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With the advancement of China’s carbon policy, the proportion of renewable

energy, mainly wind and solar, has increased, which brings greater challenges to

the reservation of power systems. Due to the complexity of China’s power

systems, adopting the method of the zonal reserve to ensure stable system

operation is very difficult. Among the existing clearing results for calculating

reservation, the unit reservation will be restricted by the network security

constraints, leading to system operation risks. To obtain the unit reservations

efficiently without breaking the security constraints, this paper proposes an

effective reserve calculation method for engineering implementation. A box

robust optimization is further utilized for Security Constrained Unit

Commitment in the method to ensure the consumption of renewable

energy, and the stability and clearing efficiency of the power system.

Furthermore, a data-driven robust random optimization is employed for

Security Constrained Economic Dispatch optimizing the economy of power

systems. This multi-stage robust optimization model, which has good

extensibility, is in line with China’s clearing process. The simulation analysis

based on the actual operation data of a province in China and the IEEE 300-bus

system verifies the correctness and feasibility of the proposed model and

theory.
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1 Introduction

With the promotion of China’s policy and the task of carbon peaking and carbon

neutralization and the continuous promotion of power system reform (Lu et al., 2022), the

development of clean and renewable energy is imperative (Farhani, 2015), and its access

proportion in the power system will gradually rise. Although renewable energy such as
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wind and solar energy is environmentally friendly, the volatility

and randomness of output lead to the phenomenon of

abandoning wind power and photovoltaic power to ensure the

safe operation of the system when the electricity market is

cleared. To cope with the challenges brought by the large-

scale access of renewable energy to the safe and stable

operation of China’s power system, more system operation

reserves need to be reserved in the power system dispatching

optimization. Therefore, it is of great significance to put forward

a set of reasonable reserve calculation methods based on

absorbing renewable energy as much as possible.

The positive and reserve capacity of the unit is usually

determined by the unit capacity and the current output of the

unit. However, in actual operation, if the positive and reserve

capacity of the unit is called, it may cause an overload of the

relevant transmission lines, and this part of the reserve is usually

considered an invalid reserve. To solve this problem, the

common method is to determine the reserve demand by using

the method of partition reserve (Ma et al., 2007; Ahmadi-Khatir

et al., 2013; Zhou, 2017) but the method of partition reserve is

only limited to the case where the power supply and load

distribution are relatively concentrated. The network structure

of China’s power system is complex, and the resources are

scattered. It is difficult to ensure the safe and stable operation

of the power system through zoning (Wenhuan, 2022) analyzes

the existing engineering reserve deduction methods and puts

forward a reserve evaluation algorithm, but it still fails to solve

the problem of limited reserve in essence.

On the other hand, there are two main methods to deal with

the uncertainty of renewable energy in power systems, robust

optimization (Ben-Tal and Nemirovski, 1998; Bertsimas and

Sim, 2004; Bertsimas et al., 2013) and stochastic optimization

(Papavasiliou et al., 2011; Sahin et al., 2013; Ramezanzade et al.,

2018; Zhao and Guan, 2018; Zhao, 2021). Stochastic

optimization depends on the probability information of

renewable energy output. Robust optimization only needs to

describe the uncertainty interval of renewable energy output.

Although the mathematical model of stochastic optimization is

simple, it needs many calculations and is difficult to accurately

obtain the probability information of renewable energy output.

Although robust optimization has better robustness, it is

difficult to convert the model. Different uncertainty sets have

different robust equations (Ben-Tal, Ghaoui, Nemirovski), and

it is difficult to solve the model. Some scholars proposed to

combine robust optimization with stochastic optimization (Su,

2018; Xu et al., 2018; Su, 2019; Zhu et al., 2019), but the

transformation theory of such models is often difficult to

apply to SCUC problems. (Bertsimas et al., 2013). proposed

a two-stage robust optimization problem for SCUC called

Benders Decomposition to solve the model, but the

convergence and solution speed of the model is difficult to

guarantee.

