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Due to the considerable number of electric vehicles and the characteristics of

energy storage, it is possible for these new energy factors to participate in the

operation and regulation of the power system and provide reserve service.

In view of this, a multi-objective optimal scheduling model is established,

aiming at the economic benefits of electricity collectors, the microgrid power

fluctuations, and user satisfaction. Among them, the expression paradigm

of user satisfaction is proposed. At the same time, an improved adaptive

non-dominated sorting genetic algorithm (NSGA-III-W) was proposed to

solve the problem of large-scale and high-dimensional multi-objective in the

model. First, an adaptive T-crossover operator is proposed to increase the

search and optimization capability of NSGA-III. Second, an adaptive crossover

mutation mechanism is proposed to improve the convergence performance

of the algorithm. In addition, a compromise solution is selected from the

obtained Pareto-dominated solutions through the distance ranking method

of superior and inferior solutions (TOPSIS). The improved NSGA-III algorithm,

namely theNSGA-III-W algorithm, is comparedwith themainstream intelligent

optimization algorithms non-dominated sorting genetic algorithm II (NSGA-II)

and decomposition-based multi-objective evolutionary algorithm (MOEA\D),

and the simulation results demonstrate the feasibility of the proposed model

and the effectiveness of the proposed algorithm.

KEYWORDS
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1 Introduction

In response to the threat of climate change, China announced targets for peaking
carbon dioxide emissions and carbon neutrality by 2030 and 2060 (Han et al., 2022),
respectively. China’s “14th Five-Year Plan” further proposes that during the “14th Five-
Year Plan” period, carbon dioxide emissions per unit of GDP should be reduced by
18%, and by 2025, the proportion of non-fossil energy in total energy consumption will
increase to about 20% (Gong et al., 2022). From the perspective of the power system
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(Zhao et al., 2022), the construction of a new power system
with new energy sectors as the main body has become the
development form of energy power in the future, and the
high proportion of new energy integration brought new
challenges to the flexible operation of the power system
(Huang et al., 2020). At the same time, electric vehicles
(Flah et al., 2021; Mohamed et al., 2022) have received strong
support from different countries and governments for their
use of cleaner energy, lower maintenance costs, and higher
energy efficiency (Li and Hu, 2021). The rapid and large-scale
development of electric vehicles provides new solutions to the
aforementioned challenge. Batteries in electric vehicles can
respond quickly to signals and most sit idle for the majority
of a day, which becomes a realistic condition and favorable
factor for the regulation and dispatch of electric vehicles
(Cheng et al., 2021). Electric vehicles have the characteristics
of both adjustable load and energy storage, so they can not only
draw electricity from the power system (Cheng and Yu, 2019)
but also be used to implement the vehicle to grid (V2G)
function (Kempton and Letendre, 1997), which can involve in
the grid as energy storage to provide auxiliary reserve services
(Pavić et al., 2017; Barcellona et al., 2019; Ghosh, 2020) for the
grid. However, the disorderly charging and discharging of a
large number of electric vehicles may increase the operating
stress of the existing grid (Singh and Tiwari, 2020), lead to
an increase in peak loads, losses, and voltage violations in the
distribution system (Clement-Nyns et al., 2009), and even cause
the power distribution system to collapse (Shafiee et al., 2013). If
the electricity in the non-use phase of electric vehicles is sold to
the power grid as a credible reserve capacity based on the needs
and wishes of users to provide backup services for the power
grid, it can effectively achieve the purpose of reducing the load
fluctuation of the power grid (Wei et al., 2020), shaving peaks
and filling valleys (Wang and Wang, 2013; Alam et al., 2014;
Liang et al., 2018), and supplying power to the power grid as a
backup power source.

At present, many research studies related to the optimization
scheduling problem of electric vehicles participating in the
power grid to provide auxiliary reserve services have been done.
Sortomme and El-Sharkawi (2011 discussed optimal scheduling
of V2G energy and ancillary services. Yue et al. (2019) studied
a multi-market-driven microgrid energy schedule including
distributed and centralized market participation, which closed
the gap between the internal ancillary services market and
external wholesale market. An evaluation method for large-scale
PEV V2G capacity and a heuristic smart charging strategy is
proposed by Zhang et al. (2016) to improve the ability of electric
vehicles to provide power reserve. A multimarket optimization
model is proposed by Gao et al. (2022) for minimizing the net
operation cost of EV charging to determine optimal operation
strategies of aggregations and the charging power of each
individual EV. The aggregation model of electric vehicles based

on the operating constraints of electric vehicles is studied by
Sarker et al. (2018) and a scheme is proposed for electric vehicles
to participate in grid scheduling to meet spinning reserve
requirements to improve the stability and economy of the system.
In the literature (DeForest et al., 2018), a model is proposed
that optimizes daily EV charging and regulation capacity bids
strategies to minimize operation costs and maximize ancillary
service revenue. In the literature (Chen and Leung, 2019), aiming
at the optimal social welfare V2G system and smoothing the
power fluctuation of the power grid, a game theory method
is proposed to motivate electric vehicles to provide frequency
regulation services for the power grid. An optimization strategy
to implement V2G features in a microgrid was presented by
Mortaz et al. (2019); this model aimed to improve the EV’s
benefits acting in the electricity market, taking advantage of
the EV’s capabilities to exchange energy with the grid when
arbitrarily requested by the electricity market. However, most of
the aforementioned studies are oriented to the market economy
(Cheng et al., 2022) and do not consider the willingness of users
to participate inV2G, so the researchmodels are difficult to apply
in practice.

