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The objective of this research is to evaluate the heat and mass transfer in a water-based Darcy–Forchheimer hybrid nanofluid (HNF) flow across an expanding cylinder. The fluid flow has been studied under the influence of a magnetic field, viscous dissipation, heat source, thermal radiation, concentration stratification, and chemical reaction. Carbon nanotubes (CNTs) and iron ferrite (Fe3O4) nanoparticles (NPs) are added to the water, for the purpose of synthesizing the HNF. The fluid flow has been induced in the presence of gyrotactic microorganisms and the non-Fick’s model. Microorganisms are used to stabilize scattered nanoparticles through the hybrid nanofluid. The phenomena have been modeled in the form of a nonlinear system of partial differential equations (PDEs). The modeled equations are reduced to a dimensionless system of ODEs by using similarity substitution. The numerical solution of the derived sets of nonlinear differential equations is obtained by using the parametric continuation method. The impact of physical constraints on temperature, velocity, concentration, and microorganism profiles is presented through figures and tables. It has been observed that the heat and mass transport rates increase with the rising effect of the curvature parameter, while declining with the effect of the thermal stratification parameter.
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INTRODUCTION
The study of boundary layer flow through a cylinder gained the attention of researchers due to its broad array of applications in numerous sectors, including manufacture and extraction of glass fiber, bridges and funnel stacks in civil engineering, paper production, melt-spinning rubber sheets, blood transportation in heart-lung machine, risers and channels, polymer production, carriage of noxious fluids at nuclear power plants, carriage of destructive fluids when fluid contact with machinery and equipment is restricted, and many others (Ma et al., 2020; Dou, 2022; Hussain et al., 2022). For about the last 2 decades, various investigators chose to conduct their research in the cylindrical channel because of the aforementioned applicability. The mathematical analysis of power-law nanofluid flow across a circular surface is documented by Ullah et al. (2021a) who concluded that the natural frequency has a momentous effect on the fluid’s properties. Zhang et al. (2021) numerically assessed the HNF flow across a circular cylinder. It was observed that the rotating cylinders containing a splitting sheet, may be effective options for energy transfer. Numerical simulations and tests to lower the drag of a cylinder for both smooth and round cylinders with dimpled surfaces are investigated by Ullah et al. (2021b). The results show that within a particular range of Reynolds numbers, the dimpled structure can efficiently reduce cylinder drag, with a maximum drag reduction rate of up to 19%. Using the modified Fourier heat flux law, Varun Kumar et al. (2021) scrutinized the upshot of hybrid NPs on the dusty flow behavior through an enlarging cylinder. Their observations show that increasing particle mass concentration reduces the velocity and temperature gradient, whereas increasing the curvature factor increases the thermal gradient and velocity within the boundary. Poply (2021) evaluated the influence of MHD flux over an extending cylinder with a heat source. Their research aided in controlling the frequency of energy transmission and flow stream in a variety of industrial applications and manufacturing processes to achieve the desired end production efficiency. The influence of MHD Newtonian nanofluid flow across a stretchable cylinder was inspected by Waqas et al. (2021). The fallouts reveal that the velocity is increased by increasing the buoyancy constraint and declines by increasing the magnetic parameter. Chu et al. (2022b) analyzed the Maxwell MHD NF flow over a prolonged cylinder using nonlinear heat emission. An incompressible and 2D flow of viscoelastic NF over an extended cylinder was considered by Al-Mubaddel et al. (2022). Dey et al. (2021) investigated boundary layer viscous fluid flow via a stretchable cylinder with varying heat flux and molecular diffusion. They observed that due to the stretching of the cylinder, dual solutions are discovered, and an unusual increase in heat near the cylinder’s surface. Energy consumption has grown exponentially over the world, demanding more efficient energy use because the demand exceeds the supply. Within a thermal system, a significant quantity of temperature is generated, needing efficient and rapid heat transfer employing high-performance thermal management systems. Some new efforts have been documented by many academics on fluid flow across different configurations (Chu et al., 2021; Zhao et al., 2021; Benhacine et al., 2022; Kumar and Sahu, 2022; Lim et al., 2022).