Based on the clearing process of China’s electricity market,

this paper adopts different optimization models at different

stages to ensure the economy and security of the power

system. The highlights of the article are as follows:

1. In the SCUC and SCED models, the operation reserve

variables of the unit are introduced, and the operating

reserve of the unit can be accurately obtained.

2. Generation shift distribution factor (GSDF) is used to

construct network security constraints. In this way, the

binary variables generated when the unit operation reserve

variable is coupled with the network security constraint can be

avoided. The modeling methods in extreme and conventional

scenarios are given.

3. According to the clearing process of China’s electricity

market, a multi-stage robust optimization model for

promoting energy consumption is proposed, which

effectively avoids the disadvantage that the decomposition

algorithm cannot converge, and takes into account the

efficiency, economy, and security of the model.

The rest of this article is organized as follows: In section 2, the

model of effective reserve calculation in the electricity market is

proposed. In section 3, the multi-stage robust optimization

model is proposed. In section 4, the parity of the multi-stage

robust optimization model is given. Section 5 is numerical

simulation. The conclusion is given in section 6.

2 SCUC model for modeling effective
reserve of unit

2.1 SCUC model

The objective function of day-ahead electricity market

clearing SCUC is to minimize the system operation cost:

min∑G
i�1
∑T
t�1
[Ci,t(Pi,t) + CU

i,t] +∑SE
s�1

∑T
t�1
M[SL+

s + SL−
s ] (1)

s.t.∑G
i�1
Pi,t � Dt (2)

∑G
i�1
αi,tP

max
i,t ≥Dt + RU

t (3)

∑G
i�1
αi,tP

min
i,t ≤Dt − RD

t (4)

αi,tP
min
i,t ≤Pi,t ≤ αi,tPmax

i,t , i ∈ G (5)
Pi,t − Pi,t−1 ≤ΔPU

i αi,t−1 + Pmin
i,t (αi,t − αi,t−1) + Pmax

i,t (1 − αi,t), i ∈ G

(6)
Pi,t−1 − Pi,t ≤ΔPD

i αi,t − Pmin
i,t (αi,t − αi,t−1) + Pmax

i,t (1 − αi,t−1), i ∈ G

(7)
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Pi,t � ∑N
n�1

Pi,t,n, i ∈ G (8)

CU
i,t � ηi,tC

U
i , i ∈ G (9)

Pmin
s ≤∑G

i�1
Gs−iPi,t +∑NT

j�1
Gs−jTj,t −∑K

k�1
Gs−kLk,t − SL+

s

+ SL−
s ≤P

max
s , s ∈ SE (10)

The objective function 1) represents the minimum

generation cost of the power system. Where Ci,t(Pi,t)、 CU
i,t

respectively represent unit output cost and startup cost, SL+s
and SL−s represent the slack variables of the branch/section

respectively, and M represents the penalty factor, which is

usually a large positive integer.Where (2) represents system

balance constraint, formula 3, 4 represent the positive and

negative reserve constraints of the system, the constraints (5)

represent the upper and lower limit constraints of unit output,

the constraints (6) and (7) represent the ramp constraints

of the unit, the constraints (8) represent unit segment

output constraints, the constraints (9) represents the

start-up cost of the unit, the constraints (10) represent

network security constraint. Where ∑Pi,t represents unit

output and D represents system load, Pmax and Pmin

represent the upper and lower limits of unit output

respectively, RU and RD respectively represent the

positive and negative reserve capacity demand of the

power system, α are binary variables, one refers to the

startup unit, and 0 refers to the shutdown unit, ΔPU
i and

ΔPD
i respectively represent the ramp speed of the unit, Pi,t,m

represents the segment output of the unit, and N refers to

the number of segmentation. η are 0–1 variables, one

represents the unit startup, and the rest is 0. Pmin
s and

Pmax
s respectively represents the upper and lower limits

of the transmission line s, T refers to the power of tie

line. The inflow is positive and the outflow is negative,

Gs−i represents the generator output power transfer

distribution factor of line s to node i.