Multi-objective meta-heuristic optimizations provide
a new thought to solve complex large-scale problems. At
present, many multi-objective meta-heuristic algorithms,
such as multi-objective particle swarm optimization
(MOPSO) (Wang et al., 2021a), strength Pareto evolutionary
algorithm (SPEA) (Zeynali et al., 2020), non-dominated
sorting genetic algorithm II (NSGA-II) (Li et al., 2014;
Wang et al., 2021b), multi-objective evolutionary algorithm
based on decomposition (MOEA-D) (Qu et al., 2017), non-
dominated sorting gravitational search algorithm (NSGSA)
(Rashedi et al., 2018), and non-dominated sorting genetic
algorithm III (NSGA-III) (Chacko and Sachidanandam, 2021;
Li et al., 2022), have been applied to the optimization of electric
vehicle charging and discharging and achieved good results.
Das et al. (2020) proposed an augmented non-dominated ɛ-
constraint (ANEC) algorithm to solve the multi-objective EV
charging problem. A multi-objective evolutionary algorithm
based on decomposition (MOEA/D) using the localized penalty-
based boundary intersection (LPBI) method is proposed by
Ming et al. (2017), denoted as MOEA/D-LPBI, designed to
minimize hybrid renewable energy system (HRES) costs and fuel
emissions in island and grid-connected modes and maximize
system reliability. A multi-objective particle swarm optimization
(MOPSO) algorithm and a fuzzy decision maker are put
forward for the simultaneous optimization of grid operating
cost, CO2 emissions, wind curtailment, and EV users’ cost
by Liu et al. (2016). An improved particle swarm optimization
algorithm is proposed by Lu et al. (2017) to solve the microgrid
model considering the integration of electric vehicles into the
power grid. Hou et al. (2020) adopted a multi-objective searcher
optimization algorithm (MSOA) to optimize the multi-objective
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optimization model of electric vehicle charging and discharging,
aiming at the comprehensive operation cost of the microgrid,
photovoltaic energy utilization rate and power fluctuation
between themicrogrid andmain grid.Morais et al. (2020) used a
deterministic and elite non-dominated sorting genetic algorithm
(NSGA-II) to solve EV scheduling problems, and themain goal is
tominimize costs and greenhouse gas emissions. However, many
studies are out of reality. With the increase of the research scale,
the dimension of the optimization object and the complexity of
the problem will increase exponentially. The ordinary heuristic
algorithm can no longer satisfy the optimization scheduling
problem. It is necessary to design improved optimization
algorithms for specific problem models.

In the current literature, researchers mostly focus on
economic factors when electric vehicles are used as energy
storage to participate in power system scheduling and rarely
take into account the willingness of vehicle owners and
their satisfaction with the scheduling results. The selection of
optimizationmethods ismore inclined to heuristic algorithms; of
course, there are also CPLEX solvers, which are often difficult to
apply in real situations when the scale of the scheduling problem
is increasing. As a bridge between the power grid and users,
electricity collectors can more comprehensively analyze how to
effectively use electric vehicles, a decentralized and controllable
resource, to achieve a benign interaction between users and
the power grid in the market environment. Therefore, from the
perspective of electricity collectors, this study coordinates and
dispatches electric vehicles in a certain area to participate in V2G
to provide reserve services for the power grid. In addition to
the economy of electricity collectors, the fluctuation of grid load
and the satisfaction of users participating in vehicle–network
interactions are also considered to establish a multi-objective
optimization model, and an improved NSGA-III algorithm is
designed to solve the proposed problem. According to the
aforementioned expression, the main contributions of this study
can be highlighted as follows:

1) A multi-objective optimal dispatch model based on the
economy of electricity collectors, the microgrid power
fluctuation, and user satisfaction is established for the
situation in which electric vehicles participate in grid
interaction and provide reserve services for the grid.

2) An adaptive T-crossover operator and an adaptive crossover
mutation mechanism are introduced into the NSGA-III
algorithm to better solve the scheduling problem of the
proposed model.

3) The improved NSGA-III algorithm and the proposed multi-
objective optimization model are analyzed and validated in
different vehicle scale scenarios. Experiments show that the
proposed method can effectively achieve the effect of cutting
peaks and filling valleys and promote the economic benefits
of electricity collectors and the willingness of electric vehicle
users to participate in V2G.

The rest of this study is distributed as follows: the second
sectionmainly introduced the objective function and constraints
of the proposed problemmodel. Section 3 introduced NSGA-III
improvement strategies. The experimental results and analyses
were presented in Section 4. Finally, the study was summarized
in the fifth section.

2 Problem formulation

2.1 Data sources for trusted reserve
capacity

Electric vehicles have the characteristics of adjustable load
and energy storage and can quickly switch between charging
and discharging states to provide an instantaneous response,
which is an important potential backup measure on the demand
side. The power of the electric vehicle is theoretically adjustable
in two directions, and its reserve capacity can be divided into
two types: upper reserve capacity and lower reserve capacity
according to the adjustment direction. The current method for
modeling the charging load of electric vehicles mainly assumes
that the initial state of charge (SOC) of the user follows a
certain normal distribution based on the private car travel data
published in the United States, then, the travel and arrival time,
mileage, and initial SOC samples of electric vehicles are plotted
by the Monte Carlo method to calculate the daily charging
load curve (Zheng et al., 2018; Calearo et al., 2019). The travel
chain theory based on Markov stochastic processes can also be
used to describe the spatiotemporal randomness of user travel
behavior (Shun et al., 2016). However, the travel information
of electric vehicle owners is affected by various factors such
as the convenience of travel, user preferences, and economy,
so the travel data of American households are not necessarily
suitable for existing actual scenarios. To characterize the credible
reserve capacity of electric vehicle users in each period, the
problemmodel is designed based on the research of the literature
(Wu et al., 2018): first, the knowledge extraction of the travel
information of electric vehicle owners and their willingness to
participate in V2G is carried out in the form of a questionnaire,
and a multi-agent model that reflects the statistical distribution
of the uncertainty of users’ willingness is constructed. Then,
the collected electric vehicle travel data are analyzed, and the
Monte Carlo method is used to sample the electric vehicle
state parameters corresponding to the multi-agent individuals.
Finally, the corresponding relationship between the influencing
factors of user willingness and the status information of electric
vehicles is constructed, and the willingness of users to participate
in the interaction of the vehicle network is analyzed. This
study extracts electric vehicle information of a certain scale and
compares it withmulti-agent individual psychological thresholds
to classify electric vehicle users who are willing/unwilling
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FIGURE 1
Overall flow chart of NSGA-III algorithm improvement.