Many modern technological applications that previously required ordinary fluids (water, engine oil, ethylene glycol, and propylene glycol) have been replaced with nanofluids, which are the composition of the base fluid with nano-sized particles (Alsallami et al., 2022; Bhatti et al., 2022a; Rafiei et al., 2022). Nanofluids have garnered a huge interest in research and development in the last decade, especially in the fields of heat assignment improvement techniques and renewable and sustainable energy systems. Solar collectors, hydrodynamics, hydropower rotors, thermodynamics, ocean power plants, wind turbines, and geothermal heat exchangers are just a few of the applications for nanofluids (Ma et al., 2021). A new mechanism of thermal expansion within nanofluids has recently been introduced. The process involves mixing two or more different nanoparticles in the primary fluid. These nanofluids are referred to as hybrid nanofluids, and they have a higher heat transfer efficiency due to their improved thermo-physical properties. Propagation of the HNF flow and heat and mass transport play essential roles in biotechnology, crude oils, nuclear sectors, paper manufacturing, suspended and colloidal solutions, polyethylene solution, geophysics, unusual lubricants, and chemical plants, which are only some of the uses in the industry (Kumar et al., 2022). The fluid flow of a blood-based HNF with variable viscosity and CNTs via a stretching sheet was discovered by Chu et al. (2022a). The inclusion of CNTs proved to be more successful, according to their findings. Shruthy and Mahanthesh (2019) discussed the thermal Bénard convection analytically in HNF and Casson fluid. It has been discovered in their finding that using a hybrid nanofluid to postpone convection can improve the rate of heat allocation. A two-dimensional time-dependent radiative Casson fluid flow across a porous stretched superficial is examined by Zhou et al. (2021). They discovered that as the Casson component and magnetic field rise, the friction drags increase, whereas the Nusselt number drops with increasing Eckert number. Syam Sundar et al. (2015) measured the heat exchange ratio and friction coefficient for CNT- Fe3O4/water HNF flow through a cylinder under constant heat flux. Soran et al. Lung et al. (2021) evaluated the efficacy of carboxylic-synthesized CNTs modified with Fe and Mn metal to remove two pesticides from an aqueous medium. Their findings demonstrate that the CNT-COOH/MnO2/Fe3O4 NPs are a viable adsorbent for the removal of pesticides from wastewater. The NPs’ shape characterization and the heat transfer characteristics of an Au–Fe3O4–blood HNF flowing across a stretching surface over a magnetohydrodynamic medium were presented by Ullah et al. (2019). The thermal conductivity of blade-shaped Au and Fe3O4 nanoparticles is found to be superior to platelet, needle, cylinder, brick, and sphere shapes. To create blood-based HNF, Mohamed et al. (2021) quantitatively studied CoFe2O4 and Fe3O4 ferroparticles embedded in Casson fluid, which resembles human blood. According to their findings, when magnetic effects were present, the CNT-based Casson NF flow offered 46% more heat than blood-based NF. Many scholars have recently studied hybrid nanofluid flow comprised of CNTs and iron oxide nanoparticles (Alharbi et al., 2022; Bhatti et al., 2022b; Elattar et al., 2022; Khashi’ie et al., 2022; Nazeer et al., 2022; Ullah et al., 2022).
Bioconvection has a huge involvement in manufacturing and medicine (Areekara et al., 2021; Khan et al., 2021). Elayarani et al. (2021) described the adaptive neuro-fuzzy inferential simulations for the unsteady 2D bio-convective flow of Carreau NF containing gyrotactic microbes over an elongating sheet with magnetism and multiple slip conditions. Hosseinzadeh et al. (2020) explored cross-fluid flow on a horizontal and 3D cylinder with gyrotactic microbes and NPs while accounting for viscous dissipation and magnetic field. Muhammad et al. (2021) evaluated the flow of magnetized viscoelastic Carreau NF carrying microbes through a sliding wedge with slip effects and thermal radiation parameters. Waqas et al. Muhammad et al. (2022) considered the features of the Jeffrey nanofluid flow over a sheet and the effects of activation energy and motile microorganisms. It was observed that the bioconvection Rayleigh number and resistance ratio parameter play an essential role in the Jeffery nanofluid’s falling flow. Ahmad et al. (2022) investigated the novel properties of hybrid nanofluids such as NiZnFe2O4 and MnZnFe2O4. Recently, gyrotactic microorganism fluid flow and the comprising nanoparticles have been reported by Alhowaity et al. (2022b), Ashraf et al. (2022), and Habib et al. (2022).