2.2 Modeling considering effective reserve
variables of units

At present, the calculation formula for the positive reserve of

the power system is (3), but the section of the unit may be out of

limit due to the provision of the reserve, that is:

Ps + ∑PRG
i�1

Gs−i(Pmax
i,t − P̃i,t) ∉ ⎡⎣Pmin

s , Pmax
s

⎤⎦, s ∈ SE (11)

Where Ps represents the current transmission power of the line,

PRG represents the number of units to be provided with reserve

and P̃i,t represents the current unit output. When the above

conditions occur, it is considered that the units in the PRG set

provide invalid reserve. To solve this problem, reserved variable

PRi,t for each unit can provide reserve. PRi,t represents the

maximum available reserve that the unit i can provide at time

t. Therefore, the positive reserve capacity formula is changed (3)

to the following form:

∑N
i�1
PRi,t ≥RU

t (12)

When the unit is shut down, the reserve cannot be provided,

so PRi,t should be coupled with the operating state of the unit,

0≤PRi,t ≤ αi,tPmax
i,t (13)

In addition, the upper limit constraint of PRi,t shall be less

than the maximum output and actual output of the unit, and the

following constraints shall be met,

PRi,t ≤Pmax
i,t − Pi,t (14)

Considering the constraints (12) (13), there is

0≤PRi,t ≤ αi,tP
max
i,t − Pi,t (15)

If considering the startup and shutdown curve of the unit, the

unit cannot provide reserve during startup and shutdown, the

formula should be modified as follows:

0≤PRi,t ≤ αi,tP
max
i,t − Pi,t −∑N

i�1
∑UD
tt�1

(Pi,max − Pi,U(tt))βi,t−tt+1−
∑N
i�1

∑DD

tt�1
(Pi,max − Pi,D(tt))γi,t+DD−tt+1

(16)
UD is the duration of the startup process, calculated to the

minimum output of the unit; DD is the duration of the

shutdown process, calculated from the minimum output of

the unit; γ are binary variables, one represents unit shutdown,

and the rest is 0.

2.3 Coupling constraints of unit effective
reserve and network security constraints

To ensure that the reserve of the unit associated with the

section out of limit is 0, it is usually necessary to introduce the if-

then constraint. However, for the linearization of logical

constraints, binary variables of SEpT quantity need to be

introduced, which will increase the complexity of the SCUC

model by 2SEpT. Here, approximate modeling is given, which does

not introduce too many binary variables, making the complexity

of the model rise relatively low.

When the positive/negative section exceeds the limit, the

corresponding units with positive/negative sensitivity cannot

provide the corresponding reserve at this time. Therefore, it

has the following forms:
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if SL+
s > 0&&Gs−i >Threshold

PRi � 0
or
if SL−

s > 0&&Gs−i < − Threshold
PRi � 0

(17)

(17) needs to be linearized as follows:

SL+
s + SL−

s > −M(1 − τs)
PRi ≤M(1 − τs) , |Gs−i|>Threshold

(18)

τs is a binary variable. When τs is 1, it means that section s is out

of limit, else τs is 0. Since the current single machine capacity in

the market does not exceed 3,000, M here can be set to 3,000. The

above method will introduce more binary variables. For each

section, binary variables will be introduced at each time, which

will greatly increase the difficulty of solving the model. A method

without introducing binary variables is proposed as follows:

When considering the reserve network security constraints,

the units with positive sensitivity and the units with negative

sensitivity are added respectively. Use the following formula:

∑G
i�1
Gs−iPi,t +∑G

i�1
Gs−i
+

PRi,t +∑NT

j�1
Gs−jTj,t −∑K

k�1
Gs−kLk,t

− SL+
s ≤Pmax

s , s ∈ SE (19)