to participate in regulation. It is assumed that the electric
vehicle users determined by this method have reached their
psychological threshold for participating in scheduling, and the
decision-making information will not change until the next day.
Taking the microgrid system of a community as an example,
the upper and lower trusted reserve capacity of 200 electric
vehicles is obtained according to the user decision model, where,
the trusted reserve capacity is the upper and lower trusted
reserve capacity that can be scheduled per hour based on the
premise that the charging demand of electric vehicle users
is met.

2.2 Objective function

In this study, amulti-objective optimizationmodel of electric
vehicle reserve capacity is established by taking the economic
benefits of the electricity collectors, the load fluctuation of
the microgrid, and the satisfaction of electric vehicle users
as objective functions. The interests of electricity collectors,
microgrids, and electric vehicle users should be taken into
account to achieve a positive interaction among the three

parties.

F1 =max(CR −CU +CG) (1)

where, F1 represents the economic benefits of electricity
collectors; CR represents the revenue of electric vehicles
participating in V2G to provide reserve capacity; CU is the cost
of purchasing electricity for the interaction between electricity
collectors and the microgrid; CG is the retail revenue between
the electricity collectors and the electric vehicle users; the units
of the aforementioned are all $.

CR =
T

∑
t=1

M

∑
i=1
−(u ∗ Pue,i,t ∗ Δt+ v ∗ Pde,i,t ∗ Δt) ∗ Vb

+ Pu,i,t ∗ Δt ∗ Vu,t + Pd,i,t ∗ Δt ∗ Vd,t

+ u ∗ Pue,i,t ∗ Δt ∗ Vue,t (2)

In the formula, T represents the dispatching period of 24 h, and
its value is 24; M is 200, which represents the total number of
electric vehicles in the area under the responsibility of electricity
collectors; Δt is the dispatching time period, and its value is 1
h; Pue,i,t , Pde,i,t are the upper and lower trusted reserve capacity
of each electric vehicle per hour, and the unit is kW; Vu,t and
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FIGURE 2
Overall framework of the proposed model and improved method.

Vd,t are the upper and lower trusted reserve capacity prices,
respectively, of the electric vehicle participating in the reserve
service, and the unit is $/(kW ⋅ h); u and v are a pair of decision-
making factors about the upper and lower reserve power of
electric vehicles, which means that charging and discharging
of electric vehicles cannot be performed at the same time in
actual scenarios. Pue,i,t is the upper reserve power provided by
discharging to the microgrid when each electric vehicle actually
participates in dispatching per hour, and the unit is kW; Vb is
the loss price of the state switching between the charging and
discharging of the electric vehicle, its value is set to 0.04375
(White and Zhang, 2011), and the unit is $/(kW ⋅ h).

CU =
T

∑
t=1

M

∑
i=1

v ∗ Pde,i,t ∗ Δt ∗ Vbat (3)

The electricity purchase cost paid to the microgrid by the
electricity collector is the charging cost of electric vehicles.
Among them, Pde,i,t is the lower reserve power provided by
charging when each electric vehicle actually participates in
the dispatching per hour, and the unit is kW; Vbat represents
the average price of long-term transactions between the
electricity collector and the microgrid, its value is set to 0.6
times of the commercial electricity price, and the unit is
$/(kW ⋅ h).

CG =
T

∑
t=1

M

∑
i=1

v ∗ Pde,i,t ∗ Δt ∗ Vde,t (4)

The retail revenue of the electricity collector is the actual 24-
h daily charging cost of all electric vehicles in the area under
its responsibility. Among them, Vde,t is the charging price per
hour after the electric vehicle user provides the reserve service
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FIGURE 3
Trusted spare capacity distribution.

FIGURE 4
Time-of-use electricity price.

for participating in the microgrid interaction, and the unit is
$/(kW ⋅ h).

Peq,t = Pl,t −
M

∑
i=1
(u ∗ Pue,i,t − v ∗ Pde,i,t) (5)

F2 =min
T

∑
t=1
(Peq,t −

1
T

T

∑
t=1
(Peq,t))

2

(6)

F2 represents the power fluctuation of the microgrid, expressed
as the mean square deviation of the equivalent load on the
demand side, and the unit is kW2. Among them, Peq,t is the
equivalent load on the demand side; Pl,t represents the predicted
value of load demand in the day, and the unit is kW.The smaller

TABLE 1 Parameters of the algorithm.

Parameter Nomenclature Value

Cross parameter Tc 2
Variation parameter Tm 5
Crossover rate Pac 0.8
Variation rate Pmu 0.1
Population size N 120
Number of iterations gmax 500
Neighbor scale T 8

F2 is, the more beneficial to the economy and security of the
microgrid.