The current research focuses on the amazing evaluation of CNTs and iron oxide-based HNF flow with magnetic dipole and triple stratification over an extending cylinder. Viscous dissipation, heat radiation, generalized Fick’s law, and partial slide are also taken into account. The proposed study is significant because it examines the chemically reactive CNTs + Fe3O4/water Casson hybrid nanofluid with magnetic dipole and stratification effects created by an elongating cylinder. To the best of our experience, no previous research has looked into these impacts. The MATLAB function PCM and bvp4c have been used to estimate the numerical simulation of the current analysis. Graphs depict the effects of various parameters, while tables show the statistical valuation of skin friction, Nusselt number, and microorganisms .
[image: Figure 1]FIGURE 1 | Fluid flow over a stretching cylinder.
MATHEMATICAL FORMULATION
Over an extending cylinder, we addressed a 2D laminar and radiative Casson HNF flow in the presence of slip and microbe effects. The CNTs and iron oxide are described as NPs in the Casson fluid. The magnetic effect [image: image] is executed in the r-direction. The temperature, concentration, and microorganism are symbolized as [image: image], [image: image], and [image: image], respectively. Under the aforementioned description, the leading equations are expressed as (Ahmad et al., 2021)
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Here, [image: image] determine the velocity factors in the x and r direction, respectively, while [image: image] is the dynamic viscosity, [image: image] is the thermal diffusivity, [image: image] is the mass diffusivity, [image: image] is the density, [image: image] is the microorganism diffusivity, [image: image] is the concentration relaxation time, and [image: image] is the slip factor. Additionally, [image: image] denotes the ferromagnetic force.
The boundary conditions are expressed as (Ahmad et al., 2021)
[image: image]
In the aforementioned equation, [image: image] specifies the magnetic strength. [image: image] shows the kinematic viscosity of the hybrid nanofluid, while [image: image], and [image: image] are the constant number.
The magnetic dipole is specified as
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The absolute magnetic field is
[image: image]
where,
[image: image]
and
[image: image]
The magnetic field became more intense, and a linear link between magnetic and temperature variation was formed as follows :
[image: image]
TABLE 1 | Experimental values of water, [image: image], and Fe3O4 nanoparticles (Gul et al., 2020).
[image: Table 1]Similarity transformation
The similarity variables are (Ahmad et al., 2021)
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By applying the aforementioned similarity transformation, Eq. 1 is identically satisfied while Eqs 2–5 take the form as
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The reduced boundary conditions are
[image: image]
Here, [image: image] is the microorganism stratification, [image: image] is the curvature term, [image: image] the bio‐convection constant, [image: image] is the Casson fluid constraints, [image: image] is the thermal stratification, M is the ferromagnetic term, [image: image] is the concentration stratification, Ec is the Eckert number, [image: image] is the velocity slip, [image: image] is the radiation constant, [image: image] is the Peclet number, [image: image] is the free stream parameter, [image: image] is the Lewis number, [image: image] is the Prandtl number, [image: image] is the Schmidt number, [image: image] is the concentration relaxation constraints, [image: image] is the chemical reaction term, and [image: image] is the viscous dissipation parameter.
These physical terms are expressed as (Ahmad et al., 2021)
[image: image]
The physical interest quantities derived from the present study are
[image: image]
The non-dimensional forms of the physical quantities are
[image: image]
NUMERICAL SOLUTION
Many researchers have used different numerical, computational, and numerical procedures to solve nonlinear systems of PDEs (Jin et al., 2022; Rashid et al., 2022a; Rashid et al., 2022b; Wang et al., 2022; Zhao et al., 2022). Here, the problem is handled through the PCM methodology, which is operated as follows (Berezowski, 2010; Shuaib et al., 2020; Jin et al., 2022; Rashid et al., 2022a; Rashid et al., 2022b; Sun et al., 2022; Wang et al., 2022; Zhao et al., 2022):
Step 1: Reducing Eqs 13–16 to first order
[image: image]
By putting Eqs 21 in Eqs 13–17, we get
[image: image]
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with the corresponding boundary conditions.