Pmin
S ≤∑G

i�1
Gs−iPi,t +∑G

i�1
Gs−i
−

PRi,t +∑NT

j�1
Gs−jTj,t −∑K

k�1
Gs−kLk,t

+ SL−
s , s ∈ SE (20)

G+
s−i and G−

s−i represent positive and negative GSDF above the

threshold, respectively. The above formula can be abbreviated as

follows:

Pcurrent
s,t +∑G

i�1
Gs−i
+

PRi,t − SL+
s ≤Pmax

s , s ∈ SE (21)

Pmin
S ≤Pcurrent

s,t +∑G
i�1
Gs−i
−

PRi,t + SL−
s , s ∈ SE (22)

Where Pcurrent
s,t represents the current power flow of the section.

For (21) ∑G
i�1Gs−i

+
PRi,t ≥ 0, if Pcurrent

s,t >Pmax
s , then SL+s > 0.In the

objective function, SL+s has a penalty term

∑SE
s�1 ∑T

t�1M[SL+s + SL−s ], and the objective function is

minimized, so SL+s → 0. If Pcurrent
s,t >Pmax

s , then SL+s > 0. It can
be inferred that when Pcurrent

s,t >Pmax
s is established,

∑G
i�1Gs−i

+
PRi,t � 0 is established, and because of Gs−i

+
> 0, PRi,t �

0 is established. For (22), the same principle can be proved.When

Pcurrent
s,t <Pmax

s , PRi,t � 0.It is worth noting that the above proof is

limited to the case that the model is optimized and the system

reserve is sufficient.

When considering the reserve network security constraints of

the above formula, the reserve variables associated with the

positive and negative reach bounds of the section will only

aggravate the forward or negative power flow of the current

section. Therefore, there is no need to add the original network

security constraints (10) in this case.

In the above formula 19 (20), the influence components of

standby variables above the forward and reverse thresholds on

section power flow are added respectively, which will reduce the

feasible region of the model to a certain extent. If the influence of

correlation between reserve variables is considered, the following

conditions may occur when the units higher than the positive

sensitivity threshold and the units with negative sensitivity

threshold are adjusted at the same time:

Ps + ∑PRG1
i�1

G+
s−i(Pmax

i,t − P̃i,t) + ∑PRG2
i�1

G−
s−i(Pmax

i,t − P̃i,t)≤Ps, s ∈ SE

(23)
At this time, the network security constraint of the system

needs to be rewritten into the following form:

Pmin
s ≤∑N

i�1
Gl−iPi,t +∑N

i�1
Gl−i
+

PRi,t +∑N
i�1
Gl−i
−

PRi,t +∑NT

j�1
Gl−jTj,t

−∑K
k�1

Gl−kLk,t − SL+
s + SL−

s ≤P
max
s , s ∈ SE

(24)
The influence component of reserve on section power flow

can be any value, which can make the section out of limit no

longer without considering the reserve variables. In this

situation, the original network security constraint (10) needs

to be added.

3 Modeling of effective reserve
considering renewable energy
uncertainty

3.1 SCUC model of box uncertainty set

Because the model of SCUC is complex and contains many

binary variables, it is difficult to solve the model. In the SCUC

stage, the box robust optimization is adopted to consider the

uncertainty of renewable energy and ensure the solution

efficiency of the model. 5) is rewritten as follows:

αi,tP
min
i,t ≤Pi,t + υi ∑NE

j�1
(ΔPw

j,t)ζ j ≤ αi,tPmax
i,t , i ∈ G (25)

where NE represents the renewable energy unit set, ΔPw
j,t

represents the maximum deviation between the predicted

output of renewable energy and the actual output, ζ

represents uncertainty ζ ∈ [0, 1], υ represents the participation

factor of conventional units, which is not a variable, and∑ υi � 1.

