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In recent years, with the continued development and popularity of sustainable

energy sources and the increasing utilization of solar energy, accurate solar

radiation prediction has become important. In this paper, we propose a new

model based on deep learning, Feature-enhanced Gated Recurrent Unit,

hereafter referred to as FEGRU, for solar radiation prediction. This model

takes the source data with one-dimensional convolution and self-attention

to feature attention and processes the data features, and then GRU performs

feature extraction on solar irradiance data. Finally, the data dimensionality is

transformed by a fully connected layer. The main advantage of FEGRU is that

it does not require auxiliary data, but only time series data of solar irradiance

can be used for good solar irradiance prediction. Our experiments with solar

irradiance samples in Lyon, France, show that our model has better prediction

results than the baseline model.

KEYWORDS

solar irradiance prediction, deep learning, feature-enhanced gate recurrent unit, self-attention,

solar energy

1 Introduction

Energy Li et al. (2021); Ahmad S. et al. (2018) has been a part of everyone’s concern
since mankind entered modern civilization. Solar energy is a renewable energy source.
Generally speaking, solar energy refers to the sun’s thermal radiation energy, which is
mainly expressed as what we often call the sun’s rays. In modern society, solar energy
is generally used to generate electricity or to provide energy for water heaters. It is
worth mentioning that solar energy has certain advantages over other renewable energy
sources because it is clean, substantial, reduces environmental pollution, and has a wide
application potential Liu (2014). If we can make more accurate short-term predictions of
solar radiation, we can plan ahead for better energymanagement.This plays an important
role in many aspects of the industry, like thermal power plants, hydroelectric plants,
and other power plants, to keep the voltage and frequency of the grid stable. If we can
plan and schedule energy more rationally Ahmad et al. (2020b); Ahmad H. et al. (2018),
we can make it fully effective in the economic sphere. We can make plans according to
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consumers’ needs for energy. For example, intelligent
energy consumption managementsystems that take into
account consumer consumption goals Yaqub et al. (2016),
wind energy Ma et al. (2020) supplier bidding strategies
Zhang et al. (2021), and joint energy management and energy
trading Ahmad et al. (2020a). In recent years, global energy
issues have received more and more attention, among which
the prediction of solar irradiance has gradually attracted a lot of
attention from academia and industry.

2 Related work

For energy prediction, there are roughly four categories of
methods. These are physical models, statistical models, hybrid
models, and artificial intelligence models. Among the first
type of physical models there is a classical Salman et al. (2018)
model designed with a microcontroller based battery charge
controller and using a controller with a maximum power point
tracker MPPT operating at a given insolation and temperature
condition. The second class of statistical models is more
classical and includes those of AR, MA, ARMA, ARIMA,
etc. Yamak et al. (2019) Colak et al. (2015) Shadab et al. (2019)
Shadab et al. (2020). Although these models are able to capture
the data characteristics to some extent. But on the other hand,
the results derived from these models are often the basis of fitted
curves obtained from sample time series, which are then carried
on inertially along with the existing patterns. In other words, the
mean and variance of the data do not change much in theory.
Next, these models are quite limited in their ability to handle
high-dimensional time series data. In the third category of hybrid
models, Caldas and Alonso-Suárez (2019) Caldas et al. proposed
a hybrid prediction method.This method collects all-day images
and irradiance data in real time and uses it as data for prediction.
The model converts the obtained all-sky images and geographic
information into corresponding solar irradiance estimates and
uses these values for prediction in real time. Experiments show
that the model is capable of making some short-term predictions
of solar resources under different solar irradiance conditions.
The fourth type of approach is artificial intelligence. Thanks
to the development of technology in recent years, computers
are advancing rapidly and their computing power is growing
exponentially. More and more researchers Wang et al. (2020) are
experimenting with machine learning as well as deep learning
methods to serve energy prediction directly or indirectly. Typical
artificial intelligence methods include support vector machines
(SVMs) Hou et al. (2018), extreme learning machines Bouzgou
and Gueymard (2017), wavelet transforms Zhang et al. (2020),
deep learning Wang et al. (2019), and integration learning
AlKandari and Ahmad (2020). For example, the support vector
machine (SVM)method is one of themachine learningmethods,
which belongs to the binary classification algorithm. Support