F3 =max
T

∑
t=1

M

∑
i=1
(
u ∗ Pue,i,t ∗ Δt
G ∗ Pu,i,t ∗ Δt

+
v ∗ Pde,i,t ∗ Δt
H ∗ Pd,i,t ∗ Δt

) (7)

F3 represents the satisfaction of electric vehicle users with the
dispatching results, and its expression means the similarity
between the upper and lower reserve capacity of each electric
vehicle participating in V2G in the dispatching period and the
actual declaration. Among them, G is the number of electric
vehicles with the upper reserve capacity, and H is the number
of electric vehicles with the lower reserve capacity. Only when
electric vehicle users maintain a certain degree of satisfaction
with the dispatch results for a long time does it make sense for
electric vehicles to participate in V2G to provide reserve capacity
to the grid.

2.3 Constraints

1) Charge and discharge state of electric vehicles constraints:
in the actual scene, the upper and lower reserve power
cannot be dispatched at the same time. Therefore, a pair
of decision factors u and v for the reserve power of
electric vehicles is introduced, which satisfies the following
conditions:

u+ v ≤ 1,u,v ∈ {0,1} (8)

2) System power balance constraints: the basic requirement
of power system scheduling is to maintain a balance between
the power generation of the system and load power. When the
power generation of the system is less than the demand of the
load, the upper reserve capacity needs to be dispatched. On the
contrary, when the power generation of the system is greater
than the demand of the load, the lower reserve capacity needs
to be dispatched.Therefore, the power balance constraint for the
overall system can be expressed as

Pg,t +
T

∑
t=1

M

∑
i=1

u∗Pue,i,t − v∗Pde,i,t = Pl,t (9)

Frontiers in Energy Research 06 frontiersin.org

https://doi.org/10.3389/fenrg.2022.977013
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Shao et al. 10.3389/fenrg.2022.977013

In the aforementioned formula, Pg,t represents the generated
power of the microgrid in each time period t and the
unit is kW.

3) Charging and discharging power of electric vehicle
constraints: the charging and discharging power of an electric
vehicle in each time period shall not exceed its rated charging
and discharging power.

Pu,i,min ≤ Pue,i,t ≤ Pu,i,max (10)

Pd,i,min ≤ Pde,i,t ≤ Pd,i,max (11)

Pu,i, max and Pd,i, max, respectively, represent the maximum
charging and discharging power of each electric vehicle; Pu,i, min
and Pd,i, min, respectively, represent the minimum charging and
discharging power of each electric vehicle, and the units of the
aforementioned are all kW.

4) Reserve capacity constraints: the dispatchable reserve
capacity of an electric vehicle is premised on the user’s wishes,
which cannot be ignored in the scheduling process. When it
actually participates in the dispatch, the upper and lower reserve
power should not exceed its upper and lower trusted reserve
capacity.

0 ≤ Pue,i,t ≤ Pu,i,t (12)

0 ≤ Pde,i,t ≤ Pd,i,t (13)

3 Methods

This section mainly introduces the improved adaptive
NSGA-III algorithm (NSGA-III-W) designed for the proposed
problem model in detail, mainly including the adaptive T-
crossover operator and the adaptive crossover mutation
mechanism.

3.1 Adaptive T-crossover operator

In the original NSGA-III algorithm, as the optimization
object dimension in the problem model keeps increasing, the
number of non-dominated solutions increases exponentially,
which is very disadvantageous for optimization scheduling. In
the proposed model, the dimension of the optimization object
is 9,600, and the scale is very large. The original NSGA-III
algorithm is easy to fall into the local optimum in the later
stage. The crossover operator in the NSGA-III algorithm plays
a crucial role in the global search of the algorithm. After the
chromosome population is selected by the selection operator, the
entire population develops in a better direction by exchanging
their excellent genes. In the traditional NSGA-III algorithm, the

simulated binary crossover operator is used for the crossover
operation, which has great randomness and subjectivity due to
the artificial setting of parameters.Therefore, the crossover effect
of the algorithm cannot be guaranteed. To enhance the diversity
and the convergence performance of the population to ensure the
crossover quality of the algorithm, an adaptive crossover operator
based on T distribution is proposed. This crossover strategy can
guide the algorithm to converge to a better solution.

The simulated binary cross is expressed as

{{
{{
{

C1 =
1
2
(u1 + u2) +

1
2
∗ βSBX (u1 − u2)

C2 =
1
2
(u1 + u2) −

1
2
∗ βSBX (u1 − u2)

(14)

Among them, C1 and C2 are the offspring individuals generated
after the crossover operation; u1 and u2 are the parent
individuals; βSBX is a random variable generated by the simulated
binary operator.

.
βSBX =
{
{
{

(2u)
1

n+1 , if u ≤ 0.5

(2− 2u)
1

n+1 , if u > 0.5
(15)

In the formula, u is a random number uniformly distributed in
the interval (0, 1); n is a self-defined non-negative number. The
adaptive T-crossover is expressed as

{
C1 = 1.481 (u1 − u2) ∗ |t (n) |, if u ≤ 0.5

C2 = −1.481 (u1 − u2) ∗ |t (n) |, if u > 0.5
(16)

where |t(n)| represents a random variable that conforms to the
standard T distribution.TheT-distribution curve is similar to the
normal distribution, and the shape of the curve is directly related
to the degree of freedom n. The smaller the degree of freedom n
is, the smaller the peak value of the T distribution curve will be
and the higher the two ends are.The larger the degree of freedom
n is, the more similar the T distribution will be to the normal
distribution. Based on this characteristic, the degree of freedomn
that adaptively changes with the number of iterations is designed
as

n = 29 ∗ ln(1+
gen

0.618 ∗ genmax
)+ 1 (17)