The uncertainty of renewable energy is limited to the box

uncertainty set as follows:

Frontiers in Energy Research frontiersin.org04

Duan et al. 10.3389/fenrg.2022.980125

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.980125


RW(ΓW, Pw
i ,ΔPw

i ): � {~Pw

i : ∃ζ i ∈ R,
���ζ i���∞≤ ΓW,∀i ∈ NE} (26)

where ΓW ∈ [0, 1] is the uncertainty level of the total renewable

energy of the system.

3.2 SCED model of the robust stochastic
optimization model

In the SCED stage, the model is a linear programming (LP)

problem, and the efficiency of solving the model is no longer

concerned. Therefore, more refined robust stochastic

optimization (RSO) can be considered in this stage.

After considering the stochastic, the model becomes as follows:

min
x

sup
P∈P

EP{f(x, ζ)}
s.t.g(x, ζ)≥ 0
f(x, ζ) ∈ A(K, I )

(27)

where ‖ represents the ambiguity set of the model. When ‖ can
accurately describe the probability information, (25) is stochastic

optimization. When ‖ only contains uncertainty sets, (25) is

robust optimization. In the SCED stage, the ambiguity sets of the

RSO model are as follows:

P �
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
P ∈ P0(RD + RL):

((ξ,u), ~w) ~ P

EP[u| ~w∈ [S]k]≤ ϑ
EP[ξ] � μ
P[(ξ,u) ∈ C| ~w � w] � 1,P[ ~w � w] � pw

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
(28)

where ξ is the vector representation of ζ , u is the vector

representation of ΔPw, Where w represents the real scene, ϑ is

a distance scale, adjustable parameter. The specific form of

confidence set C is as follows:

C � {(ξ, u): μ + u≥ ξ, μ + u≤ ξ} (29)

In the existing scheduling systems, it is difficult to obtain accurate

probability distribution, but it is relatively easy to obtain typical

scenarios. Therefore, the data-driven robust stochastic optimization

based on data scenarios has better application scenarios.

Here, the method of extending typical scenes to related

scenes is used to construct scene sets, as follows:

A(K, I ) �
⎧⎪⎨⎪⎩f:

f(x, ξ) � f0 +∑
i∈I

fi(x, ξ)
for somef0, fi(x) ∈ A(K)

⎫⎪⎬⎪⎭ (30)

where K represents the main scene and I represents the sub-

scenarios extended from the main node. (K) is an event-wise

static adaptation. The formula is as follows:

A(K) �
⎧⎪⎨⎪⎩f′:

x(ξ) � xτ

τ � F(ξ)
for some xτ ∈ R

⎫⎪⎬⎪⎭ (31)

(K) scenes here are independent of each other and have no

relevance.

4 Model reconstruction

In the stage of SCUC and SCED, the model cannot be

solved directly because the uncertainty variables are

considered in the model, so it is necessary to make a

reformulation to the model.

4.1 Model reformulation of SCUC

Formulas 25, 26 respectively describe the unit output

and box uncertainty set under the renewable energy

output uncertainty, To convert it to a solvable form, the

display filter is used for conversion, as follows (Bai et al.,

2016):

max γi ∑
i∈W

Δpw
i ζ i �

���������γi ∑i ∈ W
Δpw

i

���������
Pp

(32)

where ‖•‖pp is the dual norm, 1/p + 1/pp � 1. Therefore, (25) is

transformed into the following form:

αi,tP
min
i,t ≤Pi,t + υi

���������γi ∑i ∈ W
Δpw

i

���������
Pp

≤ αi,tP
max
i,t , i ∈ G (33)

p* is one norm. If the influence of PR is considered, (33) comes as

follows:

αi,tP
min
i,t ≤Pi,t + υi

���������γi ∑i ∈ W
Δpw

i

���������
Pp

+ PRi,t ≤ αi,tP
max
i,t , i ∈ G (34)

15) and 16) comes as follows:

