are an indication of the low

generalization ability of the models. However, the

incorporation of the fine Gaussian kernel functions into the

SVM showed a significant improvement as indicated by R2 of

0.97. This can be attributed to the robustness of the fine

Gaussian kernel functions in the generalization of non-

linear functions. Better performance in modeling hydrogen

production is obtained using the BNN, RQGPR, SEGPR, and

EGPR as indicated by Figure 8A The predicted and the actual

hydrogen production from the wastewater are in close

agreement. The models predicted the hydrogen production

with minimum errors as depicted in Figure 8B. An R2 of

0.999 obtained for each of the BNN, RQGPR, SEGPR, and

EGPR models depicted in Figure 8C indicated that a large

proportion of the datasets can be generalized with minimum

error.

Comparison of the best models with
literature and practical implications of the
study

The comparison between the four best models in this study

namely BNN, RQGPR, SEGPR, and EGPR, and those reported in

FIGURE 8
(A): Dispersion plot of actual and predicted hydrogen
produced from palm oil mill effluent (B) error analysis of the
various models and (C) performance of each of the models in
terms of R2.
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the literature for similar processes are summarized in Table 2.

The four models are robust in modeling the prediction of

biohydrogen from dairy wastewater, chicken processing water,

and palm oil mill effluent. This is evidenced by the high R2 values

(>0.9) and low RMSE values. An indication that the predicted

biohydrogen produced from the various processes is consistent

with the values obtained from the experimental runs. It implies

that the models’ algorithms efficiently learn the non-linear

relationship between the various input variables and the

biohydrogen produced from the wastewaters. The

performances of the BNN, RQGPR, SEGPR, and EGPR are

comparable with other machine learning algorithms such as

random forest, Adaptive neuro-fuzzy inference system

(ANFIS) (Hosseinzadeh et al., 2022), Backpropagation neural

network (BPNN) (Sridevi, Sivaraman and Mullai, 2014),

multilayer perceptron neural network (MLPNN) (Yogeswari,

Dharmalingam and Mullai, 2019) and SVM (Raji et al., 2022).

The modeling of biohydrogen production from industrial

wastewaters, distillery wastewater, confectionery wastewater,

and fermentative medium results in an accurate prediction

with high R2 and low RMSE. Generally, studies have shown

that machine learning algorithms are highly efficient in modeling

processes with a non-linear relationship between the input and

the targeted variables. With the help of the machine learning

algorithms, biohydrogen production from the various

wastewaters can be optimized in real-time thereby improving

the process efficiency as well as enhance energy and material

utilization. The historical data from the processes can be

employed to continuously improve the process performance

and optimize desired products.

Conclusion

The potential of producing bio-hydrogen from agro-industrial

wastewater has been established in this study. Dairy, poultry

processing, and palm oil mill wastewaters all have promising

potential for bio-hydrogen generation. Hydrogen was produced

from a variety of wastewater sources, and the datasets acquired

from the experimental investigations were used to model the

relationship between the input factors and the desired result. Eight

machine learning models were used in the study, all of which

demonstrated promising results when tasked with learning the

non-linear connection between the input and the goal variables.

The LSVM, QSVM, and CSVM models performed poorly in

terms of generalizing the datasets and making predictions about

hydrogen production as shown by the low R2 values. Predictions

of hydrogen production was improved using the SVM with fine

Gaussian kernels. The BNN, RQGPR, SEGPR, and EGPR models

however outperformed the SVM-based models. Each of the BNN,

RQGPR, SEGPR, and EGPR models performed exceptionally well in

predicting hydrogen production from the dairy, chicken processing,

and palm oil mill, with anR2> 0.9. Indicated by low RMSE,MSE, and

MAE values, the models can generalize well for the task of predicting

TABLE 2 Comparison of the best models with literature.

Model types Process Performance matrix References

BNN Dairy wastewater R2 = 0.999, RMSE = 9.93 × 10−7 This study

chicken processing wastewater R2 = 0.999, RMSE = 8.73 × 10−4

palm oil mill effluent R2 = 0.990, RMSE = 5.38

RQGPR Dairy wastewater R2 = 0.960, RMSE = 0.65 This study

chicken processing wastewater R2 = 0.990, RMSE = 1.72 × 10−7

palm oil mill effluent R2 = 0.990, RMSE = 5.58

SEGPR Dairy wastewater R2 = 0.960, RMSE = 0.66 This study

chicken processing wastewater R2 = 0.990, RMSE = 1.72 × 10−5

palm oil mill effluent R2 = 0.990, RMSE = 5.58

EGPR Dairy wastewater R2 = 0.990, RMSE = 5.72 × 10−4 This study

chicken processing wastewater R2 = 0.990, RMSE = 1.53 × 10−5

palm oil mill effluent R2 = 0.990, RMSE = 5.58

Random forest Industrial wastewater R2 = 0.902, RMSE = 0.126 Hosseinzadeh et al. (2022)

ANFIS Industrial wastewater R2 = 0.930, RMSE = 0.089 Taheri et al. (2021)

BPNN Distillery wastewater R2 = 0.929, RMSE = N. R* Sridevi, Sivaraman and Mullai, (2014)

MLPNN Confectionery wastewater R2 = 0.996, APE = 0.0004 Yogeswari, Dharmalingam and Mullai, (2019)

ANN Fermentative medium R2 = 0.900, RMSE = N. R Sewsynker, Kana and Lateef, (2015)

SVM Industrial wastewater R2 = 0.998, RMSE = 0.983 Raji et al. (2022)

*N.R, not reported.
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hydrogen recovered from agro-industrial effluent with as little error in

their predictions as possible. In the event of a scaleup, the included

BNN, RQGPR, SEGPR, and EGPR algorithms may aid in increasing

the efficiency of the process. The impacts of input and output variables

on process safety, material utilization, and energy efficiency may be

monitored if their interdependencies are understood.
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