In the formula, gen represents the current iteration number of
the algorithm; genmax represents the maximum iteration number
of the algorithm. In the initial stage of the algorithm, the
degree of freedom n is small, so that the T distribution will be
relatively scattered and the value of the crossover operator will
be relatively large, which is more conducive to the crossover
operation, thereby increasing the global search ability of the
algorithm. In the later stage of the algorithm, the degree of
freedom n is relatively large, which can make the T distribution
more concentrated, and the value of the crossover operator is
relatively small, which ismore conducive to the local search of the
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algorithm. So the adaptive T-crossover operator can be expressed
as

βTDX = {
1.481 ∗ |t (n) |, if u ≤ 0.5
−1.481 ∗ |t (n) |, if u > 0.5

(18)

The TDX operator has a wider search capability than the SBX
operator, and the value of βTDX can be adaptively changed with
the number of iterations. In the initial exploration stage of the
algorithm, the degree of freedom n is small, the T distribution is
relatively scattered, and the β value is likely to take a larger value
to promote the crossover operation to generate new genes. In the
later stage of the algorithm, the degree of freedom n is larger, the
T distribution is more concentrated, the β value is more likely
to take a smaller value, and the crossover effect is weakened,
which can prevent the destruction of excellent genes. Through
the aforementioned operations, the TDX operator achieves an
adaptive change with the number of iterations.

3.2 The adaptive crossover mutation
mechanism

To improve the speed of NSGA-III to find the optimal
solution and accelerate the convergence performance of the
algorithm, an adaptive crossover mutation mechanism is
proposed. In the iterative process, the algorithm can adaptively
select cross-mutation mechanisms with different search
capabilities according to the current solution situation. the
specific operation of the algorithm is expressed in the following
pseudocode Algorithm 1.

Fidea represents the ideal solution of the current population.
Considering that in the multi-objective optimization model of
electric vehicle reserve capacity, all objectives have the same effect
on the evaluation system, and there is no situationwhere a certain
objective function has a greater impact, so the three objectives
are equally important. The individual with the smallest FPi, index
value is set as the optimal solution for the current population.
FPi, index is expressed as follows:

FPi, index =
∂

∑
β=1

FPi,β
Favg,β

(19)

In the formula, FPi, index represents the overall fitness of
Pi individuals in the current population; ∂ is the number of
optimization goals; β is the type of optimization objective; FPi,β
represents the fitness value of the individual Pi in the current
population on the target β; Favg,β represents the average fitness
value of the current population on the target β. At the beginning
of the algorithm, the first crossover mutation method is selected
to generate offspring. When Fidea of three successive iterations
of the population is smaller than Fset , method 2 with stronger

1: SelectParameters=1;

2: Set the initial Fidea value

3: for gen = 1; gen ≤ genmax; gen++ do

4: Evaluate the Fidea value of the

current population;

5: Fidea(1,gen) ← Fidea;

6: if Fidea(1,gen)<6 ‖ (Fidea(1,gen)<Fidea
&& Fidea(1,gen−1)<Fidea && Fidea(1,gen−
2)<Fidea ) then

7: for i = 1; i ≤ N; i++ do

8: U1, U2 ← Two parents were

selected from the parent population

Pt;

9: r1i = rand(0,1),r2i =
rand(0,1),r3i = rand(0,1);

10: if r1i ≤ 0.5 then

11: if r2i ≤ Pac then

12: C1, C2 ← Execute

T-Crossover on U1, U2 ;

13: else

14: C1, C2 ← U1, U2;

15: end if

16: else

17: if r3i ≤ Pmu then

18: C1, C2 ← Execute

Mutations on U1, U2 ;

19: else

20: C1, C2 ← U1, U2;

21: end if

22: end if

23: Pt+1 ← C1, C2
24: end for

25: else

26: for i = 1; i ≤ N; i++ do

27: U1, U2 ← Two parents were

selected from the parent population

Pt;

28: r1i = rand(0,1),r2i = rand(0,1);
29: if r1i ≤ Pac then

30: C1, C2 ← Execute

T-Crossover on U1, U2 ;

31: else

32: C1, C2 ← U1, U2;

33: end if

34: Take C1, C2 as the parent

35: if r2i ≤ Pmu then

36: C3, C4 ← Execute

Mutations on C1, C2 ;

37: else

38: C3, C4 ← C1, C2;

39: end if

40: Pt+1 ← C3, C4
41: end for

42: end if

43: end for

Algorithm 1. Adaptive crossovermutationmechanism.
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TABLE 2 Daily load demand for themicrogrid.

Time/h Power/kW Time/h Power/kW Time/h Power/kW

1 65,000 9 55,000 17 55,000
2 60,000 10 45,000 18 57,500
3 52,500 11 40,000 19 60,000
4 50,000 12 35,000 20 65,000
5 55,000 13 37,500 21 70,000
6 60,000 14 42,500 22 72,500
7 70,000 15 47,500 23 75,000
8 65,000 16 50,000 24 70,000

searching ability is selected. Through this adaptive crossover
mutation mechanism, the performance of the algorithm to find
the optimal solution is improved. The overall flow chart of the
improved NSGA-III algorithm is shown in Figure 1.