[image: image]
Step 2: Familiarizing parameter p in Eqs 22–26:
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[image: image]
[image: image]
[image: image]
Step 3: Applying the Cauchy Principal and discretizing Eqs 27–30.
After discretization, the obtained set of equations is computed through Matlab code of PCM.
RESULTS AND DISCUSSION
For hybrid NF consisting of CNTS and magnetic ferrite NPs, the discussion section examines the comportment of velocity, energy, and motile microbe profile against the change of numerous physical restrictions. The comparative Figures 2–5 and Tables 2–4 exhibit their outcomes.
[image: Figure 2]FIGURE 2 | Effects of curvature parameter [image: image], ferromagnetic parameter [image: image], fluid parameter [image: image] volume fraction [image: image] and slip parameter [image: image] on velocity profile [image: image].
[image: Figure 3]FIGURE 3 | Effects of curvature parameter [image: image], fluid parameter [image: image], ferromagnetic [image: image] volume fraction [image: image] , thermal radiation [image: image] and thermal stratification [image: image] on energy profile [image: image].
[image: Figure 4]FIGURE 4 | Effects of volume fraction [image: image], curvature parameter [image: image], Schmidt number [image: image], the concentration relaxation parameter [image: image], and concentration stratification parameter [image: image] on concentration profile [image: image].
[image: Figure 5]FIGURE 5 | Effects of volume fraction [image: image], curvature parameter [image: image], bio‐convection Lewis number [image: image], Peclet number Pe, and the microorganism stratification parameter [image: image] on microorganism profile [image: image].
TABLE 2 | Thermo-physical relations of hybrid nanofluids (Gul et al., 2020).
[image: Table 2]TABLE 3 | Numerical outcomes of [image: image], [image: image], [image: image], and [image: image] when [image: image].
[image: Table 3]TABLE 4 | Statistical outcomes of microorganism transmission rate [image: image].
[image: Table 4]Figure 1 illustrates the physical mechanism of fluid flow over a stretching cylinder. Figures 2A–E exemplify the variations in the velocity profile for the curvature parameter [image: image], ferromagnetic parameter [image: image], fluid parameter [image: image], volume fraction [image: image], and slip parameter [image: image], respectively. The results indicate that the velocity field shows a reducing trend for the enhanced values of the curvature constraint. It is observed in the result that as the curvature factor is increased, the radius of the cylinder shrinks which produces minimal resistance to fluid flow, and therefore, the fluid velocity increases. The decreasing behavior of the velocity profile for the variation of ferromagnetic parameter [image: image] can be seen in Figure 2B. The reason for this decline is that when the ferromagnetic parameter increases, a stronger resistive force arises known as Lorentz force which decreases the fluid velocity. The velocity profile displays a declining behavior for the rising values of the Casson fluid factor, as shown in Figure 2C. The reason behind this decline is that as the Casson parameter increases, the fluid acts like a Newtonian fluid which reduces the velocity field. Figure 2D shows the upshot of [image: image] on [image: image]. Higher valuation of [image: image] diminishes the velocity [image: image] field. By expanding the volume percentage, the transit, adhesive force, and excitation energy across CNTs and Fe3O4 NF reduce, resulting in a drop in the velocity field. Figure 2E shows the upshot of the velocity slip constraint S on the fluid velocity. The graph indicates the decrease in the fluid velocity due to growing values of S. It is due to velocity difference between near the surface and away from the cylinder.