vector machine (SVM) is a relatively simple supervised learning
algorithm for classification or regression. It is more suitable
for classification, but sometimes very useful for regression as
well. Basically, a support vector machine finds a hyperplane
that creates a boundary between data types. Machine learning
methods Wu et al. (2022); Li et al. (2022); Fu (2022) have
also indirectly played a significant role in energy problems.
Researchers Fu (2022) used statistical machine learning
models of linear regression, probability distributions, Markov
chains, isoperimetric transformations, maximum likelihood
estimators, stochastic response surfaces, and centroid methods
to model erratic weather, photovoltaic generation, thermal
loads, power flow, and uncertainty programming. Researchers
Fu et al. (2020) also employed statisticalmachine learning theory
to solve the optimal planning of capacitors, specifically by
formulating methods such as Markov chains and conjugate
functions to capture weather deformability and correlation
and introducing probabilistic inequality theory to directly
estimate the objective and constraint functions of stochastic
programming models. These methods effectively address the
optimal planning of capacitors. In the solar irradiance prediction
task, Dong et al. (2020) optimizes the hyperparameters in
this framework by building a special convolutional neural
network prediction framework based internally on regional site
meteorological data and the corresponding time, in addition
to the chaotic GA/PSO1 hybrid algorithm. The optimization of
hyperparameters can further improve the performance of the
model, and thanks to the superiority of the hybrid algorithm,
this reduces the human and financial resources required to tune
the model to some extent. Liu et al. (2019) liu et al. proposed
a new spatio-temporal prediction model by combining spatio-
temporal information with the task of predicting solar irradiance
information.Themodel embeds data frommultiple stations into
the convolution operator of the model to extract spatial features.
At the same time, a gated loop unit is used to extract temporal
features enabling the model to extract spatio-temporal features
simultaneously to obtain more accurate prediction results.

In this paper, a new FEGRU model for solar irradiance
prediction is proposed to improve the prediction performance of
solar irradiance by using the convolution of self-attention blocks
on solar irradiance data. Compared with other methods, the
contribution of this paper ismainly in two aspects. 1.We propose
to combine one-dimensional convolution and self-attention and
apply it to a recursive cell to improve the accuracy of solar
irradiance prediction; 2. we verify the feasibility, effectiveness and
superiority of our proposed FEGRU model using actual solar
irradiance information collected from Lyon, France. the main
advantage of FEGRU is that no auxiliary data are required and
good solar irradiance prediction can be performed by time series
data of solar irradiance only.

The rest of the paper is organized as follows: Section 3
presents the principles of FEGRU, including its specific model
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structure as well as the data preprocessing part. Section 4
presents the details of the model we used and the comparison
model employed. Section 5 and Section 6 present the case study
and the final summary, respectively.

3 Proposed FEGRU for solar
irradiance prediction

Our proposed FEGRU model is composed of a one-
dimensional convolutional and self-attention module and
a variant GRU and finally a fully connected layer. The
model obtains special data features by one-dimensional
convolutional self-attention of the input solar irradiance data,
then embeds the data features into a recursive unit GRU to
capture the solar irradiance data features, and finally maps
them through a fully connected layer. The FEGRU model
is described in detail below. In this section, we detail the
training process part by providing a detailed description of
the FEGRU model structure and a detailed mathematical
formulation.

Definition: As an example, we take the actual solar irradiance
information dataset collected in Lyon, France, which has
categories of geographic parameters, meteorological parameters,
and time series data. We choose solar irradiance information to
be used as prediction information for our current model. In this
paper, our T denotes the number of information collected by this
node of a sensor with longitude latitude of 4.9225 E, 45.7786 N
in Lyon, France, at 1-min intervals (e.g., this node with longitude
latitude of 4.9225 E, 45.7786 N in Lyon, France, is used to sample
every 1 min, so we can understand that the sensor is sampled
a total of T times, each time at 1 min interval). XtϵRi is used
to represent the solar irradiance information on this node at
moment i. In this article Xt = Input[t].

3.1 Feature-enhanced module

For our solar irradiance data information, we visualize the
source data of the solar irradiance information in the Lyon,
France sample, and it is obvious from Figure 1 that the direct
horizontal irradiance data has large fluctuations and more
negative values, so we preprocess it in order to allow themodel to
focus on the hidden features behind the data.That is, most of the
zero and negative values in the direct horizontal irradiance are
removed. We introduce the data from January 1, 2018 to January
11, 2018 for visualization, and we can see that the source data
becomes similar to Figure 2. It is worth mentioning that our
preprocessing session leads to the fact that the solar irradiance
data here are not sampled in the same amount on each day. For
example, after preprocessing as shown in Figure 2, only 136 solar
irradiance sampling points existed on January 1, 2018, and only
15 solar irradiance sampling points existed on January 2, 2018.
We can clearly see from the visualizations in Figures 1, 2 that
the data fluctuations are very large, in order for our model to
capture the hidden information behind the data.We designed the
Feature-enhanced module for this purpose to make the model
perform better. By performing a one-dimensional convolution
of the input three channels of solar irradiance data and using a
self-attention mechanism, we enable the model to attention the
hidden features in the solar irradiance data, thus enabling the
model to obtain better prediction performance.