0≤PRi,t ≤ αi,tPmax
i,t − Pi,t − υi

���������γi ∑i ∈ W
Δpw

i

���������
Pp

(35)

0≤PRi,t ≤ αi,tP
max
i,t − Pi,t − υi

���������γi ∑i ∈ W
Δpw

i

���������
Pp

−∑N
i�1

∑UD
tt�1

(Pi,max − Pi,U(tt))βi,t−tt+1−
∑N
i�1

∑DD

tt�1
(Pi,max − Pi,D(tt))γi,t+DD−tt+1

(36)

Now, the robust model of the SCUC stage is transformed into

a mixed-integer linear programming (MILP) model. So far,

this paper proposes a robust optimization SCUC model

((1)–(2), (4), (6)–(9) (12) (34) (35)/(36)) in multiple

scenarios. When binary variables are introduced 18) need

to be added; Without introducing binary variables (19)–(20)

need to be added in extreme scenarios, and (10) 24) in non-

extreme scenarios.
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4.2 Model reformulation of SCED

The biggest difference between the SCED model and the

SCUC model is that there is an expectation in the objective

function of the SCED model, and the expectation function needs

to be linearized. Here, the dual theory is used for linearization.

The following transformation theory is given (Su et al., 2019;

Chen et al., 2022):

sup
P(ξ)∈P

EP[rT( ~w)Gm( ~w)~z + hm( ~w)]
Z

infγ

s.t. γ≥ αp + ∑
k∈[K]

βkμk∀p ∈ P,
μk∑

w∈Ek

pw
∈ Qk, k ∈ [K]

αw + ∑
k∈Ks

βkz≥ r(w)Gm(w)z + hm(w)∀z ∈ Zw,w ∈ [S]

γ ∈ R, α ∈ RS, βk ∈ RIz∀k ∈ [K]

(37)

where K represents scenarios set.

In the SCED stage, the start and stop of the unit have been

determined, so the cost of this part is constant. The objective

function is as follows:

min∑G
i�1
∑T
t�1
[Ci,t(Pi,t)] +∑SE

s�1
∑T
t�1
M[SL+

s + SL−
s ] (38)

In the SCED stage, considering the influence of ambiguity

sets, the objective function becomes the following form:

min
x

sup
P∈‖

∑G
i�1
∑T
t�1
[Ci,t(Pi,t)] (39)

In the SCED stage, the section is usually adjusted to the

state of not exceeding the limit, that is, the SL variables are 0.

To solve it, need to transform the expectation into a linearly

solvable form.

Therefore, the SCED model can be reformulated as follows:

max
P(ξ)∈P

EP
⎡⎣∑G
i�1
∑T
t�1
Ci,t(Pi,t)⎤⎦

�

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

inf γ

s.t. γ≥ αTp + ∑
k∈[K]

βTk σk∀p ∈ P,
σk∑

w∈ϵk
pw

∈ Qk, k ∈ [K]

α + ∑
k∈Ks

βTkΔξ ≥∑
G

i�1
∑T
t�1
Ci,t(Pi,t) + bTΔξ

∀z ∈ Zw, w ∈ [S]

γ, α, β ∈ R

(40)

Now, the model reconstruction of SCUC and SCED has been

completed. The model can be solved directly by calling the solver.

The clearing process of the electricity market after

considering the uncertainty set is shown in Figure 1 and the

following process:

Step 1: Solution of the SCUC model considering the box

uncertainty set and effective reserve modeling.

Determine the startup and shutdown state of the unit.

Step 2:According to the typical scenario of renewable energy

output. Constructing uncertainty sets of event

expressions.

Step 3: Adjust the boundary data cleared by the power system,

the planned output of the unit and tie line, etc.

Step 4: Calculate the RSO-SCED model. Determine whether the

calculation result satisfies the standard issued by the

scheduling agency, if not, go back to step 2, if so,

publish the result.