The influence of [image: image], [image: image], [image: image], [image: image], [image: image], and [image: image] on the energy profile is shown in Figures 3A–F. The impact of the curvature on the energy outlines [image: image] is seen in Figure 3A. The heat transfer improves as the values of [image: image] improve, as seen in the figures. Physically, as the curvature term upsurges, the radius of the cylinder expands, due to which the maximum number of NPs are attached to the surface of the cylinder, which transmits more heat, so the temperature field improves. Figure 3B shows influence of [image: image] (Casson fluid) on the energy contour [image: image]. The temperature distribution improves with improved [image: image] values, as shown in the figure. It is shown that the Casson term is in an inverse relation to the yield stress. The influence of the magnetic coefficient [image: image] and [image: image] on the energy dispersal is seen in Figures 3C,D. Improvement in the fluid temperature corresponded to rises in the magnetic effect [image: image] and solid volume fraction parameter [image: image], as seen in the figures. A resistive pressure is created when the magnetic field is improved, which raises the temperature of the fluid. In Figure 3E, the effect of the radiation term Rd on the fluid’s temperature field is investigated. As the radiation number upsurges, the fluid temperature rises. When the radiation term is increased, the fluid absorbs more heat, causing the fluid temperature to rise. The impact of thermal stratification parameter [image: image] is shown in Figure 3F. It is to be noted that the energy profile decreases for larger values of [image: image].
The effects [image: image], [image: image], [image: image], [image: image], and [image: image] on concentration profile [image: image] are shown in Figures 4A–E. Figure 4A shows the influence of the volume fraction indicator [image: image] for both CNTs and iron ferrite NF on the mass profile. Because the fluid average viscosity becomes dense as the quantity of iron oxide NPs and CNTs increases, the mass transfer rate slows. As a result, as credit [image: image] grows, the concentration profile decreases. Figure 4B shows that the curvature parameter [image: image] is a decreasing function of mass transfer [image: image]. The mass transmission rate reduces with increases in [image: image]. Figure 4C indicates the influence of the concentration profile. By increasing the values of Sc, the concentration profile decreases. Because increasing the value of Sc lowers the mass permeability, the mass rate falls. Figure 4D depicts the variance in the concentration profile sketch as a function of various estimations of the concentration relaxation. It is stated that a higher mass relaxation factor approximation lowers the concentration profile. The effect of the concentration stratification coefficient on the concentration distribution is shown by Figure 4E. The augmentation of the concentration stratification factor results in a diminution in the sketch and the related boundary layer thickness.
Figures 5A,B show the consequences of [image: image] and [image: image] on the microbial density sketch. The microorganism frequency and corresponding boundary layer thickness show an increasing tendency for larger values of [image: image] and [image: image], as shown in Figures 5A,B. Figures 5C–E show that the effect of [image: image], [image: image], and [image: image] on [image: image] declines the motile microorganism profile. Physically, [image: image] is in an inverse relation with the mass diffusion and an increase in [image: image] results in the reduction of [image: image]. Additionally, it is observed that rising values of [image: image] destabilize the gyrotactic microbes’ profile and a higher [image: image] enhances the progress of NF flow.
Tables 1, 2 revealed the experimental values of base fluid and nanoparticles and the mathematical model used for the proposed model. Table 3 shows the statistical assessments of skin friction [image: image], mass transfer [image: image], heat transfer rate [image: image], and motile microorganism transmission rate [image: image]. Table 4 shows the comparative analysis between SWCNTs and MWCNTs for the microorganism transfer rate.
CONCLUSION
We have studied the energy and mass transfer across an expanding cylinder in a water-based Darcy–Forchheimer hybrid nanofluid flow. The influence of a magnetic field, viscous dissipation, heat source, thermal radiation, concentration stratification, and chemical reaction on fluid flow has been investigated. The phenomena are treated as a nonlinear system of PDEs. Using similarity substitution, the modeled equations are further solved through a computational approach PCM. The key findings are:
• The addition of carbon nanotubes (CNTs) and nanocrystals to the base fluid boosts heat and mass conduction remarkably.
• The velocity outlines [image: image] significantly lower with the variation of the curvature factor, ferromagnetic effect, Casson fluid constraints, volume fraction, and slip parameter.
• The heat transport rate [image: image] increases with the rising values of curvature parameter, Casson fluid parameter, magnetic effect, and solid nanoparticles volume fraction, while declining with the effect of the thermal stratification parameter
• The mass transfer rate [image: image] declines with growing credit of nanoparticles, Schmidt number [image: image], and concentration relaxation constraint, while enhances with the effect of the curvature term.
• The motile microorganism propagation rate boosts with variations in [image: image] and [image: image], while reduces with the effect of [image: image], [image: image] and [image: image].
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