Here is the mathematical expression for the Feature-
enhanced module:

Q = Conv1×1 (Xt)WQ (1)

K = Conv1×1 (Xt)WK (2)

V = Conv1×1 (Xt)WV (3)

FIGURE 1
Direct horizontal irradiance source data from Lyon, France.
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FIGURE 2
Pre-processed direct horizontal irradiance data from Lyon, France.

FIGURE 3
Feature-enhanced module.

Att = Q ∗ KTr (4)

FE = σ (Att ∗ V) (5)

where WQ, WK , and WV are each learnable weight matrices,
Tr represents the transpose of the matrix, * represents the matrix
multiplicator, and σ represents the Sigmoid function.

3.2 Feature fusion module

In our experiments, to mitigate the effects of gradient
disappearance and gradient explosion on the model, we added
a feature fusion module to make the model perform better,
as shown in Figures 3, 4. To be precise, we add a residual
module and averaging pooling operation to the feature fusion.
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FIGURE 4
Feature fusion module.

This is done by multiplying the solar irradiance input data with
the Feature-enhanced module and then adding it to itself and
averaging the pooling operation.

The mathematical expression is shown below:

FFM =
(FE@Inputs+ Inputs)

2
(6)

@Represents dot product.
The following summarizes the training process of the FEGRU

model. The process can be divided into the following main
parts. 1. Using the collected solar irradiance data information
from Lyon, France, the data preprocessing in Section 3 was first
performed. The preprocessed solar irradiance data information
is then used as the overall dataset information for the model. 2.
normalize the values of the overall solar irradiance data set to the
interval [0,1]. 3. Divide the normalized overall data into training
and test sets in the ratio of 8 to 2. 4. The training set data are
put into the EFGRU model for training. 5. The optimizer for the
parameters of the FEGRUmodel is theAdamoptimizer.TheMSE
loss function plus the L2 regularization term is used for the loss

FIGURE 5
The main steps of the FEGRU model training process.

function. 6. loss calculation is performed at each epoch and back
propagation is performed to update the parameters.

The main steps of the FEGRU model training process are
shown in Figure 5.

Finally, the internal equation of the FEGRU model is as
follows:

rt = σ(Wr ∗ [
FFM
ht−1
]) (7)

zt = σ(Wr ∗ [
FFM
ht−1
]) (8)
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̃ht = tanh(Wh̃ ∗ [
Inputs
rt ∗ ht−1

]) (9)

ht = zt ∗ ht−1 + (1− zt) ∗ ̃ht (10)

4 Experiments

In this section, we present information related to the
FEGRUmodel experiments separately, including the description
of the Lyon, France dataset, model evaluation metrics, model
parameter settings, comparative model.

4.1 Dataset details

The experiments of our FEGRU model were performed
on data collected by sensors with longitude, latitude and
altitude of 4.9225E, 45.7786N and 170 m, respectively, in
Lyon, France, from March 25, 2018 to October 27, 2018.
The dataset includes altitude of the sun, azimuth of the sun
(from North to East), global horizontal illuminance, diffuse
horizontal illuminance, global vertical north illuminance, global
vertical east illuminance, global vertical south illuminance,
global vertical west illuminance, global horizontal irradiance,
diffuse horizontal irradiance, zenith luminance (11° aperture),
relative humidity, wind direction (fromNorth to North), and the
temperature of the air. wind direction (fromNorth to East), wind
speed, dry bulb temperature irradiance, illuminance shadow
band correction factor, irradiance shadowband correction factor,
direct horizontal irradiance, global horizontal UVA irradiance,
global horizontal UVB irradiance. We choose direct horizontal
irradiance as the information task that we want to predict. In
our experiments, we normalize the information of the input
solar irradiance data to the interval [0,1]. It is also worth
mentioning that we used 80% of the data as the training
set and the remaining 20% as the test set and trained the
FEGRUmodel using the Adam optimizer.We predicted the solar
irradiance data information for this sensor for the next 60 and
90 min.

4.2 Evaluation metrics

To evaluate our proposed FEGRU model, we used three
metrics widely used in time-series prediction, namely the mean
absolute error (MAE) Chai and Draxler (2014), root mean
square error (RMSE) Chai and Draxler (2014), and coefficient
of determination (R2) Barrett (2000). RMSE is more commonly
used in deep learning and is often used to measure the
deviation between the predicted and true values, and it is

considered to be an excellent error measure for numerical
prediction. MAE is often associated with regression models
and is the more classical regression model evaluation metric.
In this case, the mean absolute error of the model for the
test dataset is the average of the absolute values of the
individual prediction errors for all instances in the test dataset.
Each prediction error refers to the difference between the
true value and the predicted value. The R2 is the square of
the correlation between the predicted and true values and
can be used to measure whether the model’s prediction is
valid.