5 Numerical simulation

In this section, the simulation analysis is based on the IEEE

300-bus system and the actual operation data of a province in

China. All simulation analysis is based on MATLAB or C++.

All simulation analyses were performed on a laptop. Processor

model: i7-8565u, 1.8GHz, 16 g memory.

To test the engineering application value of effective reserve

modeling, the test is carried out in C++ based on the actual

electricity market operation data. Due to the lack of data on

typical daily operation scenarios of renewable energy in the

actual operation data, the simulation analysis for multi-stage

robust optimization is carried out based on MATLAB with the

IEEE 300-bus system, and the typical daily operation scenarios of

renewable energy are generated by the Monte Carlo method. In

the IEEE 300-bus system, Renewable energy is connected at

nodes 10, 30, 52, 57, 68, 81, 169, 175, 194, 265, and 271 with each

capacity of 80 MW.

5.1 Comparative analysis of effective
reserve calculation models

PRSCUC is used to represent the SCUC model after

considering the modeling (19) (20) of reserve variables,

BSCUC represents a model that calculates the effective

reserve by introducing binary variables (18), and sPRSCUC

is used to represent the SCUC model after slack the feasible

region (22) (10), the SCUC model after the reserve variables

can affect each other. SCED uses the same naming logic in

Figure 2.

Where * means that the model can find a feasible solution in

1800s. As can be seen from Table 1, The BSCUC model with
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binary variables will impose a great burden on the calculation

efficiency, and often the model cannot be solved normally. In

actual operation, this situation is not allowed. PRSCUC and

sPRSCUC models will make the model speed longer, such as

scenario 1, scenario 4, and scenario 8. However, there are also cases

where the model solving speed is significantly improved, such as

scenario seven This phenomenon is caused by the introduction of

new continuous variables, which increases the relevant constraints

of the SCUCmodel and reduces the feasible region. The solvermay

spend more time and find the optimal solution faster when using

branch and bound to solve MILP problems. However, the order of

magnitude of the model solution time has not changed, and it

belongs to an acceptable fluctuation range from the perspective of

engineering applications.

Figure 2 shows the changes in objective function values of

several models in different scenarios. In the SCUC stage, because

the slack penalty factor of network security constraints in the

objective function value is large, the objective function values of

the three models are quite different. In the SCED stage, the slack

penalty factor of network security constraints is small, and the

difference between the objective function values of different

models is not obvious. But in general, the objective function

values of the SPR. model and PR. model are higher than those of

the original model. This is because the refinement considers the

effective reserve value of each unit and the feasible region of the

SPR. model and PR. model is smaller than that of the original

model, so the objective function value is on the high side as a

whole. In scenarios 1, 4, and 8, the difference between the

optimization objective functions of the three models is very

small, in these scenarios, there is less power load, the

transmission pressure of the power grid is small, and most of

the transmission lines are in the light load state.

TABLE 1 Comparison results of calculation time of different models under different typical scenarios.

Typical scenario SCUC (s) BSCUC (s) PRSCUC (s) SPRSCUC (s)

1 95 * 508 489

2 79 1,164 91 154

3 104 1771 93 168

4 384 * 776 496

5 164 * 89 262

6 263 1,566 258 587

7 1,150 * 315 675

8 99 1,412 276 901

9 332 * 266 817

10 145 * 165 444

FIGURE 1
Day-ahead electricity market clearing process.
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TABLE 2 Comparison of effective reserve of different models.

Typical scenario SCUC (%) PRSCUC (%) PRSSCUC (%)

1 62.50 92.10 100.00

2 80.40 100.00 100.00

3 79.70 100.00 100.00

4 83.80 100.00 100.00

5 71.40 90.40 100.00

6 39.90 71.70 95.70

7 84.30 100.00 100.00

8 87.90 100.00 100.00

9 68.40 95.00 100.00

10 69.30 94.40 100.00

FIGURE 3
Comparison of objective functions of different models under different sample volumes.