3.3 TOPSIS decision method

The basic process of TOPSIS is to normalize the decision
matrix, select the positive and negative ideal solutions, compute
the distances between each solution and ideal solutions, and
then determine the optimal solution based on the close degree
to the positive ideal solution. Since this method does not have
strict restrictions on the amount of data and sample distribution,
it is often used in multi-objective decision-making. When the
problemmodel is optimized by the multi-objective optimization
algorithm, multiple Pareto solutions are obtained. At this time,
the TOPSIS method can be used to select a compromise solution
from the multiple Pareto solutions as the optimal solution. The
specific implementation steps of TOPSIS are as follows.

1) Build a decision matrix. It is assumed that there are n
schemes andm targets.This corresponds to the number of Pareto
solutions and the number of optimization objectives in this study,
respectively. The decision matrix is as follows.

A =
[[[[

[

a11 a12 ⋯ a1m
a21 a22 ⋯ a2m
⋮ ⋮ ⋱ ⋮
an1 an2 ⋯ anm

]]]]

]

(20)

2) Forwardization of the original matrix. That is to convert
all indicators into extremely small indicators, and the extremely
small indicators mean that the smaller the indicator value, the
better will be the effect. The conversion method for extremely
large indicators to extremely small indicators is as follows:

Max− x (21)

3) Standardization of the forward matrix. The matrix after
the forward transformation is standardized according to the
following formula.

Xij = (xij)n∗m = aij/(
n

∑
i=1
(aij)

2)
1/2

(22)

FIGURE 5
Optimization results of the three algorithms.

4) Calculate the distance between the solution of the
individuals in the population and the ideal solution. The
optimal value of each column is found as a+j , and the worst
value of each column is recorded as a−j . Then the distances
between the i-th scheme and the optimal solution and the worst
solution are

D+i = √
m

∑
j=1

ωj(aij − a
+
j )

2 (i = 1,2,…n) (23)

D−i = √
m

∑
j=1

ωj(aij − a
−
j )

2 (i = 1,2,…n) (24)

In the formula, omegaj is the weight of each indicator.The default
weight is the same. In the actual calculation, different weights can
be assigned to each indicator according to the actual situation.

5) Calculate the relative closeness of each scheme and sort
schemes.

δi =
D+i

D+i +D
−
i
, (i = 1,2,…,n) (25)
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FIGURE 6
Improvement effect of the NSGA-III algorithm: (A) NSGA-III without any improvement; (B) improved NSGA-III with adaptive T-crossover; (C)
improved NSGA-III with an adaptive crossover mutation mechanism; (D) NSGA-III-W algorithm with adaptive T cross-crossing operators and
adaptive cross-mutation mechanisms; (E) Comparison of all algorithms above.

6) The larger δi is, the better will be the scheme,
and the best scheme can be selected according to this
index.

4 Experimental results and analysis

In this section, the overall framework of the proposed model
and improved method is first given in Figure 2. Then, this
section is divided into three parts. In the first part, the parameter
information of the algorithm and model is given, and the second
part mainly verifies the effectiveness of the proposed algorithm
through the comparative analysis of different algorithms. The
third part designs two cases for electric vehicles of different

scales to analyze their influence on the optimal scheduling of the
model.

4.1 Parameter setting

In this study, the NSGA-II algorithm, MOEA/D algorithm,
and NSGA-III algorithm are first used for comparative
experiments to illustrate the necessity of improving the NSGA-
III algorithm. Then, the NSGA-III-W algorithm proposed in
Section 3 is used to optimize and analyze the model. In the
model, the trusted reserve capacity of 200 electric vehicles and
the price information related to electric vehicles participating
in V2G to provide reserve services are shown in Figure 3 and
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FIGURE 7
Convergence performance of all algorithms on different targets. (A) The convergence curve of e-commerce economy; (B) The convergence
curve of the load fluctuation of the power grid; (C) the convergence curve of user satisfaction.

Figure 4, respectively. The parameter information of different
algorithms is listed inTable 1. In addition, the load requirements
of the microgrid system except for electric vehicle users are
shown in Table 2.

4.2 Effectiveness of the proposed
algorithm

Based on the research ideas in the literature (Wu et al., 2018),
this study obtained the trusted reserve capacity of 200 electric
vehicles and applied it to the multi-objective optimizationmodel
of the reserve capacity of electric vehicles proposed. Taking the
microgrid system of a certain community as an example, the
proposed model mainly considers three objectives: the economy
of electricity collectors, the load fluctuation of the microgrid,
and the satisfaction of electric vehicle users. First, according to
the multi-objective characteristics of the proposed model, the
mainstream multi-objective intelligent optimization algorithms,
the NSGA-II algorithm, MOEA\D algorithm, and NSGA-III

algorithm are used to solve and analyze the model, and the
optimization results are shown in Figure 5.

From the figure, it can be clearly observed that the Pareto
front of the NSGA-III algorithm is at the back and top, which
shows that the NSGA-III algorithm has advantages in improving
the economic benefits of electricity collectors and the satisfaction
of electric vehicle users. Specifically, in terms of the economic
benefits of electricity collectors, the scheduling results of the
NSGA-III algorithm are obviously superior to the other two
algorithms. The Pareto front of the NSGA-III algorithm is
generally concentrated at around 13,000 $, followed by the
MOEA\D algorithm and NSGA-II algorithm. For the load
fluctuation of the microgrid, the NSGA-II algorithm has the
best scheduling result, followed by the NSGA-III algorithm and
MOEA\D algorithm. The scheduling result of the NSGA-III
algorithm is slightly better than that of the NSGA-II algorithm,
but the maximum user satisfaction in the optimization result
of the MOEA\D algorithm cannot reach the average user
satisfaction optimized by the NSGA-III algorithm and NSGA-
II algorithm. In general, the NSGA-III algorithm has certain
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advantages for solving the multi-objective optimization model
of electric vehicles, but it is not optimal for the load fluctuation
of the microgrid. To make the algorithm perform better in
each target, we adopt the improvement measures proposed in
Section 3 for the NSGA-III algorithm and express it as the
NSGA-III-W algorithm, and the validity and rationality of the
NSGA-III-W algorithm are shown in Figure 6.