In brief, the lower the RMSE and MAE the better, and the
higher the R2 the better.

1)Root Mean Squared Error (RMSE):

RMSE = √ 1
M

M

∑
i=1
(yi − ̃yi)

2 (11)

2)Mean Absolute Error (MAE):

MAE = 1
M

M

∑
i=1
|yi − ̃yi| (12)

3)Coefficient of Determination (R2):

R2 = 1−
∑M

i=1
(yi − ̃yi)

2

∑M
i=1
(yi − Ȳ)

2
(13)

where yi and ̃yi represent the real solar irradiance data
information and the model-predicted solar irradiance
information of the sampled sample at the ith moment,
respectively.M is the total number of sampled sample moments.
Y represents the set of ̃yi and Ȳ is the average of Y.

Specifically, RMSE, MAE and MAPE are used to
measure the prediction error: the smaller the value, the better the
prediction.

4.3 Model parameter settings

In our model, we manually set some hyperparameters to
ensure that our proposed model achieves the best prediction.
Specifically, the parameters that are relatively important for
the FEGRU model include: training ephemeris, batch size, and
learning rate. In our experiments on the Lyon, France dataset, we
set the learning rate to 0.001, the batch size to 32, and the training
epoch to 100. Our proposed model algorithm takes about 2 h to
run, which is within the range we can accept. In deep learning
algorithms, some complex algorithms may have to be run for
several days to complete the final convergence. The complexity
of our proposed model algorithm is also not too high in terms of
running time analysis.
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4.4 Contrast models

In our experiments, we compare our proposed FEGRU
model with SVR, ARIMA, and GRU models to evaluate
the effectiveness of our model. Bae et al. (2016) Support
vector machines (SVMs) are widely used not only for
classification problems in machine learning, but also for
the analysis of regression problems. Gilbert (2005) ARIMA
model is a popular and widely used statistical method for
time series prediction.Sharif Atique Atique et al. (2019) and
others then used ARIMA to predict the total daily solar
power generation. GRU Dey and Salem (2017) is a classical
variant of recurrent neural network RNN and, like LSTM,
was also proposed to solve the long-term memory and back
propagation in GRU and LSTM networks have a simpler
model structure and better results compared to the network,
and are often applied in most of the time-series prediction
problems.

5 Experimental results analysis

By preprocessing the data on the source data information
set in Lyon, France, the data information is made to appear to
have a slightly smaller sample size compared to the source data
information slightly less, but we did this in order to allow the
model to receive more efficient data and thus improve the final
prediction results of the model. By analyzing the experimental
results, firstly, we can clearly see from the prediction span that
the prediction effect of GRU and FEGRU is getting worse as the
prediction span increases.This is shown by the increase of RMSE
and MAE and the decrease of R2. However, SVR has a brief
decrease in RMSE and MAE as the prediction span increases.
This may be because the stability of SVR to outliers gradually
manifests itself as the prediction span increases. The prediction
performance of the ARIMA model does not change with the
increase of the prediction span. Secondly, we see that EFGRU
achieves excellent prediction performance for the prediction
span of solar irradiance in the next 60 min and the next 90 min.
We can clearly see from the figure that the RMSE and MAE of
FEGRU are both the lowest values, and R2 is both the highest
value, and we have bolded the optimal values of RMSE, MAE,
and R2 in Tables 1 and 2.

TABLE 1 guangfu-60min.

SVR ARIMA GRU FEGRU

RMSE 234.3870 321.4100 137.9220 86.8678
MAE 190.2314 243.6794 104.4431 55.7007
R2 ∗ ∗ 0.4976 0.7913

∗indicates infinitesimal values.

TABLE 2 guangfu-90min.

SVR ARIMA GRU FEGRU

RMSE 143.7217 321.4100 166.9328 133.1308
MAE 99.8413 243.6794 131.1232 103.0398
R2 0.4236 ∗ 0.3020 0.5207

∗indicates infinitesimal values.

6 Conclusion and future work

In this paper, a new model is proposed for application to
the solar irradiance prediction problem. In order to enhance
the prediction performance of the model, the source data
are preprocessed to remove most of the consecutive zero and
negative values from the solar irradiance. The model is able
to extract the key data features from the source data by
one-dimensional convolution of the input preprocessed data
information and self-attention, which enables our model to
achieve better results in the solar irradiance prediction problem.
Our experiments show that our model performs better than
SVR, ARIMA, and GRU models for prediction spans of the
next 60 min and the next 90 min. It is worth mentioning that
the model uses only direct horizontal irradiance alone during
training and prediction, which is the solar irradiance data
mentioned in this paper. On the other hand, if we want to
improve the prediction performance of our proposed model in
the future, our future work should focus on the full and effective
use of the auxiliary data in the Lyon, France dataset to improve
the prediction performance of the model.
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