FIGURE 2
Comparison value of objective functions of different models under different typical scenarios.
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Table 2 shows the efficiency of the system under different

models, and the specific calculation formula is 1. Both PRSCUC

and SPRSCUC models have high efficiency. Among them, it is

worth noting that in scenario 6, in which the system load is high

and the transmission lines are generally overloaded, so it is

difficult to provide sufficient effective reserve. After reducing

the feasible region, the refined modeling part can only provide

71% of the effective reserve. However, considering the

cooperation between units, the PRSCUC model can satisfy

almost all scenarios.

5.2 Comparative analysis of multi-stage
robust optimization and conventional
robust optimization

To verify the influence of several robust optimizations on the

clearing model, a comparative analysis is carried out based

on IEEE300. CM represents the clearing model, and PCM

represents the clearing model that considers the uncertainty of

renewable energy output to improve the reserve demand. ROCM

represents the clearing model under box robust optimization.

FIGURE 4
Comparison of calculation time of different models under different sample volumes.

FIGURE 5
Comparison of objective functions of different models under different renewable energy penetration rates.
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RSOCM indicates that box type robust optimization is adopted in

the SCUC stage and the RSO clearingmodel is adopted in the SCED

stage. The reserve demand is 10% of the system load. Considering

the extreme scenario that all renewable energy sources are unable to

provide output in PCM, the reserve demand increases the total

capacity of renewable energy output based on the original demand.

The distance parameter ϑ of the RSOCM model is 1.

As shown in Figure 3, RSOCM approximates from ROCM

results to CM results as the number of samples increases. However,

when the sample volume is greater than 1,500, the objective function

changes slightly, because the uncertainty of 1,500 renewable energy

output under the current system has been described as accurately as

possible. Although cm has better optimization results, the system

has low-risk resistance and poor robustness of clearing results. PCM

has the best robustness because it considers the higher reserve

demand, but the system economy is poor.

Since the differences between the above models are all in the

SCED stage, a comparative analysis is made only for the

calculation speed of RSOCM and other models in the SCED

stage. The details are as follows.

Figure 4 shows the time from modeling to the solution of

different models. Since the model itself is small and LP problem,

the modeling time is considered. Except for the RSOCM model,

the solution time of other models is very close, about 1.25s. The

RSOCM model takes longer to calculate, but the overall

magnitude does not change.

5.3 Comparative analysis of different
models under different renewable energy
penetration rates

With the development of the power system, the proportion of

renewable energy access will gradually increase. Here, simulation

analysis is made for the power system under different renewable

energy penetration rates, as follows:

Figure 5 shows the changes in objective functions of several

models with the increasing penetration of clean energy. As can be

seen from the figure, since the cost of clean energy is much lower

than that of conventional units, the objective function value of the

CM model is declining. After considering the impact of the reserve,

the objective function value of the PCM model is improved. The

optimization result of PCM is similar to that of ROCM, but the

difference is small. In addition, with the increase of renewable energy

permeability, the value of the objective function of the RSOCM

model decreases slowly. It is proved that the RSOCM model

performs well when clean energy has a high penetration rate.

6 Conclusion

In this paper, a calculation method of system effective reserve

is proposed and embedded into the robust optimization model of

SCUC and SCED. Different robust optimization methods are

adopted in SCUC and SCED respectively to ensure the security

and economy of the power system while the solving efficiency

requirement is met. The effectiveness of the proposed model is

verified by an actual operation case and the IEEE 300-node case.

The simulation analysis, it shows that the proposed model

considering reserve calculation can well ensure the safe

operation of the power system. The proposed multi-stage

robust optimization model matches the existing clearing

process of the electricity market, and the model has good

extensibility. In the future, the uncertainty set in different

stages can be changed based on the needs of the operating

entity to ensure the economy and security of the system

operation.
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