This study made two improvements to the NSGA-III
algorithm, named as NSGA-III-T andNSGA-III-M, respectively,
and all the improvement methods are applied to the model.
When introducing the adaptive T-crossover operator (NSGA-III-
T) into NSGA-III, its optimization effect on the three objectives
is greatly improved compared with the unimproved NSGA-III.
However, the adaptive crossover mutation mechanism (NSGA-
III-M) can only achieve a little improvement to objective 2,
and the performance on other objectives is not much different
from that of the NSGA-III algorithm before the improvement.
When the two improved methods of NSGA-III-T and NSGA-
III-M are combined, their processing effect on the model is
optimal. At the same time, considering the speed of improving
the algorithm, the effect of the number of iterations is tested.The
improved parts of the NSGA-III algorithm and the optimized
values of the NSGA-II algorithm and the MOEA\D algorithm
on the three objectives are shown in Figure 7. The NSGA-
III-T algorithm reaches convergence when the number of
iterations is 350, which greatly improves the convergence speed
compared with the NSGA-III algorithm. The NSGA-III-M
algorithm has obvious advantages in improving F2, and its
optimization performance is significantly better than that of
NSGA-II, NSGA-III, and MOEA\D algorithms. The advantages
of NSGA-III-T and NSGA-III-M are combined in NSGA-
III-W, which not only improves the optimization results but
also improves the convergence performance of the algorithm.
Therefore, the NSGA-III-W algorithm is suitable for the multi-
objective optimization model of electric vehicle reserve capacity.

4.3 Model optimization result analysis

To evaluate the influence of different numbers of electric
vehicles on optimal scheduling results, this study takes a
microgrid system in a community in Shenzhen as an example;
in case 1 and case 2, respectively, the models of 200 and
1,000 electric vehicles participating in V2G to provide reserve
capacity are analyzed and discussed. In addition, since it is
unable to judge the importance of the three objectives, namely
the economic benefits of electricity collectors, the microgrid
power fluctuations, and user satisfaction, Table 3 shows the
optimal value of each objective, and decision-makers can choose
according to the actual situation. This study uses the TOPSIS
decisionmethod to select a compromise solution from the Pareto

front optimized by the NSGA-III-W algorithm as the optimal
solution.

4.3.1 CASE 1
The purpose of this case is to analyze the optimal scheduling

scenario of 200 electric vehicles in the problem model. It can be
seen from Table 3 that when F1 reaches the maximum value, F3
also achieves the maximum value. However, when F2 gets the
optimal value, F1 and F3 are relatively lower. This shows that
the changing trends of the three objectives are inconsistent in the
multi-objective optimization process. When F1 and F3 reach the
relative optimum, the value of F2 must be sacrificed. Since the
economic benefits of electricity collectors and the satisfaction of
users can be intuitively represented by numbers, here we mainly
consider the power fluctuation of the microgrid.

In the problemdesign, the power fluctuation of themicrogrid
represents the effect of peak shaving and valley filling to a certain
extent. The smaller the peak–valley difference is, the smaller the
power fluctuation of the microgrid is, that is, the value of F2. In
Figure 8, load curves before and after optimization in the model

TABLE 3 Optimal target values.

EV scale Optimal solution F1 ($) F2 (kW2) F3

F1 best 13,743 0.0784 15.04
200 F2 best 13,572 0.0780 14.63

F3 best 13,743 0.0784 15.04
Compromise solution 13,743 0.0784 15.04
F1 best 63,110 0.0757 20.00

1,000 F2 best 63,030 0.0754 20.00
F3 best 63,110 0.0757 20.00
Compromise solution 63,026 0.0754 20.00

FIGURE 8
Microgrid load curve before and after optimization when there
are 200 electric vehicles.
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FIGURE 9
Optimization results for electric vehicle reserve capacity when there are 200 electric vehicles.

are compared to observe the effect of peak cutting and valley
filling. As shown in the figure, the peak hours of the original
load curve are mainly 11:00 and 19:00, and the valley hours
at 16:00. The trusted upper reserve capacity of electric vehicles
is mainly concentrated in 0:00∼5:00 and 15:00∼16:00, and the
lower trusted reserve capacity is mainly 5:00∼6:00,12:00∼14:00,
and 17:00∼23:00. The second peak moment of the original load
curve is within the coverage area of the upper trusted reserve
capacity of the electric vehicle, and its peak value is reduced from
72020 kW to 70428 kW after optimization. The purpose of peak
shaving is effectively achieved within the allowable range of the
trusted reserve capacity.

The electric vehicle reserve capacity after the optimization of
the problem model is shown in the heat map in Figure 9, taking
20 electric vehicles as an example. It can be seen from the figure
that the upper reserve capacity of electric vehicles is concentrated
at 0:00∼5:00 and 16:00∼18:00, which is the off-peak period of
electric vehicle use. In addition, 17:00∼18:00 is also the peak
period of electric discharge price, and electric vehicle users can
earn certain economic benefits without affecting their daily life.
The scheduling of the lower reserve capacity is concentrated in
6:00∼7:00, 12:00∼14:00, and 17:00∼23:00, that is, before going
to work and after getting off work, which can effectively use the
spare time for charging. 20:00∼23:00 also is the low period of
charging electricity price. Under the premise of not affecting the
daily life of electric vehicle users, the reserve capacity can be
sold to the power grid to provide backup services for the power
grid, which can meet the reserve demand of the power grid, and
users and electricity collectors can also obtain certain economic
benefits.

4.3.2 CASE 2
When the number of electric vehicles increases to 1,000, it

is sufficient for the distributed power supply for the microgrid
system, but for the multi-objective optimization algorithm, the
dimension of the optimization variables is very large, which is

not beneficial. It can be seen from the compromise solution
in Table 3 that the maximum value of F1 and F3 is 63,026 $
and 20, respectively, and the optimal value of F2 is 0.0754 kW2.
Comparing the aforementioned results with the scene of 200
electric vehicles, F1 and F3 are 13,743 $ and 15.04, respectively,
F2 is 0.0784 kW2, the values of F1 and F3 have been greatly
improved, and the value of F2 has also been improved to a
certain extent. The specific situation of the load fluctuation of
the microgrid system is shown in Figure 10. Comparing the
scenario of 200 electric vehicles, it can be clearly observed that
the load curve after optimization is much smoother than the
load curve before optimization. Not only was the peak value
at 19:00 reduced from 80101 kW to 78205 kW, but also the
value of the “valley time” at 16:00 was filled from 47071 to
47473 kW.

FIGURE 10
Microgrid load curve before and after optimization when there
are 1,000 electric vehicles.
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FIGURE 11
Optimization results for electric vehicle reserve capacity when there are 1,000 electric vehicles.

The optimized reserve capacity of electric vehicles is shown
in Figure 11. Similarly, we select the scheduling results of 20
electric vehicles as a display. Compared with the scene of 200
electric vehicles, the yellow area of the upper reserve capacity
is changed from 17:00∼18:00 to 16:00∼17:00, and the yellow
area of the lower reserve capacity is shifted from 18:00∼23:00
to 19:00∼23:00. Looking at Figure 10, it can be seen that the
transfer of this part of the spare capacity is to better smooth the
load curve.

In summary, we can conclude that the increase in the number
of electric vehicles is more beneficial to the microgrid system
because it means that more electric vehicles can participate
in dispatching, and decision makers have more choice space
to make dispatching plans according to the actual situation.
According to the needs and wishes of electric vehicle users,
through V2G technology, the electricity in the non-use stage of
electric vehicles is sold to the grid as a reliable reserve capacity to
provide backup services for the grid. According to the established
multi-objective optimization model of electric vehicle reserve
capacity, the optimal scheduling of EV is carried out, which can
not only make the electricity collectors and users profit from it
but also achieve the purpose of smoothing the power fluctuation
of the microgrid and effectively promote the good interaction
between the electricity collectors, microgrid, and electric
vehicles users. For the algorithm itself, some improvement
measures may be needed to increase the effectiveness of the
algorithm.

5 Conclusion

This study builds a multi-objective optimization model
for electric vehicle reserve capacity based on electric vehicle
user wishes. Aiming at the economics of electricity collectors,
the load fluctuation of the microgrid, and the satisfaction of
electric vehicle users, this study achieves a benign interaction

between electricity collectors, the microgrid, and electric vehicle
users. In addition, an improved NSGA-III algorithm named
NSGA-III-W was proposed for the proposed multi-objective
optimization model of electric vehicle reserve capacity. The
diversity and convergence of the algorithm are effectively
improved by introducing an adaptive T-crossover operator and
adaptive crossover mutation mechanism. Experimental results
show that the proposed algorithm can achieve the best results
compared with other algorithms.

In short, this study has carried on the practical innovation
from the model and algorithm, making it closer to reality.
Extensive experimental results in this study demonstrate the
effectiveness of the algorithmic improvements. In the future, the
model needs to be further expanded to adapt to complex grid
scenarios and consider the dispatching of electric vehicles under
the power system including wind energy photovoltaics and other
new energy sources. Second, it can be considered to further
improve the algorithm for the future expandedmodel to adapt to
the characteristics of the specific model, to deal with the optimal
scheduling problem of electric vehicles participating in V2G in
practical applications.
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Nomenclature

EV Electric vehicle

V2G Vehicle to grid

CR Revenue of electric vehicles to provide reserve capacity

CU Cost of purchasing electricity

CG Retail revenue from electric vehicle users

T Dispatching period

M Number of electric vehicles

Δt Dispatching time

u,v dDcision factor for upper and lower spare capacity

Pu,i,t ,Pd,i,t Upper and lower trusted reserve capacity of each electric
vehicle per hour

Pue,i,t ,Pde,i,t Upper and lower reserve capacity of each electric vehicle
per hour

Vu,t ,Vd,t Upper and lower trusted reserve capacity prices

Vue,t ,Vde,t Price of upper and lower reserve capacity

Vb Loss price

Vbat Average price of long-term electricity purchases by the electricity
collector

G,H Number of electric vehicleswith upper and lower reserve capacity

Pl,t Predicted value of load demand in t

Peq,t Equivalent load in t

Pg,t Generated power of the microgrid in t

Pu,i,max,Pu,i,min Maximum and minimum charging power of each
electric vehicle

Pd,i,max,Pd,i,min Maximumandminimumdischarging power of each
electric vehicle

βSBX Simulate binary crossover operator

βTDX T-cross operator

u1,u2 Parent individuals

C1,C2 Offspring individuals

gen Current iteration count

genmax Maximum number of iterations

n Degrees of freedom

FPi,β Fitness value of the individual Pi in the current population on the
target β

FPi, index Overall fitness of Pi individual

Favg,β Average fitness value of the current population on the
target β

β Type of optimization objective

∂ Number of optimization goals
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